
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Chun Wai Mai,
UCSI University, Malaysia

REVIEWED BY

Chunwei Lai,
National Institutes of Health (NIH),
United States
Samantha Sharma,
Indiana University Bloomington,
United States

*CORRESPONDENCE

Yumei Fan

fanyumei@hebtu.edu.cn

Ke Tan

tanke@hebtu.edu.cn

†These authors have contributed equally to
this work

RECEIVED 08 April 2023
ACCEPTED 14 June 2023

PUBLISHED 30 June 2023

CITATION

Guo H, Zhang S, Zhang B, Shang Y, Liu X,
Wang M, Wang H, Fan Y and Tan K (2023)
Immunogenic landscape and risk score
prediction based on unfolded protein
response (UPR)-related molecular subtypes
in hepatocellular carcinoma.
Front. Immunol. 14:1202324.
doi: 10.3389/fimmu.2023.1202324

COPYRIGHT

© 2023 Guo, Zhang, Zhang, Shang, Liu,
Wang, Wang, Fan and Tan. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 30 June 2023

DOI 10.3389/fimmu.2023.1202324
Immunogenic landscape
and risk score prediction
based on unfolded protein
response (UPR)-related
molecular subtypes in
hepatocellular carcinoma
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Meixia Wang, Hongyu Wang, Yumei Fan* and Ke Tan*

Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the
Basic Discipline of Cell Biology, Hebei Province Key Laboratory of Animal Physiology, Biochemistry
and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
Background: Hepatocellular carcinoma (HCC) is the most common type of

cancer and causes a significant number of cancer-related deaths worldwide. The

molecular mechanisms underlying the development of HCC are complex, and

the heterogeneity of HCC has led to a lack of effective prognostic indicators and

drug targets for clinical treatment of HCC. Previous studies have indicated that

the unfolded protein response (UPR), a fundamental pathway for maintaining

endoplasmic reticulum homeostasis, is involved in the formation of malignant

characteristics such as tumor cell invasiveness and treatment resistance. The

aims of our study are to identify new prognostic indicators and provide drug

treatment targets for HCC in clinical treatment based on UPR-related genes

(URGs).

Methods: Gene expression profiles and clinical information were downloaded

from the TCGA, ICGC and GEO databases. Consensus cluster analysis was

performed to classify the molecular subtypes of URGs in HCC patients.

Univariate Cox regression and machine learning LASSO algorithm were used to

establish a risk prognosis model. Kaplan–Meier and ROC analyses were used to

evaluate the clinical prognosis of URGs. TIMER and XCell algorithms were applied

to analyze the relationships between URGs and immune cell infiltration. Real

time-PCR was performed to analyze the effect of sorafenib on the expression

levels of four URGs.

Results: Most URGs were upregulated in HCC samples. According to the

expression pattern of URGs, HCC patients were divided into two independent

clusters. Cluster 1 had a higher expression level, worse prognosis, and higher

expression of immunosuppressive factors than cluster 2. Patients in cluster 1

were more prone to immune escape during immunotherapy, and were more

sensitive to chemotherapeutic drugs. Four key UPR genes (ATF4, GOSR2, PDIA6

and SRPRB) were established in the prognostic model and HCC patients with
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high risk score had a worse clinical prognosis. Additionally, patients with high

expression of four URGs are more sensitive to sorafenib. Moreover, ATF4 was

upregulated, while GOSR2, PDIA6 and SRPRB were downregulated in sorafenib-

treated HCC cells.

Conclusion: The UPR-related prognostic signature containing four URGs exhibits

high potential application value and performs well in the evaluation of effects of

chemotherapy/immunotherapy and clinical prognosis.
KEYWORDS

unfolded protein response (UPR), hepatocellular carcinoma, molecular subtypes,
immune microenvironment, drug sensitivity
Introduction

Liver cancer has become the main cause of cancer-associated

deaths worldwide. It is predicted that 1.3 million people will die of

liver cancer by 2040, an increase of 56.4% over 2020 (1). As the

main type, primary liver cancer can be divided into hepatocellular

carcinoma (HCC), intrahepatic cholangiocarcinoma (ICC), and

combined hepatocellular carcinoma and cholangiocarcinoma

(cHCC-CC). At present, the therapeutic strategies for HCC

mainly include surgery, chemotherapy, radiotherapy and

immunotherapy (2–5). Unfortunately, the survival rate of HCC

patients is still not satisfactory (6). With the development of

bioinformatics, an increasing number of prognostic biomarkers of

HCC have been discovered, and these biomarkers have been applied

to the clinical prognosis of HCC (7).

Cancer cells are challenged by various environmental and

oncogenic stresses during oncogenesis and metastasis, and are

required to meet the increased needs for protein generation for

rapid growth and proliferation. To overcome these challenges,

cancer cells exploit a distinct series of adaptive molecular

mechanisms, including heat shock response, mitochondrial

unfolded protein response and unfolded protein response (UPR,

also referred as endoplasmic reticulum stress) (8–11). The

endoplasmic reticulum (ER) is a multifunctional organelle in cells

that performs multiple functions, including protein processing,

maturation and transportation. When unfolded or misfolded

proteins are over accumulated in the ER, UPR is activated to slow

the synthesis of overall proteins, and enhances the expression of

chaperones to increase the folding capacity (12). In mammals, UPR

signaling pathways are orchestrated by three ER-localized proteins:

