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Diabetic nephropathy (DN) is the most prevalent microvascular consequence of

diabetes and has recently risen to the position of theworld’s second biggest cause

of end-stage renal diseases. Growing studies suggest that oxidative stress (OS)

responses are connected to the advancement of DN. This study aimed to

developed a novel diagnostic model based on OS-related genes. The

differentially expressed oxidative stress-related genes (DE-OSRGs) experiments

required two human gene expression datasets, which were given by the GEO

database (GSE30528 andGSE96804, respectively). The potential diagnostic genes

were identified using the SVM-RFE assays and the LASSO regression model.

CIBERSORT was used to determine the compositional patterns of the 22

different kinds of immune cell fraction seen in DN. These estimates were based

on the combined cohorts. DN serum samples and normal samples were both

subjected to RT-PCR in order to investigate the degree to which certain genes

were expressed. In this study, we were able to locate 774 DE-OSRGs in DN. The

three marker genes (DUSP1, PRDX6 and S100A8) were discovered via machine

learning on two different machines. The high diagnostic value was validated by

ROC tests, which focused on distinguishing DN samples from normal samples.

The results of the CIBERSORT study suggested that DUSP1, PRDX6, and S100A8

may be associated to the alterations that occur in the immunological

microenvironment of DN patients. Besides, the results of RT-PCR indicated that

the expression of DUSP1, PRDX6, and S100A8 was much lower in DN serum

samples compared normal serum samples. The diagnostic value of the proposed

model was likewise verified in our cohort, with an area under the curve of 9.946.

Overall, DUSP1, PRDX6, and S100A8 were identified to be the three diagnostic

characteristic genes of DN. It’s possible that combining these genes will be

effective in diagnosing DN and determining the extent of immune cell infiltration.

KEYWORDS

infiltrating immune cells, diagnostic, biomarker, diabetic nephropathy, machine
learning, oxidative stress-related genes
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Introduction

Diabetic nephropathy (DN) is a major complication of type I

and II diabetes and the main cause of end stage renal disease (1).

The clinical and pathological features of DN are characterized by a

progressive increase in albuminuria, a decline in glomerular

filtration rate and the loss of podocytes (2, 3). Morphologically

speaking, DN is distinguished by alterations in the thickness and

composition of the glomerular basement membrane, in addition to

mesangia l en largement , which ul t imate ly resu l t s in

tubulointerstitial fibrosis (4, 5). Diabetes can harm various organs

throughout the body, such as the kidneys, eyes, heart and more. In

addition, in diabetic nephropathy, inflammatory responses and the

release of inflammatory mediators play a crucial role. These

inflammatory mediators can lead to vascular changes, fibrosis,

and tissue damage, affecting the structure and function of

peripheral nerves (6). Persistent hyperglycemia and long-term

metabolic abnormalities also contribute to this damage (7, 8).

Diabetes and its complications not only affect the physical and

mental health of individuals but also have a significant impact on

society, both economically and socially (9). This is because the

prevalence of diabetes is increasing across the globe for people of all

ages. In China, the number of people suffering from diabetic

nephropathy has been steadily rising over the past several years.

At the moment, the primary methods of treatment for diabetic

nephropathy in both the United States and other countries include

decreasing blood pressure, controlling hypoglycemia, and

managing lipid levels (10, 11). Although these treatments can

slow the progression of the disease, there is currently no cure or

particular medication that can reverse or eliminate it. As a result, it

is of the utmost need to do more research into its pathophysiology

in order to locate reliable biomarkers for the early identification and

treatment of the condition.

Oxidative stress (OS) reactions are reported to be associated

with the progression of DN (12, 13). High blood glucose levels

contribute to increased oxidative stress through spontaneous

glucose oxidation and the formation of advanced glycation end

products. Additionally, mitochondrial dysfunction, inflammation,

and activation of the renin-angiotensin system also contribute to

ROS generation. OS triggers extracellular matrix accumulation,

endothelial cell dysfunction, podocyte injury, and inflammation

in DN, further exacerbating renal damage (14, 15). It is possible that

the pathogenetic processes that cause macro- and micro-vascular

problems are the same, with reactive oxygen species (ROS) serving

as the common denominator of diverse signaling pathways that

ultimately result in an attack on multiple target organ systems (16,

17). The ROS are a family of molecules including molecular oxygen

and its derivatives, nitric oxide (NO), hypochlorous acid (HOCl),

peroxynitrite (ONOO−), hydrogen peroxide (H2O2), hydroxyl

racial (HO·), superoxide anion (O2−) and lipid radicals (18, 19).

Many ROS have electrons that are unpaired, and as a result, they are

considered to be free radicals. After being able to overcome the

numerous endogenous anti-oxidative defense systems, excessive

concentrations of ROS will oxidize various tissue biomolecules,

including as DNA, protein, carbohydrates, and lipids. This perilous

state is usually referred to as an oxidative stress (20, 21). Imaging
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tests, molecular diagnostics, and histological examinations are the

primary pillars around which DN diagnostic procedures are built.

For instance, MRI (Magnetic Resonance Imaging) utilizes a

powerful magnetic field and radio waves to generate detailed

images of the kidneys. It can provide information about kidney

structure, blood flow, and any signs of damage or disease (22).

Molecular diagnostic tests can measure the levels of specific

biomarkers in blood or urine, which indicate the presence of DN.

