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The role of E3 ubiquitin
ligases and deubiquitinases
in bladder cancer development
and immunotherapy

Xuemei Wang †, Ying Zhang †, Yao Wu, Hongjing Cheng
and Xueju Wang*

Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
Bladder cancer is one of the common malignant urothelial tumors. Post-

translational modification (PTMs), including ubiquitination, acetylation,

methylation, and phosphorylation, have been revealed to participate in bladder

cancer initiation and progression. Ubiquitination is the common PTM, which is

conducted by E1 ubiquitin-activating enzyme, E2 ubiquitin-conjugating enzyme

and E3 ubiquitin-protein ligase. E3 ubiquitin ligases play a key role in bladder

oncogenesis and progression and drug resistance in bladder cancer. Therefore,

in this review, we summarize current knowledge regarding the functions of E3

ubiquitin ligases in bladder cancer development. Moreover, we provide the

evidence of E3 ubiquitin ligases in regulation of immunotherapy in bladder

cancer. Furthermore, we mention the multiple compounds that target E3

ubiquitin ligases to improve the therapy efficacy of bladder cancer. We hope

our review can stimulate researchers and clinicians to investigate whether and

how targeting E3 ubiquitin ligases acts a novel strategy for bladder

cancer therapy.
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Abbreviations: ANKRD1, ankyrin repeat domain 1; BET, bromodomain and extraterminal domain; CSN5,

COP9 signalosome subunit 5; CTGF, connective tissue growth factor; CYR61, cysteine-rich angiogenic

inducer 61; EGFR, epidermal growth factor receptor; ERK1/2, extracellular signal-regulated kinase 1/2;

GRIM19, gene associated with retinoid-interferon-induced mortality-19; LAPTM5, lysosomal-associated

multispanning membrane protein 5; mTORC1, mammalian target of rapamycin complex 1; MIBC, muscle

invasive bladder cancer; MRE11, meiotic recombination 11 homolog; NSCLC, non-small cell lung cancer;

NSR-SCCUB, non-schistosomiasis related-squamous cell carcinoma of urinary bladder; NEDD4, neuronally

expressed developmentally downregulated 4; PD-1, programmed cell death protein 1; PD-L1, programmed

death ligand-1; PI3K, phosphoinositide 3-kinase; POI, protein of interest; PROTACs, proteolysis targeting

chimeras; PTMs, post-translational modifications; qRT-PCR, quantitative real-time polymerase chain

reaction; SIRT1, silent information regulator sirtulin 1; SOX2, Sex-determining region Y-box 2; SREBP1a,

sterol regulatory element-binding protein 1a; TCGA, the Cancer Genome Atlas; TCR, T cell receptor; TILs,

tumor-infiltration T cells; USP7, ubiquitin-specific processing protease 7.
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Introduction

Bladder cancer is one of the common malignant tumors

worldwide (1). It was estimated that there are 82,290 new cases

and 16,710 deaths in 2023 in the United States. In men, bladder

cancer was the eight-leading cause of cancer-associated death in the

United States (2). In the world, there were approximately 573,278

new cases with bladder cancer and 212,536 deaths due to this

disease (3, 4). Tobacco smoking could be a reason for bladder

cancer incidence. In addition, some risk factors, such as chemicals

and aromatic amines, arsenic contamination and aluminum, could

increase the bladder cancer development. The treatments of bladder

cancer often include endoscopic resection, chemotherapy,

radiation, intravesical immunotherapy and combination therapy

(5–7). The gold standard therapy for MIBC was chemotherapy and

radical cystectomy. Bladder-sparing trimodal therapy is also

available for MIBC patients. Chemoimmunotherapy is the key

strategy for bladder cancer with metastatic feature (8). The

treatment of immunotherapy and immune checkpoint inhibitors

has not shown the good efficacy in bladder cancer patients (9).

However, bladder cancer exhibits immune evasion and poor

outcomes, suggesting that novel therapies need to be developed

for treating bladder cancer (10).

Several genes have been known to regulate development and

aggressiveness in bladder cancer, including Wnt, STAT3, PI3K,

AKT, mTOR and PTEN (11–15). For instance, monocarboxylate

transporter isoform 1 (MCT1) has been found to govern aggressive

and metabolic phenotypes in bladder cancer because higher

expression of MCT1 was associated with lymph node, poor

survival and distant metastasis (16, 17). Silencing of MCT1

blocked proliferation, invasion, migration and altered the

expression of EMT-associated proteins (16). MCT1, MCT4 and

CD147 displayed a prognostic implication and a potential role in

bladder cancer metabolism (18). MCT1 and CD147 also

participated in cisplatin resistance and tumor aggressiveness in

bladder cancer (19). In addition, some proteins could be post-

t rans la t ional ly modified , inc luding phosphoryla t ion ,

ubiquitination, acetylation, glycosylation, methylation and

SUMOylation (20). Post-translational modification (PTM) has

been known to govern tumorigenesis and progression in various

cancer types, including bladder cancer (21, 22).