protein kinase R (PKR)-like ER kinase (PERK), inositol requiring

enzyme 1 (IRE1) and activating transcription factor 6 (ATF6) (13,

14). Under normal conditions, these proteins are maintained in an

inactive state. When unfolded or misfolded proteins accumulate

in the ER, these three proteins are activated to modulate the

downstream signaling pathways and effectors of UPR to alleviate

the ER workload.
02
An increasing number of studies have indicated that UPR is

significantly involved in many physiological processes, such as

promoting cell survival, regulating angiogenesis and modulating

the immune response during cancer progression (15). Therefore,

UPR is closely associated with the progression of multiple human

diseases, including heart diseases, neurodegenerative diseases and

cancer (15). Importantly, UPR activation also promotes the

development of drug resistance in cancer cells, making it an

important target for cancer therapy. Three UPR regulators

(PERK, IRE1 and ATF6) not only govern the switch between pro-

survival and pro-death signals but also closely correlate with several

hallmarks of cancer. UPR caused by ER homeostasis imbalance is

one of the factors contributing to tumorigenesis by activating

adaptive and survival pathways, but too long or too serious UPR

would lead to apoptosis of tumor cells (16). Of note, cancer

immunotherapy targeting UPR is gradually emerging (17). UPR

plays an important role in the development, activation and

homeostasis of T cells, thus affecting their function in

immunotherapy (18, 19). UPR has been applied to the clinical

prognosis of acute myeloid leukemia and has achieved good results

(20). UPR also performs well as a prognostic indicator for bladder

cancer and osteosarcoma (21, 22). Thus, UPR can be used as

potential therapeutic target for different tumors. Deep

understanding of UPR signaling pathways in oncology and

clarifying the potential of UPR-targeting drugs could improve

cancer treatment.

In this study, we used UPR-related genes (URGs) to analyze the

precise roles of UPR pathway in the progression of HCC, as well as

its immune infiltration characteristics and correlation with drug

sensitivity. According to the expression of URGs, we used

consensus clustering to divide the patients into two subgroups.

We analyzed the mutation maps, signaling pathways, and

differences in immune infiltration characteristics in two distinct

clusters. We built a risk prognostic model and predicted drug

sensitivity. The high-risk group corresponded to a lower survival

rate and higher chemotherapeutic responses, which suggested that

URGs had potential application value and guided clinical therapies
frontiersin.org
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in the clinical treatment of HCC patients. Meanwhile, we identified

four core URGs with high prognostic value in HCC and validated

that sorafenib affected the expression of these four URGs. The flow

chart of this study is shown (Figure S1).
Materials and methods

Data collection

The mRNA expression data and clinical profiles were provided

by the TCGA (The Cancer Genome Atlas) database (https://

portal.gdc.cancer.gov), ICGC (International Cancer Gene

Consortium) database (https://dcc.icgc.org/releases/current/

Projects) and GEO (Gene Expression Omnibus) database (https://

www.ncbi.nlm.nih.gov/geo/). In the TCGA database, we collected 371

HCC samples and 50 normal samples. In the ICGC database, we

collected 240 HCC samples and 202 normal samples. GSE14520 and

GSE36376 datasets were used to analyze the expression changes of

four key URGs in normal and HCC tissues. The TNMplot database

(https://tnmplot.com/analysis/) was used to compare the expression

of UPR-related signature in HCC tissues and normal tissues.
Establishment of the UPR-related gene set

In the TCGA dataset, |Log2(fold change)| > 0.58 and P < 0.05 were

set as a threshold to screen the differentially expressed genes (DEGs)

between HCC and normal samples. Then, we obtained genes associated

with UPR in the MSigDB (http://software.broadinstitute.org/gsea/

msigdb/index.jsp) and UALCAN (http://ualcan.path.uab.edu)

databases, and intersected them with DEGs to finally obtain 31 URGs

for establishing a UPR-related gene set. The R language packages

“ggplot2”, “ggunchained” and “pheatmap” were used. Signaling

pathway enrichment analysis was completed by the Metascape

database (https://metascape.org/gp/index.html#/main/step1).
Consensus clustering analysis of URGs

The R language package “ConsensusClusterPlus” was used to

investigate the underlying molecular clusters based on the expression

of 31 URGs. Principal component analysis (PCA) was used to

evaluate the expression patterns of URGs. The R package

“pheatmap” was used to draw a clustering heatmap. The R

packages “survival” and “survminer” were used for Kaplan–Meier

(KM) analysis.
Univariate Cox and LASSO Cox regional
analyses were used to establish risk
scoring models

Univariate Cox analysis was utilized to screen prognosis-related

UPRs based on the TCGA and ICGC databases. Least absolute

shrinkage and selection operator (LASSO) regional analysis was
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further carried out to build a risk scoring model with the R language

package “glmnet”. In the risk scoring model, risk score = sum of

coefficients × prognostic URG expression. The HCC samples were

separated into high-risk and low-risk groups by means of the

median risk score as the cutoff point. KM analysis was performed

to assess the differences in prognosis using the log-rank test.

Receiver operating characteristic (ROC) curves were generated

using the R package “timeROC” to evaluate the accuracy of the

risk scoring model.
Construction of a nomogram

The R language package “forestplot” was used to construct the

forest plot and display variables such as P value, HR and 95% CI in

regression analysis. The “rms” package was used to make

nomogram diagrams based on URG expression, age tumor (T),

node (N), metastasis (M) and grade. The predictive and

discriminative ability of the nomogram for 1-, 3-, and 5-year OS

was assessed using ROC and concordance index (C-index) using the

R package “survival”. Calibration curves were used to evaluate the

difference between predicted results and actual survival rate

of patients.
Genomic mutation profiles of two clusters

The R language package “maftools” was applied to visualize the

mutation maps of two clusters and generate the waterfall plots.
Signaling pathway enrichment analysis of
DEGs between two clusters

The R language package “limma” was used to select DEGs

between cluster 1 and cluster 2. |Log2(fold change)| > 0.58 and P

<0.05 were used as thresholds. The “ClusterProfiler” package was

used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway analysis of DEGs between cluster 1

and cluster 2.
Abundant analysis of immune
cell infiltration

The R language package “immunedecov” was utilized to

calculate the infiltrated abundance of immune cells in two

clusters according to the XCell and TIMER algorithms. The

“pheatmap” package was used to display the abundance of

immune cells in each HCC sample.
Analysis of immunotherapy response

We analyzed the difference in the expression of common

immune checkpoint genes between cluster 1 and cluster 2, and
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used the “ggplot2” and “ggpubr” packages for visualization. The

tumor immune dysfunction and exclusion (TIDE) algorithm

(https://tide.dfci.harvard.edu) was used to evaluate the difference

in immunotherapy response between two clusters.
Single-cell RNA-sequencing and
immunohistochemical analysis