For example, measuring urine protein, urine albumin, or specific

cytokine levels can help assess kidney damage and the severity of

DN (23). Renal biopsy involves obtaining small tissue samples from

the kidney for microscopic examination. It can evaluate histological

changes in the kidney, such as glomerular basement membrane

thickening, mesangial expansion, and tubulointerstitial fibrosis.

This examination provides valuable information about the extent

and severity of kidney damage in DN (24). There is just a limited

subset of OS-related genes(TXNIP and NLRP3) that have been

subjected to in-depth research and are known to play an important

part in the development of DN (25–27). Gene expression data have

recently been supplied by large-scale genome profiles, which gives a

good opportunity to find relevant molecular markers. In addition,

bioinformatic study of OS genes may assist in the identification of

new diagnostic or prognostic indicators for DN, which may then be

used to search for novel therapy targets (28, 29). In addition, studies

have demonstrated that immune cell infiltration plays an

increasingly critical role in the onset and progression of a wide

variety of illnesses, including DN, which provides unique insights

into the relevance of immune regulation in DN (30, 31). For

instance, monocyte infiltration and subsequent differentiation into

macrophages have been observed in the kidneys of individuals with

DN. These macrophages contribute to inflammation and fibrosis in

the renal tissue (32). Dendritic cells have been found in the kidneys

of individuals with DN. They play a role in antigen presentation and

the activation of immune responses in the renal tissue (33).

For the purpose of this investigation, we accessed the GEO

database and downloaded two microarray datasets. Analyses of

differentially expressed oxidative stress-related genes (DE-OSRGs)

were carried out on the DN and the controls. Algorithms based on

machine learning were utilized in order to screen for and locate

diagnostic biomarkers of DN. The diagnostic prediction model was

constructed with the use of a logistic regression technique, and

candidate genes that are highly connected to immune infiltration

were found, verified, and employed in the process. Our findings

provided a novel model that may be used to forecast the diagnosis of

DN patients, and it gave a fresh viewpoint for DN therapy targets.

In addition, our findings presented a novel model that might be

used to diagnose DN patients.
Materials and methods

Serum samples

25 DN patients (14 males and 11 females, aged between 40 and

70 years old) and 25 healthy donors(13 males and 12 females, aged

between 43 and 68 years old) in South China Hospital were involved
frontiersin.org
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in this study. The patients had not received any therapy for DN

before sample collection. All participants provided written

informed consent. This study was approved by the Ethics

Committee of South China Hospital. After collecting blood

samples from patients with DN and healthy donors, centrifuges

were used to separate serum samples from the blood. Before they

are utilized, serum samples are kept cold in the refrigerator at a

temperature of 80 degrees Celsius.
RNA extraction and real-time PCR

The TRIzol reagent was used in order to extract the total RNA

from the sample. Following the protocol provided by the

manufacturer, one microgram of total RNA was used to produce

one nanogram of first-strand complementary DNA (cDNA) using

the Reverse Transcription System Bestar qPCR RT Kit. An ABI 7500

Real-Time PCR System was utilized for the execution of the real-time

PCR (Applied Biosystems, China). Every experiment was carried out

with three separate replicates, and the beta-actin gene served as the

internal control. The relative expressions of Dual Specificity

Phosphatase 1(DUSP1), Peroxiredoxin 6(PRDX6), and S100

calcium-binding protein A8(S100A8) were calculated using with a

2−DDCt method and normalized using GAPDH as an internal control.

The primers used in this study were shown below: for DUSP1, 5’-

AGTACCCCACTCTACGATCAGG-3’ (forward), 5’- GAAGCGTG

ATACGCACTGC-3’(reverse); for PRDX6, 5’- GACTCATGGGG

CATTCTCTTC-3’ (forward), 5’- CAAGCTCCCGATTCCTATC

ATC-3’(reverse); S100A8, 5’- ATGCCGTCTACAGGGATGAC-3’

(forward), 5’- ACTGAGGACACTCGGTCTCT-3’(reverse);

GAPDH, 5’-CTGGGCTACACTGAGCACC-3’ (forward), 5’-

AAGTGGTCGTTGAGGGCAATG-3’(reverse).
Microarray data and preprocessing

“diabetic kidney disease,” “diabetic nephropathy,” and

“expression profiling by array” were the search phrases that were

used in order to retrieve the mRNA expression data as well as the

associated experimental and clinical data of DN from GEO. It was

decided to choose and download the gene expression microarray

datasets GSE30528 and GSE96804 respectively. The relative

expressions of all genes from the above two datasets were

calculated using with a 2−DDCt method. The OSRGs, totaling 1,399,

were retrieved from the GSEA website that is accessible online.
Identification of differentially
expressed genes

We began by pulling expression data for 1399 OSRGs from the

GSE96804 database. These samples included normal samples as

well as DN samples. After that, the student’s t-test was carried out in

R in order to identify the OSRGs that had distinct levels of

expression within the two distinct samples. Genes that had a p-

value of less than 0.05 were regarded to be significant.
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Functional pathway analyses

GO and KEGG analyses were performed using the clusterProfiler

(version 3.10.1) package in order to uncover the possible gene

functional annotation and pathway enrichment related with the

common DE-OSRGs. This was done so that the prospective gene

functional annotation could be shown. The enrichplot and DOSE

packages were utilized in order to provide visualization of the

enrichment results, which assisted in interpretation. P value less

than 0.05 and adjusted P value less than 0.05 were chosen as the cutoff

criteria. In addition, Disease ontology (DO) enrichment analyses

were carried out on DE-OSRGs with the help of the “clusterProfiler”

and DOSE packages in the R programming language.
Identification of optimal diagnostic gene
biomarkers for DN patients

In order to lessen the amount of space used by the data, LASSO

method was used in conjunction with the glmnet package. The DE-

OSRGs that differentiated DN patients from normal samples were

kept for feature selection, and the LASSO algorithms were used to

locate gene biomarkers that were associated with DN. During this

time, a SVM-RFE model was developed using an SVM software.