PTMs include ubiquitination, acetylation, phosphorylation,

methylation, hydroxylation, lipidation, palmitoylation, and

glycosylation (23–27). Autophagy-lysosome pathway and the

ubiquitin-proteasomal system (UPS) are common PTMs to

control protein stability (28, 29). Ubiquitination is an ATP-

mediated process: an E1 ubiquitin-activating enzyme activates

ubiquitin, E2 ubiquitin-conjugating enzyme links ubiquitin via a

transesterification reaction, E3 ubiquitin-protein ligase makes the

binding between E2 enzyme and substrate proteins, leading to

ubiquitin transfer from E2 to the specific substrate (30, 31). E3

ubiquitin ligases are critically involved in oncogenesis and

progression as well as drug resistance in bladder cancer (32, 33).

Targeting E3 ubiquitin ligases has demonstrated to be a novel

approach for bladder cancer therapy (34). In this review, we
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summarize current knowledge regarding the roles of E3 ubiquitin

ligases in bladder oncogenesis. Furthermore, we discuss the insights

of E3 ubiquitin ligases in regulation of immunotherapy in bladder

cancer. Moreover, we highlight the efforts on targeting E3 ubiquitin

ligases to improve the efficacy of bladder cancer treatments. We

hope our review can encourage researchers to explore how can

improve the benefit of bladder cancer therapy via targeting E3

ubiquitin ligases.
Deubiquitinases in bladder cancer

USP2a

USP2a has been reported to regulate oncogenesis and

progression in a variety of human cancers (35–37). USP2a mRNA

expression was reduced in bladder cancer tissues compared with

age-matched bladder tissues, and USP2a mRNA expression was

decreased in higher stage of MIBC (38). Kim et al. found that USP2a

increased tumor progression in part via regulation of cyclin A1 in

bladder cancer (39). Specifically, overexpression of USP2a increased

cell invasion, migration, chemotherapeutic drug resistance and

proliferation. Downregulation of USP2a showed the opposite

effects in bladder cancer. USP2a overexpression increased the

Erk/MAPK phosphorylation after HB-EGF stimulation in T24

cells. Overexpression of USP2a in T24 cells caused more

resistance to cisplatin-induced apoptosis due to inhibition of the

cleaved form of PARP (c-PARP). USP2a interacted with cyclin A1

and blocked the ubiquitination of cyclin A1, contributing to cyclin

A1 accumulation, which led to promotion of cell proliferation in

bladder cancer (39). Frizzled 8-associated APF (antiproliferative

factor) maintained the stability of p53 via modulation of USP2a and

murine double minute 2 (MDM2) (40). APF decreased USP2a

expression and caused MDM2 ubiquitination, leading to inhibition

of the interaction between p53 and MDM2, thereby impairing p53

ubiquitination (40). Overexpression of USP2a increased cell growth

through upregulation of cyclin D1 at the mRNA and protein levels,

while depletion of USP2a reduced cell proliferation in part via

increased cellular p53 levels in T24 cells (40).
USP21

USP21 has been gradually uncovered the essential role in

carcinogenesis (41, 42). One integrative assay of 1q23.3 copy

number gain in urothelial cancer patients with metastasis after

platinum-based chemotherapy demonstrated that USP21, F11R,

PPOX, DEDD, PFDN2 genes were closed linked to poor

outcomes (43). Similarly, USP14 and USP21 were found to be

associated with chemoresistance in bladder urothelial carcinoma

with metastasis (44). Another study showed that USP21 expression

was elevated in bladder cancer. High expression of USP21 was

closely correlated with tumor metastasis and tumor size.

Intriguingly, poorer survival rate was found in bladder cancer

patients with higher levels of USP21 (45). In bladder cancer cells,
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increased expression of USP21 promoted cell proliferation,

stimulated cell migration and invasion, enhanced tumor

metastasis (45). Notably, overexpression of USP21 led to the

development of EMT. Mechanistically, USP21 deubiquitinated

EZH2 and stabilized its protein levels. USP21 could be a potential

target for bladder cancer therapy (45). PD-L1 is observed in

membrane of immune cells ad tumor cells. PD-L1 can bind to

PD-1, leading to protection of tumor cells from an immune attack.