Immunohistochemical staining (IHC) results of normal liver

tissues and HCC tissues were obtained from the Human Protein

Atlas (HPA) database (https://www.proteinatlas.org/). To verify the

expression of core URG expression in different cells in HCC tissues,

single-cell RNA-sequencing results were obtained from the Human

Liver Browser (https://itzkovitzwebapps.weizmann.ac.il/webapps/

home/session.html?app=HumanLiverBrowser).
Prediction of therapeutic effect of
chemotherapeutic drugs

The Genomics of Drug Sensitivity in Cancer (GDSC) database

(https://www.cancerrxgene.org/) and R language package

“pRRophetic” were used to evaluate the sensitivity of two clusters

to chemotherapeutic drugs, and the half maximum inhibitory

concentration (IC50) was calculated by ridge regression. The

correlations between IC50 and the risk score and expression of

core URGs were evaluated.

Real-time polymerase chain reaction
(RT-PCR)

Human hepatocellular carcinoma cell lines HepG2 and Huh7

were cultured in Dulbecco’s modified Eagle’s medium (DMEM)

supplemented with 10% fetal bovine serum (FBS) and 1% penicillin/

streptomycin in a humid atmosphere (37°C, 5% CO2) as described

previously (11, 23, 24). HepG2 and Huh7 cells were treated with

different concentrations of sorafenib for 24 h. Total RNA was

extracted using the RNA-easy kit (Vazyme, Nanjing, China).

Reverse transcription kit (Biosharp, Beijing, China) was used to

reverse transcribe RNA into cDNA. RT-PCR was performed using

SYBR qPCR Master Mix (Biosharp, Beijing, China) to examine the

expression levels of four target genes according to the

manufacturer’s instruction. The primer sequences are shown in
Frontiers in Immunology 04
Table 1. Relative mRNA level was calculated by 2-DDCT method

normalized with internal reference gene S18.
Statistical methods

All statistical analyses were completed by R software (version

4.2.2). The Wilcoxon test was used to compare the significant

differences between two groups. The Kruskal–Wallis test was

applied to estimate the differences among three groups. The log-

rank test was used for KM analysis. Pearson correlation analysis was

used to measure the correlation between the two groups. P < 0.05

was defined as a statistically significant difference.
Results

Collection of UPR-related genes

To obtain differentially expressed UPR-related genes (URGs),

we comprehensively considered the following three aspects. First,

we collected mRNA expression data from 371 HCC samples and 50

normal samples in the TCGA database. A total of 7509 DEGs were

selected according to |Log2(fold change)| > 0.58 and P < 0.05

(Figure 1A, S2A). Second, we retrieved 113 and 250 URGs from

the MSigDB and UALCAN databases, respectively. Finally, we

selected the intersection of three gene sets as differentially

expressed URGs, and a total of 31 URGs were collected (Figure 1B).
Differential expression of URGs in HCC

We investigated the expression of 31 URGs in HCC and normal

samples using the TCGA database. Among 31 URGs, ARFGAP1,

ATF4, ATF6, ATP6V0D1, BAG3, CALR, CXXC1, DCTN1,

FKBP14, GOSR2, HSP90B1, HSPA5, HSPA9, HYOU1, KDELR3,

NPM1, PDIA6, PREB, SHC1, SRPRB, SSR1, STC2, TATDN2,

TSPYL2, WFS1 and WIPI1 were significantly upregulated in

HCC samples (Figures 1C, D and Figure S2B). The expression of

ATF3, CCL2 and IGFBP1 was obviously downregulated in HCC

compared with normal samples (Figures 1C, D and Figure S2B).
TABLE 1 Primers used for RT-PCR.

Gene Forward primers Reverse primers

ATF4 CTCCAACATCCAATCTGTCCCG TTCTCCAGCGACAAGGCTAAGG

GOSR2 CAGACCTTCCTCCAAAGTGTGC ATGCTGGGCTTGTCCAACACAG

PDIA6 CCTCTTGGCAATGTCCTCGTTG TCAGAAAGGCGAGTCTCCTGTG

SRPRB GGACTTGATACAGAAACTCAGCC GAGGCTTCAGTTCTTAGAGCGG

S18 GTTCCGACCATAAACGATGCC TGGTGGTGCCCTTCCGTCAAT
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To further validate the reliability of the above conclusion, we

performed similar analysis using the ICGC database. ARFGAP1,

ATF4, ATF6, ATP6V0D1, HYOU1, KDELR3, NPM1, PDIA6,

PREB, SHC1, SRPRB, SSR1, STC2, TATDN2, WFS1, WIPI1, YIF1A

and ZBTB17 expression was higher in HCC samples, while ATF3,

CCL2, IGFBP1 and TSPYL2 expression was lower in HCC samples

than normal samples (Figures S3A, S3B). Collectively, most URGs were

upregulated in HCC samples.
Frontiers in Immunology 05
Interaction and correlation
analysis of URGs

To further understand the relationships, signaling pathways and

molecular mechanisms of URGs, we used Metascape tool to perform

signaling pathway enrichment analysis based on 31 URGs. Consistent

with our speculation, these URGs were mainly enriched in a series of

pathways related to ER stress, such as unfolded protein response (UPR)
B C

D E

F

A

FIGURE 1

Collection of UPR-related genes (URGs). (A) Identification of DEGs between HCC samples and normal samples in the TCGA database. (B) Venn
diagram showing the screening of URGs. (C) Differentially expressed 31 URGs in HCC and normal samples. (D) Heatmap showing the expression of
31 URGs in HCC and normal samples. (E) A correlation heatmap of 31 URGs based on the TCGA database. (F) A correlation heatmap of 31 URGs
based on the ICGC database. *P < 0.05, **P < 0.01, ***P < 0.001.
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and cellular response to unfolded protein (Figure S4). URGs were also

associated with immunity-related pathway, such as IL-18 signaling

pathway (Figure S4).