This model and others were evaluated based on the average

misjudgement rates of their 10-fold cross-validations. In addition,

the overlapping biomarkers that were obtained from the two

algorithms were used to locate the most effective gene biomarkers

for DN. In addition, the predict function found within the glm

package of the R programming language was utilized to build a

logistic regression model that was based on three marker genes.

This model was then used to make predictions regarding the sample

types found within the GSE30528 and GSE96804 datasets. In a

similar manner, ROC curves were utilized in order to assess the

diagnostic capability of the logistic regression model.
Immune infiltration analysis

CIBERSORT is the most widely mentioned tool for estimating

and assessing the number of immune cells that have infiltrated a

given area. It is a method that characterizes the cell composition

based on the gene expression patterns of the cells. We were able to

determine the proportions of immune cell types that were present in

low-expression and high-expression groups by using CIBERSORT.

Each sample has a total score of one, which corresponds to the sum

of all the projected values for the different immune cell types.
Statistical analysis

R(Version 3.5.0) was utilized throughout all of the statistical

work that was completed. The Student’s t-test and the chi-square

test were used to investigate and compare the results of the various

groups. Statistical significance was assigned to the p-values when

they were lower than 0.05.
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Results

Identification of DE-OSRGs in DN patients

In this work, a retrospective analysis was performed on the data

from 41 DN samples and 21 normal samples from GSE96804. The

study yielded 774 differentially expressed genes (DEGs), with 312

genes showing significant upregulation and 462 genes showing

significant downregulation (Figure 1).

Functional enrichment analysis of
DE-OSRGs

After that, we used the “clusterProfiler” tool to perform gene

ontology (GO) analysis on the DE-OSRGs. This analysis helped us to

understand the biological functions and pathways associated with

these DE-OSRGs, providing insights into the underlying mechanism

of the disease. As shown in Figure 2A, the DE-OSRGs were mainly

involved in response to cellular response to chemical stress,

mitochondrial matrix, cellular response to oxidative stress, oxidative

stress, neuronal cell body, vesicle lumen, signaling receptor activator

activity, ubiquitin-like protein ligase binding and ubiquitin protein

ligase binding. Moreover, we performed KEGG analysis and observed

that the DE-OSRGs were mainly involved in MAPK signaling

pathway, Rap1 signaling pathway, Ras signaling pathway, Calcium

signaling pathway, FoxO signaling pathway, HIF-1 signaling pathway

and cAMP signaling pathway (Figure 2B). In addition, the results of

DO analysis indicated that the DE-OSRGs were associated with lung

disease, tauopathy, Alzheimer’s disease, urinary system disease, kidney

disease and urinary system cancer (Figure 2C).

Three DE-OSRGs were identified as
diagnostic genes for DN

In order to evaluate the potential of DE-OSRGs as diagnostic

markers for DN, we applied two machine learning algorithms,
Frontiers in Immunology 04
LASSO and SVM-RFE, on the GSE96804 dataset. These

algorithms were used to identify a set of significant DE-FRGs. In

order to choose 18 DN-related features, the LASSO logistic

regression technique was utilized, and the penalty parameter

tuning process was carried out using 10-fold cross-validation

(Figures 3A, B). Following this, we filtered the DE-OSRGs using

the SVM-RFE method in order to locate the best possible

combination of feature genes. In the end, five genes were selected

as the best candidates for feature genes (Figures 3C, D). After

intersecting the diagnostic factors generated from the LASSO and

SVM-RFE methods, three marker genes (DUSP1, PRDX6, and

S100A8) were selected for further investigation (Figure 3E). We

constructed a novel diagnostic model using the R package glm based

on the aforementioned three marker genes, and we observed that

the model could distinguish normal and DN samples with a perfect

accuracy (AUC=1.000) (Figure 4A). In addition, ROC curves were

constructed for the three marker genes in order to shed light on the

capability of individual genes to differentiate DN samples from

normal samples. As shown in Figure 4B, The AUC was more than

0.7 for each and every gene. In addition, in order to give more

evidence of the diagnostic usefulness of our model, we conducted

additional research on the GSE30528 datasets. The findings

revealed that the new model delivered a higher level of accuracy

and specificity (Figures 4C, D).
The expressing pattern of DUSP1, PRDX6
and S100A8 in DN patients