The inhibitors of PD-1/PD-L1 can impair this binding and enhance

the immune response against tumor cells (46, 47). USP21 has been

identified to act as a deubiquitinase of PD-L1. Increased USP21

elevated PD-L1 abundance, whereas depletion of USP21 promoted

PD-L1 degradation. Hence, targeting USP21 could be helpful to

improve tumor immunotherapy (48).
USP22

USP22 has been known to involve in tumor cell proliferation,

invasion, stemness, cell cycle arrest, metastasis, immune response

and drug resistance in human cancer (49). In bladder cancer,

silencing USP22 by siRNAs induced cell cycle arrest and

attenuated cell proliferation (50). USP22 siRNA transfection

increased the expression of p53 and p21, decreased cyclin E

expression in bladder cancer cells. Silencing of USP22 promoted

the degradation of MDM2 in bladder cancer cells. USP22 siRNA

transfection induced cell cycle at G0/G1 phase via upregulation of

p53, p21 and downregulation of cyclin E in bladder cancer cells

(50). Depletion of USP22 expression retarded the tumor growth of

implanted bladder cancer cells in mice (50). Another study also

revealed that USP22 depletion reduced cell cycle progression and

retarded tumor growth in animal models of bladder cancer, liver

cancer, lung cancer, breast cancer and ovarian cancer (51). USP22

has been reported to regulate immune evasion and drug sensitivity

in cancer (52). USP22 has been identified to work as a new regulator

of PD-L1. USP22 interacted with PD-L1 and maintained PD-L1

stability via deubiquitination in A549, H1299 and H1792 NSCLC

cells (53). USP22 also interacted with CSN5 and kept its stability via

deubiquitination. Either CSN5 or USP22 enhanced the binding of

PD-L1 with the other one. The K6, K11, K27, K29, K33 and K63-

linked ubiquitin chains were removed by USP22 in PD-L1 and

CSN5 in HEK293FT cells. Hence, USP22 governed the PD-L1

protein levels via CSN5/PD-L1 pathway in HEK293FT cells (53).

Silencing of USP22 enhanced T cell cytotoxicity and blocked lung

tumorigenesis. This study showed a critical role of USP22 in

regulation of immune evasion via maintenance of PD-L1 protein

levels (53). It is required to define the role of USP22 in

bladder tumorigenesis.
E3 ubiquitin ligases in bladder cancer

FBXW7

FBXW7 belongs to F-box protein family and shows a tumor

suppressive function in cancer development (54). F-box proteins
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target numerous substrates and regulate proliferation, metastasis,

EMT, cancer stem cells, and drug resistance (55–57). FBXW7

exhibited single nucleotide variants or insertion or deletion in

non-schistosomiasis related-squamous cell carcinoma of urinary

bladder (NSR-SCCUB) patients (58). NSR-SCCUB is not common

type in urothelial carcinoma, which could have genomic alterations

(58). FBXW7 targeted an epigenetic regulator ZMYND8 for

ubiquitination and degradation in bladder cancer (59). ZMYND8

increased cell viability and colony formation, migrative ability in

bladder cancer. FBXW7 interacted with and degraded ZMYND8 in

a polyubiquitin-dependent manner. By a gene set enrichment

analysis, ZMYND8 was observed to be positively correlated to

tumor stemness markers, including FOXM1, SOX2 and NANOG

(59). One group revealed that overexpression of p65 increased cell

migration via FBXW7-induced ubiquitination and degradation of

RhoGDIa protein in bladder cancer (60). RhoGDIa protein was

found to be a p65 downstream target and mediated p65-induced cell

migration in bladder cancer. Mechanistically, p65 enhanced

FBXW7 stability via attenuating the mRNA transcription of

PTEN (60). Hence, p65 inhibited PTEN mRNA transcription and

subsequently promoted FBXW7 stability, leading to degradation of

RhoGDIa in bladder cancer cells (60). Liu et al. found that

upregulation of FBXW7 reduced the invasion and growth of

bladder cancer cells, caused cell cycle arrest at G0/G1 phase.

Increased FBXW7 activated GSK-3b phosphorylation and

inhibited the expression of SREBP1a in bladder cancer cells (61).

SREBP1 is a transcription factor, including two isoforms, SREBP-1a

and SREBP-1c, which regulates the expression of lipogenesis genes.

Studies have shown that SREBP1 regulates the expression of

stearoyl-CoA desaturase, fatty acid synthase, and acetyl-CoA

carboxylase (62). FBXW7 can bind with SREBP1a by a co-

immunoprecipitation assay. In vivo study further validated the

role of FBXW7 in regulation of SREBP1a (61). The role of

FBXW7 in bladder cancer indicated that targeting FBXW7 is a

novel approach for bladder cancer therapy.
MDM2

MDM2 (mouse double minute 2 homologue) is involved in

tumorigenesis mainly targeting p53 protein in different cancer

types, including bladder cancer (63, 64). In 1994, upregulation of

MDM2 and p53 expression was observed in bladder cancer patients

(65). Moreover, p53 and MDM2 were found to be key factors in the

progression of bladder cancer (66). There was an association

between TP53 (codon 72, arginine> proline), MDM2 (SNP309,

T>G) polymorphisms and patient’s survival in bladder cancer after

chemoradiotherapy (CRT) (67). Patients with MDM2 T/G + G/G

genotypes exhibited a good survival rate after CRT. TP53 and

MDM2 with more than two of variant alleles exhibited an

improved survival (67). For example, MDM2 SNP309 G-variant

was revealed to be correlated with tumor cell invasive growth and

the risk of bladder cancer (68, 69). Mao et al. found that OCT3/4

increased tumor immune escape via upregulation of TET1 and

NRF2 expression, leading to enhancement of MDM2 expression,

which contributed to acceleration of tumor immune evasion in
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1202633
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2023.1202633
bladder cancer (70). Small-molecule MDM2 inhibitors have been