The correlations among URGs were further calculated based on

the TCGA and ICGC databases, and we observed a large number of

significant correlations between URGs, of which positive

correlations accounted for the majority (Figures 1E, F).

Consensus clustering analysis of URGs in
HCC samples

To apply URGs to personalized treatment of HCC patients, we

classified the molecular subtypes of patients based on the expression
Frontiers in Immunology 06
levels of 31 URGs. We increased the number of clusters (k) from

2 to 6, and found that the well clustering effect was obtained when

k = 2 (Figure 2A). Therefore, HCC samples were divided into two

clusters (Figure 2B). The PCA analysis shows that the two clusters

are well separated (Figure 2C). The expression of URGs in cluster 1

(C1) was generally higher than that in cluster 2 (C2) (Figure 2D). To

determine the prognostic value of molecular classification, we then

used KM analysis to analyze the overall survival (OS), progression-

free survival (PFS), disease-free survival (DFS) and disease-specific

survival (DSS) of HCC patients. Patients in C1 had worse prognosis

than those in C2 (Figures 2E–H). Furthermore, HCC patients in C1

and C2 exhibited significant differences in terms of T stage, TNM

stage and grade (Table 2).
B C

D
E

F G H

A

FIGURE 2

Cluster analysis of HCC samples based on the 31 URGs expression. (A) Cumulative distribution function curves. (B) Consensus clustering matrix
when k=2. (C) PCA of HCC samples according to the expression of 31 URGs. (D) Heatmap showing the expression of 31 URGs in C1 and C2.
(E–H) KM analysis of OS, PFS, DFS and DSS in C1 and C2.
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TABLE 2 Relationships between various clinicopathological parameters and two clusters in HCC.

Characteristic C1 C2 P value

Status
Alive 70 171

Dead 55 75 0.014

Age
Mean (SD) 58.1 (13.2) 60.1(13.2)

Median [MIN, MAX] 59 (18,85) 62 (16,90) 0.183

Sex
FEMALE 41 80

MALE 84 166 1

Race

AMERICAN INDIAN 1 1

ASIAN 56 102

BLACK 6 11

WHITE 62 122 0.954

pT-stage

T1 44 137

T2 40 52

T2a 1

T2b 1

T3 19 26

T3a 11 18

T3b 2 4

T4 7 6

TX 1 0.01

pN-stage

N0 82 170

N1 3 1

NX 39 75 0.2

pM-stage

M0 90 176

M1 1 3

MX 34 67 0.933

pTNM-stage

I 43 128

II 36 50

III 1 2

IIIA 27 38

IIIB 4 4

IIIC 6 3

IV 1 1

IVA 1

IVB 2 0.018

Grade

G1 11 44

G2 53 124

G3 54 68

G4 6 6 0.004
F
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Identification of DEGs and gene
enrichment analyses between C1 and C2

To provide a more comprehensive comparison between two

molecular subtypes, we performed differential expression analysis,

GO and KEGG analyses between C1 and C2. Upregulated genes and

downregulated genes were identified based on |Log2(fold change)| >

0.58 and P < 0.05 (Figures 3A, B). The top five KEGG pathways for

upregulated genes were Salmonella infection, human T−cell
Frontiers in Immunology 08
leukemia virus 1 infection, endocytosis, focal adhesion, and

pathogenic Escherichia coli infection (Figure 3C). The top five GO

pathways for upregulated genes were histone modification, covalent

chromatin modification, RNA splicing, regulation of mitotic cell

cycle phase transition, and regulation of cell cycle phase transition

(Figure 3D). The top five KEGG pathways for downregulated genes

were complement and coagulation cascades, metabolism of

xenobiotics by cytochrome P450, drug metabolism-cytochrome

P450, chemical carcinogenesis-DNA adducts, and bile secretion
B

C D

E F

A

FIGURE 3

Identification of DEGs and signaling pathway enrichment analysis for DEGs. (A) Volcano plot showing the DEGs between C1 and C2. (B) Heatmap
showing the DEGs between C1 and C2. (C, D) KEGG and GO enrichment analyses for the upregulated genes. (E, F) KEGG and GO enrichment
analyses for the downregulated genes.
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(Figure 3E). Additionally, the top five GO pathways for

downregulated genes were small molecule catabolic process,

organic acid catabolic process, organic acid biosynthetic process,

carboxylic acid catabolic process, and carboxylic acid biosynthetic

process (Figure 3F). Of note, several immunity-related pathways

were also enriched in the KEGG results, including TNF signaling

pathway, Salmonella infection, pathogenic Escherichia coli

infection, human T-cell leukemia virus 1 infection, and

chemokine signaling pathway (Figure 3C).

Ferroptosis is a new type of programmed cell death and N6-

methyladenosine (m6A) methylation is a common modification in

eukaryotic mRNA. Both ferroptosis and m6A methylation play key

roles in tumorigenesis, metastasis and immune escape in HCC. We

then analyzed the expression of ferroptosis-related genes and m6A-

related genes between C1 and C2. Most ferroptosis-related genes
Frontiers in Immunology 09
and m6A-related genes were upregulated in C1 compared with C2

(Figures S5A, S5B).
Immune cell infiltration analysis between
C1 and C2

Because identified 31 URGs and DEGs between C1 and C2 were

involved in immunity-related pathways (Figure 3C), we further

evaluated the differences in the immune microenvironment between

two subgroups. The TIMER algorithm was used to assess the

abundance of infiltrating immune cells in C1 and C2 subgroups.