In addition, we showed the expressing pattern of DUSP1,

PRDX6, and S100A8 in DN from the GSE96804 datasets and

discovered that the expressions of DUSP1, PRDX6, and S100A8

were markedly reduced in DN samples in comparison with normal

samples. This finding was based on the fact that the expression of

these genes was significantly increased in normal samples

(Figures 5A–C). The correlation between these genes was
FIGURE 1

Comparison of DN samples with normal samples for the purpose of DE-OSRG identification.
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presented in Figure 5D. The level of DUSP1 expression was shown

to have a positive correlation with the level of S100A8 expression. In

addition, we found that the expressions of DUSP1 and PRDX6 were

distinctly lower in samples of patients with DN as compared to

those of patients with normal blood pressure (Figures 6A–C). The

correlation between these genes was presented in Figure 6D. The

level of DUSP1 expression was shown to have a positive correlation

with the levels of PRDX6 and S100A8 expression.
Relationship between DUSP1, PRDX6 and
S100A8 with the proportion of infiltrating
immune cells

We used the CIBERSORT approach to further validate the

association between the expression of DUSP1, PRDX6, and S100A8

and the immunological component. Specifically, we constructed 21

different types of immune cell profiles in DN patients and analyzed

the fraction of invading immune subtypes (Figures 7A, B). In
Frontiers in Immunology 05
addition, several immune cells exhibited a dysregulated level

between DN samples and normal samples, such as T cells CD4

memory resting, NK cells resting, Monocytes, Macrophages M2,

Dendritic cells resting, Mast cells resting, Mast cells activated and

Neutrophils (Figure 7C). Then, we found that the level of DUSP1 was

positively associated with Neutrophils, Mast cells activated,

Monocytes, NK cells resting, T cells CD4 memory resting and

Eosinophils, while negatively associated with Dendritic cells resting,

Mast cells resting, Macrophages M2 and T cells CD4 memory

activated (Figure 8A). The level of PRDX6 was positively associated

with Neutrophils, T cells CD4memory resting, NK cells resting, Mast

cells activated and Monocytes, while negatively associated with

Macrophages M2, Mast cells res, T cells CD4 memory activated,

Dendritic cells resting, T cells gamma delta and Dendritic cells

activated (Figure 8B). The level of S100A8 was positively associated

with Neutrophils, Monocytes, NK cells resting, Eosinophils and T

cells CD4 memory resting, while negatively associated with Dendritic

cells resting, T cells CD8, Macrophages M2, Mast cells resting and

Macrophages M1 (Figure 8C).
A

B

C

FIGURE 2

GO, KEGG and DO enrichment analysis of DE-OSRGs. (A) BP, CC, and MF are among the most highly enriched GO keywords of downregulated and
upregulated DE-OSRGs, respectively. (B) KEGG pathway enrichment analysis of DE-OSRGs. (C) Disease ontology enrichment analysis of DE-OSRGs.
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Identification of the expression and
diagnostic value of DUSP1, PRDX6 and
S100A8 in our cohort

In order to provide further evidence of the aforementioned

findings, we obtained 25 serum samples from patients diagnosed

with DN and 25 serum samples from normal participants.

According to the findings of RT-PCR, the expression of DUSP1,

PRDX6, and S100A8 was much lower in the serum samples of DN

patients than it was in the serum samples of normal participants

(Figures 9A–C). Following ROC curve analysis revealed that the

new model distinguished normal samples from DN samples with an

AUC value of 9.946 (Figure 10A). In addition, ROC curves were

constructed for the three marker genes in order to shed light on the

capability of individual genes in discriminating DN samples from
Frontiers in Immunology 06
normal samples. The AUC was higher than 0.7 for every gene, as

shown in Figure 10B. Our findings were in agreement with the data

presented above.
Discussion

DN is a common chronic complication of diabetes that can lead

to glomerular hypertrophy, thickening of the basement membrane,

glomerulosclerosis, and renal interstitial fibrosis (34, 35). All of

these conditions can eventually result in renal failure, which poses a

significant risk to human life and health safety. It is required to

create novel indicators and possible targets at the molecular level in

order to prevent and treat diabetic nephropathy because of the poor

understanding of its pathophysiology and therapy (36, 37). In
A B

D

E

C

FIGURE 3

Three DE-FGs were identified as diagnostic genes for DN. (A, B) In order to pick 18 DN-related features, the LASSO logistic regression technique was
utilized, and the penalty parameter tuning was carried out using 10-fold cross-validation. (C, D) The SVM-RFE technique was used to filter the DE-
FRGs in order to determine the best combination of feature genes. (E) We obtained a set of marker genes from the LASSO and SVM-RFE models.
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addition, DN manifests itself as glomerular damage, glomerular

hypertrophy, and thickening of the glomerular basement

membrane. Patients who have DN typically have a poor renal

prognosis since their condition is often misdiagnosed and difficult

to treat (38, 39). This may be one factor that contributes to the poor

renal prognosis. However, DN is the consequence of several genes

interacting with one another, and the molecular processes behind

DN are still poorly understood due to the intricacy of the etiologic

variations. As a result, there is an immediate need for viable

biomarkers that may be used for early diagnosis and

focused therapy.