detected in clinical trials for improving the efficacy of cancer

treatment (71, 72). MDM2 inhibitor APG-115 was reported to

enhance the efficacy of PD-1 blockade via increasing anticancer

immunity in the tumor microenvironment (73). One MDM2

inhibitor, AMG-232, sensitized tumor cells to T-cell-induced

killing in tumors with high expression of MDM2 (74). The

MDM2 ligand Nutlin-3 modulated the expression of PD-L1 and

CD276 (75). Nutlin-3 induced the expression of PD-L1, while

MDM2 did not bind PD-L1 (75). Suppression of MDM2 by

HDM201 inhibitor facilitated anticancer responses via interaction

with the stromal and immune microenvironment in tumor cells

with p53 wild-type (76). MDM2 gene amplification could be a

useful biomarker for prediction of a better response for targeted

therapies in PD-L1 positive or negative urothelial bladder

cancer (77).
TRIM38

TRIM38 functions as a SUMO ligase or an E3 ubiquitin ligase

and targets several cellular signaling components (78). Glucose

transporter type 1 (GLUT1) was upregulated in bladder cancer and

correlated with poor survival rate and poor prognosis in patients

with bladder cancer (79, 80). Moreover, GLUT1 was identified as an

independent biomarker for prognosis in bladder cancer patients

after radical cystectomy treatment (81). GLUT1 was also taken part

in cisplatin resistance in bladder cancer, which can be regulated by

miR-218 (82). According to TCGA bladder cancer database,

TRIM38 expression was low in bladder cancer patients. Lower

expression of TRIM38 was linked to shorter survival rate and worse

prognosis in patients with bladder cancer (83). TRIM38 was further

found to regulate proliferation, stemness and invasion of bladder

cancer cells. Strikingly, TRIM38 had an interaction with GLUT1

and enhanced the ubiquitination and degradation of GLUT1 in

bladder cancer cells. Accordingly, BAY-876, an inhibitor of GLUT1,

inhibited proliferation and tumor growth in bladder cancer cells

and mouse models (83).
Other deubiquitinases and E3
ubiquitin ligases

Accumulating evidence has shown that many E3 ubiquitin

ligases are involved in bladder tumorigenesis. For instance, the E3

ubiquitin ligase cIAP2 (cellular inhibitor of apoptosis protein 2) was

elevated after inhibition of histone deacetylase (HDAC) in bladder

cancer. MRE11, which regulates DNA repair pathways and double-

strand breaks, was also inhibited by HDAC inhibitors (84). The

cIAP2 was found to bind with MRE11 and governed radio-

sensitization after HDAC inhibitor treatment. cIAP2 modulated

the ubiquitination of MRE11 and caused the downregulation of

MRE11 in bladder cancer cells (84). Therefore, cIAP2 might be a

promising target for improving chemoradiation strategy in bladder

cancer . Suppression of GRIM19 expression impaired
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cells, conferring to promotion of cisplatin chemoresistance (85).

Overexpression of GRIM19 potentiated cisplatin sensitivity and

reduced the invasion and proliferation of bladder cancer cells,

which was due to attenuation of Bcl-xL polyubiquitination and

degradation (85).

Yes-associated protein (YAP) is one of key effectors in the Hippo

tumor suppressor pathway, which regulates organ size and tissue

growth and tumorigenesis (86, 87). Luo et al. reported that MINDY1,

a DUB enzyme, interacted with YAP and acted as a deubiquitylase of

YAP to stabilize YAP protein levels in bladder cancer (88).

Consistently, silencing of MINDY1 reduced proliferation of

bladder cancer cells. Overexpression of YAP abrogated the

MINDY1 depletion-induced inhibition of cell proliferation in

bladder cancer cells (88). Connective tissue growth factor (CTGF)

controls differentiation, adhesion and proliferation, and involves in

Hippo pathway, NF-kB and p53 pathways, leading to regulation of

cancer, inflammation and fibrosis (89). Cysteine-rich protein 61

(CYR61) was reported to involve in the development of melanoma

(90), glioma (91) and esophageal squamous cell carcinoma (92).

Exosomal miR-217 mimic promoted migration and proliferation in

5637 and T24 cells via upregulation of YAP and its targets, such as

CTGF, CYR61 and ANKRD1 (93). Downregulation of MINDY1

disrupted the YAP stabilization and inhibited the expression of YAP

downstream genes, such as CTGF, CYR61 and ANKRD1 in bladder

cancer (88). MINDY1 could be a possible biomarker and therapeutic

target for bladder cancer (88). RNF126 (ring finger protein 126),

acting as a E3 ubiquitin ligase, has been reported to be overexpressed

in numerous cancer types and correlated with tumorigenesis (94).

RNF126 expression was elevated in bladder cancer tissues via a

TCGA database analysis. Depletion of RNF126 remarkably impaired

proliferation and metastasis of bladder cancer cells via modulation of

the EGFR/PI3K/AKT pathway. RNF126 silencing reduced EGFR

expression and AKT phosphorylation, slightly inhibited PI3K

expression, and remarkably increased the PTEN protein levels in

UMUC3 and T24 cells. The mRNA levels of AKT and EGFR were

reduced after RNF126 downregulation, but PTEN mRNA levels did

not change in RNF126-silencing cells. Notably, PTEN was identified

as a new substrate of RNF126 (95). RNF126 bound to PTEN and led

to polyubiquitination and degradation of PTEN. Inhibition of

RNF126 oncoprotein could be a novel approach for bladder cancer

therapy (95). It has been known that c-Cbl is an E3 ubiquitin ligase

that targets its substrates for degradation (96). C-Cbl was reported to

target the EGFR for ubiquitination and degradation (97). Another

study revealed that USP8 can regulate SOX2 ubiquitination and

degradation in bladder cancer (98).
Deubiquitinases and E3 ubiquitin
ligases regulate immunotherapy