Except for CD8+ T cells, the abundance of five major immune cells

in C1 was significantly higher than that in C2 (Figures 4A, B). Among

the immune microenvironments of all HCC samples, dendritic cells
B

C D

E

A

FIGURE 4

Infiltrated abundance of immune cells based on the TIMER algorithm in C1 and C2. (A, B) Comparison of infiltrated abundance of six types of
immune cells in C1 and C2. (C) Bar chart showing the percentage of abundance of six immune cells in each HCC sample. (D) Violin diagram
showing the difference in the expression of immunosuppressive genes in C1 and C2. (E) TIDE score of C1 and C2. *P < 0.05, **P < 0.01,
***P < 0.001.
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(DCs) accounted for the largest proportion (Figure 4C). To further

verify the accuracy of the conclusion, we performed similar analysis

using the XCell algorithm. Among the 28 types of immune cells, 16

types exhibited significant differences in infiltrated abundance of

immune cells between C1 and C2 (Figures S6A–C). Additionally, the

expression of immunosuppressive factors, including CD96, CSF1R,

HAVCR2, IDO1, LAG3, LGALS9, NECTIN2, PDCD1, PDCD1LG2,

TGFB1, TGFBR1, BTLA, CD160, CD244, CD274, CTLA4, IL10,

IL10RB, TIGIT and VTCN1, was significantly higher in C1 than that

in C2 (Figure 4D). To further estimate the responses to

immunotherapy, TIDE algorithm was used. HCC patients with lower

TIDE score may respond better to immunotherapy. Notably, the TIDE

score of C1 was significantly higher than C2, indicating that HCC

patients in C2 were more sensitive to immunotherapy compared with

C1 (Figure 4E).
Genetic mutation of C1 and C2 in HCC

We obtained the mutation information of C1 and C2 from the

TCGA database. The waterfall plot results demonstrated that the

top five genes with the high frequency of alteration in C1 were

TP53, TTN, CTNNBI, MUC16 and RYR2 (Figure 5A), and the top

five genes with high frequency of mutation in C2 were CTNNB1,

TTN, TP53, MUC16 and PCLO (Figure 5B). Missense mutation

was the most frequent mutation type, in which single-nucleotide
Frontiers in Immunology 10
polymorphism (SNP) was the main part. SNV class showed that the

most common variation was C > T in both subgroups.
Prediction of drug sensitivity between C1
and C2 subgroups

Considering the clinical importance of chemotherapy, we then

evaluated the sensitivity of 9 common chemotherapeutic drugs

between two subgroups based on the GDSC database. The IC50

of 9 chemotherapeutic drugs, including sorafenib, sunitinib,

vinblastine, doxorubicin, gemcitabine, 5-fluorouracil, etoposide,

docetaxel and paclitaxel, in C1 was significantly lower than that

in C2 (Figure 6). These results imply that although HCC patients in

C1 have a lower survival rate than patients in C2, fortunately, these

patients were more sensitive to chemotherapy.
Construction of a URG-related prognostic
signature in the TCGA database

To further screen for URGs with prognostic value and better

apply URGs to the clinical diagnosis of HCC patients, we performed

a univariate Cox regression analysis and selected genes with

prognostic potential (P < 0.05) (Figures 7A, B). 22 genes were

selected from the TCGA dataset and 9 genes were selected from the
BA

FIGURE 5

Mutation landscape of C1 and C2. (A) Summary of the variation landscape of C1, including variation type and classification and SNV classification.
(B) Summary of the variation landscape of C2.
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ICGC dataset. Finally, 8 genes, including SRPRB, PDIA6, GOSR2,

ATF4, WIPI1, HSPA5 and HYOU1, were selected from the

intersection for subsequent analysis (Figure 7C).

We then used the optimum l value to reduce the dimension of 8

genes by LASSO and established a prognostic risk model. According to

the LASSO algorithm, we identified 4 core prognostic genes: ATF4,

PDIA6, GOSR2 and SRPRB (Figures 7D, E). Based on the expression

levels of 4 URGs, the risk score was calculated through the following

formula: risk score = (0.0196×ATF4) + (0.1309×GOSR2) +
Frontiers in Immunology 11
(0.0889×PDIA6) + (0.4707×SRPRB). According to the median risk

score, we divided HCC patients into high-risk group and low-risk

group. The risk score, survival time and expression of four URGs in

each patient were shown (Figure 7F). KM analysis results indicated that

the survival rate of high-risk group was significantly lower than low-

risk group (Figure 7G). We then used receiver operating characteristic

(ROC) analysis to test the reliability and sensitivity of this prognostic

model. The 1-year survival rate of areas under the ROC curve (AUC)

was 0.739, the 3-year survival rate of AUC was 0.696, and the 5-year
FIGURE 6

Sensitivity of 9 common chemotherapy drugs. Comparison of the sensitivity of 9 drugs in C1 and C2 by examining the IC50 values. ***P < 0.001.
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survival rate of AUC was 0.658 (Figure 7H). The above results indicate

that the prognostic model we established is reliable.

To make our model more convincing, we further established a

multivariate Cox regression analysis model using the four core genes

using the ICGC database (Figure S7A). The survival rate of patients
Frontiers in Immunology 12
with high risk scores was worse than that of patients with low risk

scores (Figure S7B). The AUC scores in the validation cohort were

0.815, 0.693 and 0.678 for 1-, 2-, and 3 years, respectively (Figure S7C).