Damage to tubular epithelial cells, glomerular sclerosis,

apoptosis, inflammatory infiltration, and renal interstitial fibrosis

are some of the usual pathological hallmarks of DN (40, 41). The

exact steps that lead up to the development of DN are not yet fully

understood. There is a growing body of research that points to

oxidative stress and inflammation as the primary contributors to the

development of DN (3, 42). Local chronic inflammatory stress not

only causes organ damage and cell death directly, but it also weakens

the antioxidant defense mechanisms, which further exacerbates the

vicious cycle described above (43, 44). When considered as a whole,

the course of DN is characterized by an interaction between

oxidative stress and inflammation. In this study, we identified a
Frontiers in Immunology 07
total of 774 DE-OSRGs in DN patients. KEGG analysis and observed

that the DE-OSRGs were mainly involved in MAPK signaling

pathway, Ras signaling pathway, Rap1 signaling pathway, Calcium

signaling pathway, FoxO signaling pathway, cAMP signaling

pathway and HIF-1 signaling pathway. In addition, the results of

DO analysis indicated that the DE-OSRGs were associated with lung

disease, tauopathy, Alzheimer’s disease, urinary system disease,

kidney disease and urinary system cancer. According to the results

of our investigation, the function of 774 DE-OSRGs appeared to be

rather complicated. Then, we carried out two different machine-

learning methods, and one of the results was the identification of

three essential diagnostic genes, including DUSP1, PRDX6, and

S100A8. DUSP1 encodes a protein belonging to the protein

tyrosine phosphatase family and was initially discovered in

cultured mouse cells. It is a member of the family of threonine-

tyrosine dual-specificity phosphatases. According to the findings of a

prior investigation, DUSP1 is able to act as a negative regulator for

the MAPK signaling pathway, and it is expressed in more than one

cell line. Another, more recent work revealed that DUSP1 prevented

renal cell death in DN by inhibiting the process that involves JNK,

Mff, and mitochondrial fission (45, 46). PRDX6 is a gene that

encodes a protein belonging to the Peroxiredoxin family. PRDX6

has multiple important functions within cells. As a peroxidase, it
A B

DC

FIGURE 4

The diagnostic value of the new diagnostic model for DN. (A) Logistic regression model was applied for the identification of the AUC of DN samples
using GSE96804 datasets. (B) ROC curves for DUSP1, PRDX6 and S100A8 using GSE96804 datasets. (C and D) The diagnostic value of the new
model was further demonstrated in GSE30528 datasets.
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A B

DC

FIGURE 5

The expressing pattern of DUSP1, PRDX6 and S100A8 in GSE96804 cohorts. The expression of (A) DUSP1, (B) PRDX6 and (C) S100A8 was distinctly
decreased in DN samples compared with normal samples. (D) The correlation of DUSP1, PRDX6 and S100A8.
A B

DC

FIGURE 6

The expressing pattern of DUSP1, PRDX6 and S100A8 in GSE30528 cohorts. The expression of (A) DUSP1, (B) PRDX6 and (C) S100A8 was distinctly
decreased in DN samples compared with normal samples. (D) The correlation of DUSP1, PRDX6 and S100A8.
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primarily participates in the removal of intracellular peroxides and

antioxidant reactions. PRDX6 catalyzes the reduction reaction of

various substrates, including hydrogen peroxide (H2O2), organic

peroxides, and phospholipid hydroperoxides, thus protecting cells

from oxidative stress damage. Additionally, PRDX6 exhibits

phospholipase A2 (Phospholipase A2) activity, catalyzing the

hydrolysis of phosphatidylcholine, and participating in cell

membrane phospholipid metabolism and signal transduction

processes. In addition, PRDX6 plays a significant role in various

physiological and pathological processes. It is involved in regulating

cellular oxidative stress responses and maintaining intracellular

redox balance. The loss or abnormal expression of PRDX6 is

associated with the occurrence and development of several diseases

(47). Research has found that PRDX6 is important in tumor

development, cardiovascular diseases, neurological disorders,

inflammatory conditions, and lung diseases. It can influence cell

proliferation, apoptosis, migration, and invasion capabilities,

regulate vascular function and myocardial protection, and

participate in neurodevelopment and the occurrence of

neurodegenerative diseases (48, 49). Importantly, a previous study

reported that upregulation of PRDX6 expression prevented podocyte

injury in DN via regulating ferroptosis and oxidative stress (50).

S100A8 encodes a protein that belongs to the S100 protein family.

The S100A8 protein plays a significant role in the immune system

and inflammation processes. It is a calcium-binding protein that can
Frontiers in Immunology 09
bind to calcium ions and participate in various cellular signaling and

regulatory processes. S100A8 is typically present as a dimer and

forms a complex with S100A9 protein, known as calprotectin (51,

52). The expression of S100A8 is influenced by various stimuli and

regulatory factors. It is highly expressed in monocytes, neutrophils,

macrophages, epithelial cells, and some inflammation-related tumor

cells. Under conditions such as inflammation and infection, the

expression level of S100A8 is typically elevated. It can interact with

multiple receptors, such as RAGE (Receptor for Advanced Glycation

End Products), TLR4 (Toll-like Receptor 4), and CD36, to

participate in inflammation signaling, cell migration, and immune

regulation processes (53, 54). To date, the expression and function of

DUSP1, PRDX6, and S100A8 in DN were rarely reported. We began

by developing a diagnostic model that made use of DUSP1, PRDX6,

and S100A8. This model demonstrated significant diagnostic

capabilities in both the GSE30528 and the GSE96804 cohorts. In

addition, we validated the diagnostic potential of the new model in

our sample population. The significance of our findings was brought

to light by the possible application of the newmodel as an innovative

diagnostic biomarker for DN.