The E3 ubiquitin ligases have been approved as important

factors to govern the tumor microenvironment and affect

immunotherapy in human cancers (99). Evidence has dissected

that the E3 ubiquitin ligases control PD-1/PD-L1 protein levels and
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enhance tumor immunotherapy (100). For example, FBXO38,

FBXW7 and C-Cbl target PD-1, whereas SPOP and FBXO22

target PD-L1. In addition, USP7, USP8 and USP22 target PD-L1

to maintain the PD-L1 protein levels (100, 101).
RNF144A regulates PD-L1

RNF144A is an E3 ubiquitin ligase for the degradation of DNA-

PKcs (DNA-dependent protein kinase catalytic subunit), leading to

promotion of apoptosis during DNA damage (102, 103). RNF144A

governed PARP inhibitor sensitivity via targeting PARP1 in

ubiquitin-dependent manner in breast cancer cells (104). In

addition, RNF144A expression was decreased due to promoter

hypermethylation in breast cancer cells (105). Moreover,

RNF144A targeted the stability of HSPA2 via ubiquitin-

dependent regulation in breast cancer (106). Furthermore,

RNF144A degraded YY1 and inhibited the expression of GMFG

as well as suppressed oncogenesis in breast cancer (107). RNF144A

maintained the activation of EGFR signaling pathway to enhance

EGF-involved cell proliferation (108). RNF144A controlled the

stability of LIN28B via the uniquitin-proteasome manner and

inhibited stem cell properties in ovarian cancer cells (109).

In bladder cancer cells, depletion of RNF144A elevated the

stabilization of PD-L1 protein and enhanced carcinogen-mediated

bladder oncogenesis (110). Mice with RNF144A deficiency were

more prone to initiation of bladder cancer after carcinogen

exposure. RNF144A knockout mice displayed the higher

expression of PD-L1. RNF144A can bind with PD-L1 and

enhanced ubiquitination and disruption of PD-L1 in the

intracellular vesicles and plasma membrane (110). RNF144A

depletion in mice caused a decrease of tumor infiltration CD8+

T-cells in the carcinogen-induced bladder cancer. Moreover,

RNF144A depletion stimulated cellular differentiation, showing

that a luminal subtype marker GATA3 was increased in

RNF144A knockout tumors (110). This phenotype could be due

to that RNF144A maintained EGFR expression. Hence, depletion of

RNF144A increased the expression of PD-L1, DNA-PKcs and

BMI1, resulting in the carcinogen-mediated the development of

bladder cancer (110).
NEDD4 regulates PD-L1

An E3 ubiquitin ligase NEDD4 (also known as NEDD4-1)

belongs to NEDD4 family, which has shown a critical function in

carcinogenesis and progression (111, 112). NEDD4 performs its

biological functions via targeting numerous substrates for

ubiquitination and degradation (113, 114). NEDD4 has been

revealed to regulate many functions, including growth, cell cycle,

proliferation, differentiation, invasion, motility, apoptosis, necrosis,

autophagy and metastasis (115). NEDD4 has been identified to take

part in bladder cancer initiation and development. Inhibition of

LAPTM5 blocked cell viability and growth and caused cell cycle

arrest at G0/G1 phase via inhibition of p38 and ERK1/2 activation

in bladder cancer (116). Depletion of NEDD4 suppressed the
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transportation of LAPTM5 from Golgi to lysosome, which could

affect bladder tumorigenesis (116). Suppression of NEDD4

displayed antitumor activity in bladder cancer cells (117). Mao

et al. found that NEDD4 can bind to KLF8 (Kruppel-like factor 8)

and target the miR-132 and NRF2 (nuclear factor E2-related factor

2) axis in bladder cancer, contributing to acceleration of tumor

growth, recurrence and lung metastasis (118). NEDD4 depletion

reduced K63-linked polyubiquitination of KLF8 and inhibited the

stability and transcriptional ability of KLF8 (118). NEDD4

promoted the interaction between KLF-8 and miR-132 promoter

region, resulting in suppression of miR-132. Moreover, miR-132

inhibited the expression of NRF2 in bladder cancer cells, leading to

repression of cell migration and viability (118).