To further verify the prediction accuracy of the 4-URG

prognostic model, we carried out univariate and multivariate Cox
B

C D E

F G

H

A

FIGURE 7

Establishment of the 4-URGs risk prognostic model in the TCGA database. (A, B) Forest plot showing the prognostic value of URGs using the
univariate Cox regression analysis in the TCGA database and ICGC database. (C) Intersection of prognostic genes screened from TCGA and ICGC
databases. (D, E) The LASSO algorithm was performed to establish the prognostic model and screen out four key URGs. (F) According to the risk
scoring model established by four URGs, HCC patients were divided into high-risk and low-risk subgroups. (G) KM analysis of OS in high-risk group
and low-risk subgroup. (H) AUC of time-dependent ROC curves was examined to test the reliability of the risk scoring model.
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regression analyses. Univariate Cox regression analysis indicated

that ATF4, GOSR2, PDIA6, SRPRB, T stage, M stage and grade

were significantly correlated with OS (Figure S8A). Multivariate

Cox regression analysis suggested that SRPRB and T stage were

markedly correlated with OS (Figure S8B). According to the results

of multivariate Cox regression analysis, we used SRPRB and T stage

to build a nomogrammodel to predict the OS of HCC patients at 1-,

3-, and 5 years (Figure S8C). Calibration plots showed agreement

between actual and predicted survival rates (Figure S8D).

Relationships between the risk model and
clinicopathological characteristics

To assess the prognostic value of the 4-URG risk model in

clinical practice, we analyzed the relationships between risk scores

and various clinicopathological parameters, including age, sex, early

grade (G1+G2) and advanced grade (G3+G4), early stage (T1+T2)

and advanced stage (T3+T4), M0 and N0, TNM stage I+II and
Frontiers in Immunology 13
TNM stage III+IV. In the above clinicopathological parameters, the

OS of high-risk group was worse than that of low-risk group (Figure

S9). These results proved that 4-URGs have good potential

application value in the clinical prognosis of HCC.

Expression of 4 URGs

To further verify the expression pattern of four URGs in liver cells,

we collected single-cell RNA-sequencing data from the Human Life

Browser database. Four URGs were expressed not only in HCC cells

but also in immune cells (Figure 8A). The expression of 4-URG

signature was not only upregulated in HCC tissues, but also much

higher in metastatic tissues (Figure S10A, S10B). We also analyzed the

expression differences of four URGs in the GSE36376 and GSE14520

datasets. As expected, the expression of four URGs was markedly

elevated in HCC samples (Figure S10C, S10D). The HPA database was

then used to compare the protein expression of four URGs. IHC results

showed that the protein levels of ATF4, GOSR2, PDIA6 and SRPRB in
B C

A

FIGURE 8

The expression and subcellular localization of four URGs. (A) Single-cell RNA sequencing results of four URGs. (B) IHC of four URGs in normal and
HCC tissues. (C) Subcellular localization of four URGs.
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HCC tissues were obviously higher than normal tissues (Figure 8B).

We also collected immunofluorescence results in the HPA database to

analyze subcellular localization. The results demonstrated that ATF4

was mainly located in the nucleus, GOSR2 was located in the Golgi

apparatus, PDIA6 was located in the ER, and SRPRB was mainly

located in the ER membrane (Figure 8C).
Effect of sorafenib treatment on the
expression of 4 URGs

Sorafenib is the first-line drug for the treatment of advanced

liver cancer. We then analyzed the relationship between sorafenib
Frontiers in Immunology 14
sensitivity and expression of 4 URGs. The IC50 of sorafenib was

significantly negatively correlated with the expression of 4 URGs

(Figure 9A). The HCC patients with higher expression of 4 URGs

had lower IC50 values, indicating that patients with high expression

of 4 URGs were more sensitive to sorafenib treatment (Figure 9B).

To further confirm whether sorafenib could alter the expression

level of four URGs, HepG2 and Huh7 cells were treated with different

concentrations of sorafenib for 24 h. Consistent with previous results,

cell viability was decreased in a dose-dependent manner (Figures 9C,

D). Additionally, the expression of GOSR2, PDIA6 and SRPRB was

gradually decreased, but the expression ATF4 was significantly

increased in HepG2 and Huh7 cells following sorafenib treatment

(Figures 9E, F).
B

C

D
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F

A

FIGURE 9

Relationships between 4 URGs and sorafenib. (A) Relationship between the expression of four URGs and the IC50 value of sorafenib. (B)
Comparison of sorafenib IC50 values between URGs high-expression group and URGs low-expression group. (C, D) The cell viability of HepG2 and
Huh7 cells under sorafenib treatment was examined, respectively. (E, F) The effect of sorafenib on the expression of four URGs in HepG2 and Huh7
cells, respectively. *P < 0.05, **P < 0.01, ***P < 0.001.
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Discussion

Liver cancer is still a serious public health problem that globally

endangers people’s health. HCC is the most common pathological

type. At present, the survival rate of HCC patients is still not

optimistic, and there is a lack of appropriate clinical prognostic

indicators in HCC treatment. It is critical to further understand the

pathological molecular mechanisms of HCC and identify

appropriate clinical prognostic indicators. UPR plays an

important role in maintaining protein homeostasis in cells under

numerous intracellular and extracellular stresses and closely

associates with oncogenesis (13, 25). In the present study, we

construct a prognostic model based on URGs, and this URG-

related signature exhibits excellent capability in predicting the

prognosis of HCC patients.

We analyzed the role of UPR in the HCC from the expression level

and immune cell infiltration, constructed a risk score model, and

evaluated the potential value of URGs as clinical prognostic indicators

of HCC. Thirty-one URGs were selected for further analyses (Figure 1).

We analyzed the correlations of 31 URGs in HCC samples and noticed

that most UPR genes were positively correlated in both TCGA and

ICGC databases. These results were consistent with previous studies. For

example, ATF4 expression is positively correlated with CCL2 in both

TCGA and ICGC databases (Figures 1E, F). Previous studies have

shown that transcription factor ATF4 can promote the expression of

CCL2, which in turn promotes the infiltration of macrophages in

endometrial cancer (26). HSPA5 serves as an important mediator of

ER stress response. Both ATF4 and ATF6 are positively correlated with

HSPA5 (Figures 1E, F). In fact, HSPA5 is an important target gene of

ATF4 and ATF6 (27, 28). However, due to significant differences in

HCC samples from the two independent databases in terms of race,

gender, age and pathological stage, there were also some differences in

the correlation results (Figures 1E, F). Together, these results imply that

UPR genes may interact with and/or positively regulate expression of

each other through some unknown molecular mechanisms.