Immunological processes play an important part in the

development and progression of DN (55, 56). These mechanisms

involve activating innate immune cells and producing

proinflammatory chemicals. These cells play a critical role in the

body’s immune response by detecting and responding to pathogens,
A

B

C

FIGURE 7

Infiltrating immune cells profiles in DN samples and correlation assays. (A) A bar plot comparing the percentage of 21 different types of immune cells
found infiltrating DN samples with those seen in normal samples. (B) Heatmap showing the correlation between 21 kinds of Infiltrating immune cells.
(C) V DN samples and normal samples were compared using an iolin plot, which displayed the ratio differentiation of 21 distinct types of immune cells.
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FIGURE 9

Identification of the expression of (A) DUSP1, (B) PRDX6 and (C) S100A8 in our cohorts.
A B

C

FIGURE 8

Correlation between (A) DUSP1, (B) PRDX6 and (C) S100A8, and infiltrating immune cells in DN.
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and proinflammatory chemicals are used to signal the presence of

an infection and recruit other immune cells to the site (38, 57). For

instance, Macrophages are important participants in the

inflammatory response. They can release inflammatory mediators,

promote inflammation, and contribute to kidney damage. Specific

subsets of T cells play a key role in the development of DN (32). The

activation of inflammatory Th1 cells is associated with glomerular

inflammation, while insufficient function of regulatory T cells

(Tregs) may lead to immune tolerance imbalance and increased

inflammatory response (44). Dendritic cells are antigen-presenting

cells that can activate and regulate T cell immune responses and

play an important role in the inflammatory process of DN (33). In

addition, these mechanisms also include the production of

cytokines and chemokines, which are signaling molecules that are

involved in cell signaling and communication, and play a critical

role in the body’s immune response. The expression of several

immune and inflammatory genes is increased in diabetes, both in

animal models and human patients. This elevation in gene

expression leads to a chronic inflammation state in the kidneys,

and contributes to the development of diabetic nephropathy, a

common complication of diabetes. Moreover, the activation of these

genes also contributes to the systemic inflammation, which can

cause damage to other organs in the body, such as the heart and

blood vessels, increasing the risk of cardiovascular disease. Patients

with diabetes also have this phenomenon. These genes play a

significant part in both the beginning stages of inflammation as

well as the process of immune cell recruitment. CIBERSORT is a

deconvolution approach that analyzes the gene expression patterns

of cells in complicated tissue to determine the cell composition of

the tissue (58). In order to deconvolve a combination of gene

expression, it uses a technique known as linear support vector

regression (SVR), which is a form of machine learning. Because its

findings have been proven to correlate well with flow cytometric

analysis, it has also been referred to as “digital cytometry,” which is

an alternative name for the technique. Although this method has

been used to treat several diseases, its application in clinical practice

has been somewhat restricted. In this study, we found that the level

of DUSP1 was positively associated with Neutrophils, Mast cells
Frontiers in Immunology 11
activated, Monocytes, NK cells resting, T cells CD4 memory resting

and Eosinophils, while negatively associated with Dendritic cells

resting, Mast cells resting, Macrophages M2 and T cells CD4

memory activated. In addition, PRDX6 and S100A8 were also

found to be associated with several immune cells. There is

evidence that T cells play a role in the development of DN.

Studies in animal models have found that certain types of T cells,

such as CD6+ and CD4+, are moderately increased in patients with

type 2 diabetes and are linked with proteinuria (59, 60). However,

more research is needed to understand the exact mechanisms by

which T cells contribute to the development of DN. Additionally,

it’s also possible that other immune cells and molecules may play a

role in the progression of DN, and further studies are necessary to

fully understand the complex interplay between the immune system

and the development of diabetic nephropathy. Other immune cells

did not reveal significant changes in our study, and more research is

needed to investigate the functions these immune cells play in DN.

Despite this, there are a number of drawbacks to our study. To

begin, the sample size is not particularly huge; therefore, it is

necessary to do extensive clinical tests. Second, the possible roles

that DUSP1, PRDX6, and S100A8 may have in the development of

DN were not examined in this research.
Conclusion

Taken together, we first established a unique diagnostic model

that was based on oxidative stress-relate genes for DN patients. This

model offered provided a novel insight into the pathologic analyses

and diagnostic biomarker exploration at the cellular and

molecular levels.
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FIGURE 10

The diagnostic value of the new diagnostic model in our cohort. (A) The new model showed a strong ability in screening DN samples from normal
samples. (B) ROC assays for DUSP1, PRDX6 and S100A8.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1202298
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhu et al. 10.3389/fimmu.2023.1202298
Ethics statement

The studies involving human participants were reviewed and

approved by South China Hospital. The patients/participants

provided their written informed consent to participate in this study.
Author contributions

H-MZ and NL analyzed the data and wrote the manuscript. D-

XS helped data discussion. NL provided specialized expertise and

collaboration in data analysis. H-MZ and LL conceived and

designed the whole project and drafted the manuscript. All

authors contributed to the art ic le and approved the

submitted version.
Funding

This work was supported by Science and Technology Planning

Project of Jiangxi Provincial Health Commission under Grant
Frontiers in Immunology 12
number 202130143, Natural Sciences Foundation-Youth Fund