Fibroblast growth factor receptor 3 (FGFR3) has been known to

play a key role in bladder cancer development. FGFR3

rearrangements and missense mutations were reported in bladder

cancer (119). One study showed that suppression of FGFR3

increased PD-L1 protein levels in FGFR3-expressing bladder

cancer due to influencing its ubiquitination, leading to

suppression of the anticancer activity of CD8+ T cells. FGFR3

expression was negatively associated with PD-L1 expression levels

in bladder cancer tissues. FGFR3 activation can promote NEDD4

phosphorylation. NEDD4 catalyzed K48-linked polyubiquitination

of PD-L1 via their interactions. CD8+ T-cell infiltration and

anticancer ability were largely impaired because of upregulation

of PD-L1 in bladder tumor cells in mice with NEDD4 knockout

bladder cancer. Targeting FGFR3 and PD-L1 increased CD8+ T-

cell-induced anticancer efficacy and exhibited effective tumor

suppression in bladder cancer. This work provided a molecular

clue among NEDD4, PD-L1 and FGFR3, suggesting that targeted

therapy in combination with immune therapy could be much better

for the treatment of bladder cancer. Therefore, NEDD4 targets PD-

L1 for ubiquitination and destruction in FGFR3-overexpressing

bladder cancer, indicating that NEDD4 is associated with immune

surveillance via regulation of PD-L1 in bladder cancer (120). One

group showed that a natural compound lycorine downregulated the

expression of NEDD4 in bladder cancer, leading to suppression of

cell growth and invasiveness (121). Hence, natural compounds

targeting NEDD4 could be useful to improve immunotherapy in

bladder cancer.
USP7 regulates PD-L1 expression

USP7 (ubiquitin-specific protease 7), also named as HAUSP

(herpesvirus-associated protease), has been discovered to be

associated with oncogenesis in some cancer types, including

bladder cancer (122–125). USP7 has been revealed to control the

anti-tumor immune responses. Inhibition of USP7 by its inhibitors

impedes the activity of Treg cells, enhances polarization of tumor-

related macrophages in tumor cells (126). It has been reported that

USP7 modulated the expression levels of CCDC6 in bladder cancer.

One USP7 inhibitor, P5091, regulated CCDC6 degradation and

enhanced cell sensitivity to PARP inhibitors. Combined therapy

with DNA damage inducer RRx-001 and P5091 promoted the

tumor cell sensitivity to PARP inhibitors (127).
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1202633
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2023.1202633
DNA methylat ion is regulated by DNMTs (DNA

methyltransferases). SB216763, an inhibitor of GSK3 (glycogen

synthase kinase-3), increased cell proliferation and upregulated

the expression of pGSK3b, b-catenin and DNMT1 (128). The

expression of USP7, DNMT1, UHRF1 and b-catenin was

inhibited after re-expression of WIF-1 and treatment with

DNMT1 inhibitor DAC (128). One study revealed that PD-L1

expression was positively associated with USP7 levels in gastric

cancer patients. USP7 directly bound to PD-L1 and stabilize it

(129). Abrogation of USP7 impaired the interaction between PD-1

and PD-L1, leading to sensitization of cancer cells to T cell killing in

cancer cells and in mice. In addition, inhibition of USP7 by its

inhibitor reduced cell proliferation due to p53 stabilization in

gastric cancer cells (129). Hence, USP7 suppression by its

inhibitors not only blocked gastric tumor cell proliferation but

also inhibit the expression of PD-L1 to improve anti-cancer

immune response in gastric cancer (129). It is required to explore

whether USP7 inhibitors could enhance the immune response of

bladder cancer. USP7 inhibitors have been developed to perform

anticancer ability in various cancer types (130). It is necessary to

determine whether these USP7 inhibitors can improve

immunotherapy in bladder cancer.
Other E3 ubiquitin ligases regulate
immunotherapy

One group used TCGA and GEO database to analyze

ubiquitination-related molecular subtypes for bladder cancer

(131). This group found a total of four ubiquitination-related

molecular subtypes of bladder cancer. These four subgroups had

various tumor microenvironment, prognosis, clinical characteristics

and PD-L1 expression level. In addition, six ubiquitination-related

genes (URGs), including HLA-A, UBE2D1, UBE2T, USP5,

TMEM128 and UBE2N, could be useful for prognostic

markers (131).
Compounds regulate E3 ligases in
bladder cancer

In recent years, some compounds have been uncovered to

regulate the expression of E3 ubiquitin ligases in human

malignancies, including bladder cancer (132–134). b-lactam
cephalosporin antibiotic cefepime has been uncovered to deplete

PD-L1 and promote tumor DNA damage and increase sensitivity of

DNA-damaging compounds in multiple tumor cell lines, such as

bladder cancer, melanoma, GBM (glioblastoma multiforme) and

ovarian cancer (135). Cefepime inhibited tumor PD-L1 via

regulation of its ubiquitination, enhanced efficacy of DNA-

damaging compounds in mice, stimulated immunogenic tumor

STING pathway. Ceftazidime exhibited the similar performance

as cefepime in regulation of PD-L1 and DNA-damaging agent

therapeutic efficacy. Taken together, cefepime and ceftazidime

could improve immunotherapy and DNA-damaging agent
Frontiers in Immunology 06
efficacy in bladder cancer (135). Hispolon from Phellinus linteus

is a natural polyphenol and conducted a function as a cancer killer

via targeting several signaling pathways (136). Hisplon inhibited

tumor cell growth via upregulation of p21 in bladder cancer cells

(137). Hispolon promoted the ubiquitination and degradation of

MDM2 in bladder cancer cells. ERK1/2 was activated and recruited

to MDM2 and led to MDM2 ubiquitination. Inhibition of ERK1/2

by U0126 blocked hispolon-mediated caspase-7 cleavage. Hence,

hispolon downregulated MDM2 via degradation in bladder

cancer (137).