Over the last decade, emerging evidence has revealed that UPR

is closely related to tumor initiation, progression, metastasis and

chemoresistance. Previous studies have demonstrated that various

UPR-related genes, including XBP1s, eIF-2a, CHOP, ATF4 and

ATF6, are overexpressed or activated in many tumor cells (29–32).

High expression of UPR-related components indicates the

deterioration of cancer. UPR also participates in tumor

angiogenesis, which brings nutrients and creates favorable living

conditions for tumors. XBP1 and ATF4 bind to the VEGF promoter

to upregulate its expression, thereby promoting angiogenesis (33).

ATF4 also promotes the expression of IL-8 to facilitate tumor

angiogenesis (34). Consistent with previous studies, the

expression of most URGs was significantly higher in HCC

samples than normal samples (Figure 1). High expression of UPR

genes in patients predicted poor prognosis (35). These results

indicate that UPR has potential as clinical prognostic factor in HCC.

UPR not only affects the survival of cancer cells but also

participates in tumor immunosuppression. Immunotherapy has

become a major therapy for patients with advanced HCC. Cancer

cells also recruit immune cells and cause immune cells to lose their

original functions, such as destroying the antigen transmission
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function of dendritic cells (36). Various metabolic stimuli, such as

hypoxia, lead to an imbalance in protein homeostasis in immune

cells, induce UPR, and interfere with the normal function of

immune cells (36). As an important signaling pathway of UPR,

the IRE1a-XBP1 axis is involved in tumor immunosuppression and

closely related to tumor progression. In the mouse model of ovarian

cancer lacking XBP1, ovarian cancer progressed more slowly (37).

XBP1 also promotes the accumulation of oxidized fatty acids in cells

(38). Some studies have shown that excessive accumulation of

oxidized fatty acids inhibits the antigen presentation function of

dendritic cells (39). According to our results, there are differences in

the characteristics of immune cell infiltration between HCC patients

with high expression and low expression of URGs. Interestingly, we

observed that the infiltrated abundance of major types of immune

cells was increased in C1 compared with C2 (Figure 4B).

Furthermore, we also uncovered the expression of 50 common

immune checkpoint genes, including PD-1, PD-L1 and CTLA4, in

different subgroups. We found that the expression of most

immunosuppressive factors in C1 was higher than that in C2.

Consistently, the TIDE score showed that patients in C1 were

more prone to immune escape during immunotherapy

(Figure 4E). Therefore, UPR may influence the immune cell

infiltration and immunotherapy effect in HCC (40). Fortunately,

HCC patients in C1 seemed to be more sensitive to drugs than

patients in C2 (Figure 6).

A recent study has reported that high level of UPR score is

related with worse prognosis in HCC patients (41). In the present

study, two independent subgroups were clustered using the

consensus clustering analysis based on the expression of 31 URGs

(Figure 2B). There were significant differences in four survival

indexes (OS, PFS, DSS and DFS) between C1 and C2 (Figures 2E-

H). However, we noticed that not all 31 UPR-related genes are

significantly related to the prognosis of HCC patients (Figures 7A,

B), and due to the large number of genes, it is difficult to apply them

in clinical practice. To solve this problem, we identified 4 prognostic

core genes (SRPRB, PDIA6, GOSR2 and ATF4) from 31 URGs

through Cox regression and LASSO analyses. Based on the

expression levels of these 4 genes, we calculated the risk score and

divided patients into high-risk and low-risk groups. The OS of high-

risk group was significantly lower than low-risk group (Figure 7G).

The AUC values of this risk score model at 1, 3, and 5 years were

≥0.65, suggesting that the integrated prognostic model exhibited a

promising predictive ability for the prognosis of HCC patients

(Figure 7H). The upregulated expression of SRPRB, PDIA6,

GOSR2 and ATF4 in HCC tissues was observed not only in the

TCGA database but also in the ICGC, GSE36376 and GSE14520

datasets (Figure S10). Single-cell RNA sequencing results

demonstrated that these genes were expressed in both tumor cells

and immune cells (Figure 8A). Together, our findings demonstrated

the potential clinical significance of the 4-URGs-based classifier as a

novel biomarker for outcome prediction and therapy decisions in

HCC patients.

To improve the prognosis of HCC patients, a growing number

of therapeutic strategies and chemotherapy regimens are gradually

emerging. However, systemic chemotherapy for HCC has limited

value in clinical practice at present, because only a small portion of
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patients obtain significant effects according to clinical trial results