Pro j e c t o f J i angx i P rov i n c e unde r Gr an t numbe r

20202BAB216007, and the Basic Research Project of Shenzhen

Science and Technology Innovation Commission under Grant

number JCYJ20190809112003711.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
References
1. Thipsawat S. Early detection of diabetic nephropathy in patient with type 2
diabetes mellitus: a review of the literature. Diabetes Vasc Dis Res (2021)
18:14791641211058856. doi: 10.1177/14791641211058856

2. Qi C, Mao X, Zhang Z, Wu H. Classification and differential diagnosis of diabetic
nephropathy. J Diabetes Res (2017) 2017:8637138. doi: 10.1155/2017/8637138

3. Wada J, Makino H. Inflammation and the pathogenesis of diabetic nephropathy.
Clin Sci (London Engl 1979) (2013) 124:139–52. doi: 10.1042/CS20120198

4. Khan NU, Lin J, Liu X, Li H, Lu W, Zhong Z, et al. Insights into predicting
diabetic nephropathy using urinary biomarkers, biochimica et biophysica acta. Proteins
Proteomics (2020) 1868:140475. doi: 10.1016/j.bbapap.2020.140475

5. Flyvbjerg A. The role of the complement system in diabetic nephropathy, nature
reviews. Nephrology (2017) 13:311–8.

6. Feldman EL, Callaghan BC, Pop-Busui R, Zochodne DW, Wright DE, Bennett
DL, et al. Diabetic neuropathy, nature reviews. Dis Primers (2019) 5:41. doi: 10.1038/
s41572-019-0092-1

7. Acharya VN, Chawla KP. Diabetic nephropathy–a review. J Postgrad Med (1978)
24:138–46.

8. Kanwar YS, Sun L, Xie P, Liu FY, Chen S. A glimpse of various pathogenetic
mechanisms of diabetic nephropathy. Annu Rev Pathol (2011) 6:395–423. doi: 10.1146/
annurev.pathol.4.110807.092150

9. Ayodele OE, Alebiosu CO, Salako BL. Diabetic nephropathy–a review of the
natural history, burden, risk factors and treatment. J Natl Med Assoc (2004) 96:1445–
54.

10. Li S, Xie H, Shi Y, Liu H. Prevalence of diabetic nephropathy in the diabetes
mellitus population: a protocol for systematic review and meta-analysis. Medicine
(2022) 101:e31232. doi: 10.1097/MD.0000000000031232

11. Van JA, Scholey JW, Konvalinka A. Insights into diabetic kidney disease using
urinary proteomics and bioinformatics. J Am Soc Nephrol JASN (2017) 28:1050–61. doi:
10.1681/ASN.2016091018

12. Pisoschi AM, Pop A. The role of antioxidants in the chemistry of oxidative
stress: a review. Eur J Med Chem (2015) 97:55–74. doi: 10.1016/j.ejmech.2015.04.040

13. Calle P, Hotter G. Macrophage phenotype and fibrosis in diabetic nephropathy.
Int J Mol Sci (2020) 21. doi: 10.3390/ijms21082806

14. Samsu N. Diabetic nephropathy: challenges in pathogenesis, diagnosis, and
treatment. BioMed Res Int (2021) 2021:1497449. doi: 10.1155/2021/1497449

15. Sagoo MK, Gnudi L. Diabetic nephropathy: is there a role for oxidative stress?
Free Radical Biol Med (2018) 116:50–63. doi: 10.1016/j.freeradbiomed.2017.12.040

16. Ma L, Wu F, Shao Q, Chen G, Xu L, Lu F. Baicalin alleviates oxidative stress and
inflammation in diabetic nephropathy via Nrf2 and MAPK signaling pathway. Drug
Design Dev Ther (2021) 15:3207–21. doi: 10.2147/DDDT.S319260
17. Jha JC, Banal C, Chow BS, Cooper ME, Jandeleit-Dahm K. Diabetes and kidney
disease: role of oxidative stress. Antioxid Redox Signaling (2016) 25:657–84. doi:
10.1089/ars.2016.6664

18. Beyfuss K, Hood DA. A systematic review of p53 regulation of oxidative stress in
skeletal muscle. Redox Rep Commun Free Radical Res (2018) 23:100–17. doi: 10.1080/
13510002.2017.1416773

19. Sies H. Oxidative stress: a concept in redox biology and medicine. Redox Biol
(2015) 4:180–3. doi: 10.1016/j.redox.2015.01.002

20. Ma Q. Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol
(2013) 53:401–26. doi: 10.1146/annurev-pharmtox-011112-140320

21. Filomeni G, De Zio D, Cecconi F. Oxidative stress and autophagy: the clash
between damage and metabolic needs. Cell Death Differentiation (2015) 22:377–88. doi:
10.1038/cdd.2014.150

22. Feng YZ, Ye YJ, Cheng ZY, Hu JJ, Zhang CB, Qian L, et al. Non-invasive
assessment of early stage diabetic nephropathy by DTI and BOLD MRI. Br J Radiol
(2020) 93:20190562. doi: 10.1259/bjr.20190562

23. Umanath K, Lewis JB. Update on diabetic nephropathy: core curriculum 2018.
Am J Kidney Dis Off J Natl Kidney Foundation (2018) 71:884–95. doi: 10.1053/
j.ajkd.2017.10.026

24. Alicic RZ, Rooney MT, Tuttle KR. Diabetic kidney disease: challenges. Progress
Possibilities Clin J Am Soc Nephrol CJASN (2017) 12:2032–45. doi: 10.2215/
CJN.11491116