Allyl isothiocyanate was often obtained from cruciferous

vegetables and caused mitotic arrest via upregulation of

ubiquitination and degradation of alpha and beta-tubulin in

bladder cancer cells (138). PR-619 was an inhibitor of

deubiquitylating enzymes and overcame cisplatin resistance via

the inhibition of c-Myc in bladder urothelial carcinoma cells (44).

Stevioside was identified by high-throughput screening as a useful

compound to increase cell apoptosis via activation of GSK-3b and

induction of FBXW7, contributing to downregulation of MCL-1 in

bladder cancer (139). Similarly, OSU-T315, an inhibitor of integrin-

linked kinase, was observed to inhibit Mcl-1 expression levels via

targeting the GSK-3b/FBXW7 axis in bladder cancer cells (140).

Green tea polyphenol EGCG plays a tumor suppressive role in

bladder cancer via inactivation of NF-kappa B. Moreover, EGCG

promoted the anticancer activity of doxorubicine via modulation of

NF-kB/MDM2/p53 pathway in bladder cancer (141). Proguanil,

which is often used as an anti-malarial drug, inhibited the cell

growth by promotion of EGFR degradation and induction of

autophagy in bladder cancer (97). Proguanil enhanced the

interaction between EGFR and Caveolin-1, leading to endocytosis

and recruiting c-Cbl to elevate EGFR degradation via the lysosomal

pathway (97). 4-hydroxynonenal (HNE), a pro-oxidant compound,

conducted tumor suppressive function via altering several signaling

pathways. HNE upregulated YAP phosphorylation and

ubiquitination, caused promotion of YAP proteasomal

degradation in bladder cancer cells (142). One compound ChlA-F

blocked cell invasion via inhibition of SOX2 protein by USP8-

mediated SOX2 degradation in bladder cancer (98). Therefore,

compounds can regulate E3 ubiquitin ligases to enhance the

ubiquitination and degradation of specific targets, which lead to

antitumor activity in bladder cancer (Table 1).
Noncoding RNAs target E3 ligases

Multiple studies have shown that noncoding RNAs govern

carcinogenesis in bladder cancer (143–146). Noncoding RNAs are

transcribed from DNA, but not translated into proteins, including

microRNAs (miRNAs), lncRNAs (log noncoding RNAs), siRNAs

(small interfering RNAs), snRNAs (small nuclear RNAs) and

piRNAs (147–149). Noncoding RNAs target E3 ubiquitin ligases

to control bladder cancer initiation and progression. For example,

miR-143 inhibited the expression of MDM2 and performed a tumor

suppressive function via inhibition of cell growth and migration in

bladder cancer (150). LncRNA SNHG1 sponged miR-9-3p

expression and upregulated the expression of MDM2 in bladder
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cancer cells. MDM2 targeted PPARg for ubiquitination and

degradation, leading to facilitating the development of bladder

cancer (151). LncRNA LNPPS displayed a tumor suppressive

function via modulation of MDM2/p53 degradation in bladder

cancer (152). LncRNA SNHG18 was downregulated in tumor

specimens of bladder cancer patients. The bladder cancer patients

with high expression of SNHG18 had a better survival rate.

Upregulation of SNHG18 reduced proliferation of bladder cancer

cells and decreased tumor sizes in mice (153). SNHG18 impaired

the expression of c-Myc via targeting its ubiquitination and

degradation, resulting in p21 upregulation in bladder cancer (153).

LncRNA PVT1 promoted the expression of MDM2 and

accelerated the p53 ubiquitination and degradation, leading to

promoting cell invasion and cell resistance to doxorubicin (154).

AURKB (Aurora kinase B) was increased after MDM2 upregulation

induced by lncRNA PVT1 in bladder cancer cells. AURKB further

promoted the p53 ubiquitination that was induced by MDM2 (154).

LncRNA LOC572558 overexpression was downregulated in tumor

tissues of bladder cancer patients. In T24 and 5637 bladder tumor
Frontiers in Immunology 07
cells, upregulation of LOC572558 suppressed cell growth and

invasion, induced apoptosis and caused cell cycle arrest, which

was correlated with p53 phosphorylation, MDM2, AKT

dephosphorylation (155). Chen et al. reported that a circRNA

circNUDT21 altered the miR-16-1-3p/MDM2/p53 axis and

accelerated tumor progression in bladder cancer (156). Hence,

noncoding RNAs are pivotal to regulate E3 ubiquitin ligases in

bladder tumorigenesis (Figure 1).
Conclusions and future perspectives

In conclusion, E3 ubiquitin ligases are critical in bladder cancer

initiation and development via targeting specific substrates. E3

ubiquitin ligases alter tumor immunotherapy and drug resistance

in bladder cancer (Figure 2). Targeting E3 ubiquitin ligases could be

an effective strategy for bladder cancer therapy. It is necessary to

mention several points regarding the roles of E3 ubiquitin ligases in

bladder cancer. First, besides ubiquitination, there are many other
FIGURE 1

Noncoding RNAs regulate E3 ubiquitin ligases in bladder cancer.
TABLE 1 Compounds regulate E3 ligases in bladder cancer.