(42–47). Here, we selected ten representative chemotherapeutic

agents and observed that patients in C1 were more sensitive to

these drugs. Although HCC samples were clustered into two

subgroups with different prognosis, signaling pathways, infiltrated

immune cell levels and chemotherapy responses, it is unclear

whether chemotherapy affects the prognosis of C1 patients and

C2 patients. Therefore, it is necessary to collect a large number of

clinical samples to analyze the application potential of classification

and analyze the impact of chemotherapy drugs such as sorafenib on

the prognosis of patients based on this classification. Sorafenib, as a

first-line drug for HCC, has shown strong efficacy in the clinical

treatment of liver cancer. In the drug sensitivity analyses, we found

that the expression of all core 4 URGs was significantly and

negatively correlated with the sorafenib sensitivity in HCC

samples, indicating that patients with high levels of 4 URGs may

be more sensitive to sorafenib (Figures 9A, B). However, when

HepG2 and Huh7 cells were treated with sorafenib, SRPRB, PDIA6

and GOSR2 were dose-dependently decreased, and ATF4 was

gradually increased after treatment (Figures 9E, F). ATF4 is a

core stress-induced transcription factor that regulates cellular

response to various stresses, such as ER stress, hypoxic condition

and nutrient deprivation (48). Accumulating evidence suggested

that ATF4 could interact with other transcription factors and

activate a wide range of adaptive genes associated with amino

acid synthesis, angiogenesis, metastasis and drug resistance (49,

50). ATF4 expression is upregulated in different types of human

cancers and correlated with tumor progression and therapy

resistance (51). The function of ATF4 in HCC has been

preliminarily clarified. Previous studies have shown that ATF4

enhances the level of glutathione in HCC cells and enhances drug

resistance (52). The transcription factors YAP/TAZ drive sorafenib

resistance in HCC by regulating ferroptosis. Mechanistically, YAP/

TAZ promoted the nuclear localization, protein stability and

transcriptional activity of ATF4 to induce the expression of

SLC7A11 and modulate ferroptotic cell death (51). ATF4 and

PERK synergistically promoted the expression of ZNFX1

antisense RNA 1 (ZFAS1) to enhance sorafenib resistance in

HCC (53). Therefore, the sorafenib-induced upregulation of

ATF4 expression may be related to the generation of drug

resistance. ER oxidoreductase PDIA6 is overexpressed in several

cancers, including oral squamous cell carcinoma, pancreatic cancer,

breast cancer, non-small cell lung cancer (NSCLC) and gastric

cancer (GC), and predicts poor outcomes in these cancers (54–57).

Knockdown of PDIA6 significantly suppressed cell growth,

proliferation, migration and invasiveness and enhanced apoptosis

(56, 57). PDIA6 also promoted the deubiquitination of b-catenin
and PD-L1 to drive the progression and immune evasion of

pancreatic cancer (58). In addition, PDIA6 regulated autophagy

and apoptosis in NSCLC cells through the MAP4K1/JNK pathway

(55). More importantly, elevated PDIA6 expression is associated

with cisplatin resistance in GC and NSCLC cells. Therefore, PDIA6

is a promising target for drug resistance (55). SRBPR has been

reported as a prognostic indicator of HCC (59). GOSR2 is reported

to be involved in the pathogenesis of progressive myoclonus

epilepsy (60). However, the functions of SRPRB and GOSR2 in
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the development of HCC are still needed to be explored. Based on

our RT-PCR results, we speculate that sorafenib may exhibit its

anticancer effects partially through downregulating the expression

of SRPRB, PDIA6 and GOSR2. However, with the treatment of

sorafenib, the decrease in the expression of these genes and

increased in the expression of ATF4 gradually reduce the

sensitivity of patients to sorafenib, which may also be an

important cause of generation of sorafenib resistance.

In summary, we identified two clusters according to UPR-related

gene expression, and constructed and verified a novel UPR-related

signature with excellent prognostic potential using different

independent datasets. Additionally, this signature was significantly

associated with the tumor immune microenvironment and

immunotherapeutic/chemotherapeutic responses in HCC patients.

In summary, this UPR-related signature serves as a clinical prognostic

indicator of HCC, clarifies the molecular mechanism of prognosis,

and provides guidance for the clinical management of HCC patients.
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SUPPLEMENTARY FIGURE 1

Flow chart of this study.

SUPPLEMENTARY FIGURE 2

Identification of DEGs between HCC samples and normal samples in the
TCGA database. (A) Heatmap showing the identified DEGs between HCC

samples and normal samples. (B) 31 URGs were differentially expressed in
HCC samples and normal samples in the TCGA database. ***P < 0.001.

SUPPLEMENTARY FIGURE 3

31 URGs were differentially expressed in HCC and normal samples in the

ICGC database. (A) The expression of 31 URGs between HCC samples and
normal samples was analyzed according to the ICGC database. (B) Heatmap

showing the expression of 31 URGs in HCC samples and normal samples.
***P < 0.001.

SUPPLEMENTARY FIGURE 4

Signaling pathway enrichment analysis was performed using the

Metascape tool.

SUPPLEMENTARY FIGURE 5

The expression of ferroptosis- and m6A-related genes in C1 and C2. (A) The
expression of ferroptosis-related genes in C1 and C2. (B) The expression of
m6A-related genes in C1 and C2. *P < 0.05, **P < 0.01, ***P < 0.001.
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SUPPLEMENTARY FIGURE 6

Infiltrated abundance of immune cells based on the XCell algorithm in C1 and
C2. (A, B) Comparison of the infiltrated abundance of each immune cell in C1

and C2. (C) The proportion of immune cells in each HCC sample. *P < 0.05,

**P < 0.01, ***P < 0.001.
SUPPLEMENTARY FIGURE 7

Cox regression analysis of 4-URG prognostic signature to validate the risk
score model. (A) The risk score model was established by Cox regression

analysis according to the ICGC database. (B) KM analysis of OS in high-risk
group and low-risk group. (C) AUC of time-dependent ROC curves was

examined to test the reliability of the risk score model according to the

ICGC database.
SUPPLEMENTARY FIGURE 8

Univariate and multivariate Cox regression analysis and nomogram
construction. (A) Forest plot showing the result of univariate Cox regression

analysis. (B) Forest plot showing the result of multivariate Cox regression
analysis. (C) A nomogram integrating prognostic characteristics was used to

predict 1-, 3-, and 5-year OS in HCC. (D) Calibration curves were used to

examine the agreement between the actual and predicted 1-, 3-, and 5-
year OS.
SUPPLEMENTARY FIGURE 9

KM analysis was performed to estimate the OS in high-risk group and low-risk

group with different clinicopathological parameters.

SUPPLEMENTARY FIGURE 10

The expression of four URGs in different datasets. (A, B) The expression of the
4-URG signature in HCC patients based on gene-chip data and RNA-seq data

in the TNMplot database. (C) Expression of four URGs in HCC samples and
normal samples in the GSE36376 dataset. (B) Expression of four URGs in HCC

samples and normal samples in the GSE14520 dataset. ***P < 0.001.
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