25. Baek J, Lee MG. Oxidative stress and antioxidant strategies in dermatology. Redox
Rep Commun Free Radical Res (2016) 21:164–9. doi: 10.1179/1351000215Y.0000000015

26. Gorrini C, Harris IS, Mak TW. Modulation of oxidative stress as an anticancer
strategy, nature reviews. Drug Discovery (2013) 12:931–47. doi: 10.1038/nrd4002

27. Dai X, Liao R, Liu C, Liu S, Huang H, Liu J, et al. Epigenetic regulation of
TXNIP-mediated oxidative stress and NLRP3 inflammasome activation contributes to
SAHH inhibition-aggravated diabetic nephropathy. Redox Biol (2021) 45:102033. doi:
10.1016/j.redox.2021.102033

28. Lin YC, Chang YH, Yang SY, Wu KD, Chu TS. Update of pathophysiology and
management of diabetic kidney disease. J Formosan Med Assoc Taiwan Yi Zhi (2018)
117:662–75. doi: 10.1016/j.jfma.2018.02.007

29. Jung CY, Yoo TH. Pathophysiologic mechanisms and potential biomarkers in
diabetic kidney disease. Diabetes Metab J (2022) 46:181–97. doi: 10.4093/
dmj.2021.0329

30. Sabado RL, Balan S, Bhardwaj N. Dendritic cell-based immunotherapy. Cell Res
(2017) 27:74–95. doi: 10.1038/cr.2016.157

31. Langel SN, Blasi M, Permar SR. Maternal immune protection against infectious
diseases. Cell Host Microbe (2022) 30:660–74. doi: 10.1016/j.chom.2022.04.007
frontiersin.org

https://doi.org/10.1177/14791641211058856
https://doi.org/10.1155/2017/8637138
https://doi.org/10.1042/CS20120198
https://doi.org/10.1016/j.bbapap.2020.140475
https://doi.org/10.1038/s41572-019-0092-1
https://doi.org/10.1038/s41572-019-0092-1
https://doi.org/10.1146/annurev.pathol.4.110807.092150
https://doi.org/10.1146/annurev.pathol.4.110807.092150
https://doi.org/10.1097/MD.0000000000031232
https://doi.org/10.1681/ASN.2016091018
https://doi.org/10.1016/j.ejmech.2015.04.040
https://doi.org/10.3390/ijms21082806
https://doi.org/10.1155/2021/1497449
https://doi.org/10.1016/j.freeradbiomed.2017.12.040
https://doi.org/10.2147/DDDT.S319260
https://doi.org/10.1089/ars.2016.6664
https://doi.org/10.1080/13510002.2017.1416773
https://doi.org/10.1080/13510002.2017.1416773
https://doi.org/10.1016/j.redox.2015.01.002
https://doi.org/10.1146/annurev-pharmtox-011112-140320
https://doi.org/10.1038/cdd.2014.150
https://doi.org/10.1259/bjr.20190562
https://doi.org/10.1053/j.ajkd.2017.10.026
https://doi.org/10.1053/j.ajkd.2017.10.026
https://doi.org/10.2215/CJN.11491116
https://doi.org/10.2215/CJN.11491116
https://doi.org/10.1179/1351000215Y.0000000015
https://doi.org/10.1038/nrd4002
https://doi.org/10.1016/j.redox.2021.102033
https://doi.org/10.1016/j.jfma.2018.02.007
https://doi.org/10.4093/dmj.2021.0329
https://doi.org/10.4093/dmj.2021.0329
https://doi.org/10.1038/cr.2016.157
https://doi.org/10.1016/j.chom.2022.04.007
https://doi.org/10.3389/fimmu.2023.1202298
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhu et al. 10.3389/fimmu.2023.1202298
32. Li HD, You YK, Shao BY, WuWF, Wang YF, Guo JB, et al. Roles and crosstalks
of macrophages in diabetic nephropathy. Front Immunol (2022) 13:1015142. doi:
10.3389/fimmu.2022.1015142

33. Kim H, Kim M, Lee HY, Park HY, Jhun H, Kim S. Role of dendritic cell in
diabetic nephropathy. Int J Mol Sci (2021) 22. doi: 10.3390/ijms22147554

34. Papadopoulou-Marketou N, Kanaka-Gantenbein C, Marketos N, Chrousos GP,
Papassotiriou I. Biomarkers of diabetic nephropathy: a 2017 update. Crit Rev Clin Lab
Sci (2017) 54:326–42. doi: 10.1080/10408363.2017.1377682

35. Liu XJ, Hu XK, Yang H, Gui LM, Cai ZX, Qi MS, et al. A review of traditional
Chinese medicine on treatment of diabetic nephropathy and the involved mechanisms.
Am J Chin Med (2022) 50:1739–79. doi: 10.1142/S0192415X22500744

36. Yamanouchi M, Furuichi K, Hoshino J, Ubara Y, Wada T. Nonproteinuric
diabetic kidney disease. Clin Exp Nephrol (2020) 24:573–81. doi: 10.1007/s10157-020-
01881-0

37. Russo G, Piscitelli P, Giandalia A, Viazzi F, Pontremoli R, Fioretto P, et al.
Atherogenic dyslipidemia and diabetic nephropathy. J Nephrol (2020) 33:1001–8. doi:
10.1007/s40620-020-00739-8
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