Item Target Function Ref.

Cefepime PD-L1 ubiquitination, activation of STING. Enhances efficacy of DNA-damaging compounds (135)

Ceftazidime PD-L1 ubiquitination Increases immunotherapy and DNA-damaging agent efficacy (135)

Hispolon MDM2 ubiquitination and degradation, p21 upregulation. Inhibits tumor cell growth (137)

Allyl isothiocyanate Alpha and beta-tubulin ubiquitination and degradation Causes mitotic arrest (138)

PR-619 Inhibits c-Myc expression Overcomes cisplatin resistance (44)

Steviosode Activates GSK-3b/FBXW7, inhibits Mcl-1. Increases cell apoptosis (139)

OSU-T315 Inhibits Mcl-1, targets GSK-3b/FBXW7 Reduces cell growth and increases apoptosis (140)

EGCG Targets NF-kB/MDM2/p53 Increase antitumor activity of doxorubicine (141)

Proguanil Promotes EGFR degradation Induces autophagy (97)

HNE Upregulates YAP phosphorylation and ubiquitination and degradation Performs tumor suppressive function (142)

ChlA-F Inhibits SOX2 via USP8-mediated degradation Blocks cell invasion (98)
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types of PTMs to involve in bladder tumorigenesis. For example,

activation of autophagy altered acetylation profile relevant for

mechanotransduction in bladder tumor cells (157). PD-L1

methylation was found to be an independent biomarker for

patient survival in bladder cancer (158). Histone demethylase

JMJD1A promoted glycolysis via coactivation of HIF1a and led

to promotion of urinary bladder cancer progression (159). SIRT1

(silent information regulator sirtulin 1), a NAD+ dependent

deacetylase, elevated the expression of GLUT1 and stimulated

tumor progression in bladder cancer via modulation of glucose

uptake (160).

Second, in addition to E3 ubiquitin ligases, E2 enzyme has also

been involved in bladder carcinogenesis. Ubiquitin-conjugating

enzyme E2S (UBE2S) is a type of E2 enzyme in the ubiquitin

system, which has displayed several activities in carcinogenesis

(161). UBE2S has been suggested to promote the ovarian cancer

development via targeting PI3K/AKT/mTOR pathway and

modulating cell apoptosis and cell cycle (162). UBE2S reduced

cell chemosensitivity via regulation of PTEN-AKT pathway in

hepatocellular carcinoma (163). UBE2S expression was increased

in urinary bladder cancer cells. Knockdown of UBE2S led to

reduction of proliferation and induction of cell apoptosis, while

upregulation of UBE2S resulted in an inverse phenotype in bladder

cancer cells (164). Moreover, UBE2S performed the oncogenic

functions via modulation of the mTORC1 pathway in bladder

cancer cells. UBE2S targeted tuberous sclerosis 1 (TSC1) for

ubiquitous degradation (164). Collectively, UBE2S promoted

bladder cancer progression via degradation of TSC1 and

activation of mTOR signaling pathway.

Third, noncoding RNAs have been identified as potential

biomarkers for bladder cancer prognosis (165, 166). Besides

lncRNAs, miRNAs and circRNAs, one study showed that PIWI-
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interacting RNAs (piRNAs) and snRNAs are important in bladder

carcinogenesis (167, 168). In this work, it has been shown that 106

piRNAs were increased and 91 piRNAs were decreased in bladder

tumor specimens. Upregulation of piRABC reduced proliferation,

colony formation, but enhanced cell apoptosis in bladder cancer

cells. Moreover, piRABC increased the expression of TNFSF4

protein in bladder cancer cells (167). Fourth, several F-box

proteins have been described to target PD-1/PD-L1 in cancers;

however , whether other F-box proteins can regulate

immunotherapy is unclear. For example, FBXO45 has shown an

essential role in tumorigenesis and malignant progression (169–

171). FBXO22 targeted PD-L1 for degradation and sensitized tumor

cells to DNA damage (172). FBXO1, FBXO20, FBXO22, FBXO28,

FBXO32 and FBXO45 have been found to be associated with

immune infiltration in pancreatic cancer (173). Hence, it is

required to explore whether these F-box proteins are involved in

immunotherapy in bladder cancer.

Fifth, it has been validated that PROTACs are novel tools for the

enhancement of immunotherapy in human cancers (174).

PROTACs have been designed to degrade a protein of interest

(POI), resulting in a reduction of the expression of the POI (175,

176). One study has shown that one BET (bromodomain and

extraterminal domain) inhibitor mivebresib synergized with a

Bcl-xL PROTAC degrader PZ703b increased cell apoptosis

through the mitochondrial pathway in bladder cancer (177).

Another study showed that BRD4 PROTAC degrader QCA570

increased the degradation of BRD4 protein, leading to induction of

cell apoptosis and cell cycle arrest, which caused antiproliferation

ability in bladder cancer (178). All in a word, E3 ubiquitin ligases

are essential for the initiation and progression of bladder cancer.

Regulation of E3 ubiquitin ligases might be a potential therapeutic

strategy for bladder cancer treatment.
FIGURE 2

E3 ubiquitin ligases regulate several proteins in bladder cancer.
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