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Background: So far, quite a few studies have revealed that systemic iron levels

are related to asthmatic inflammatory reactions. And most studies have focused

on the correlation between systemic iron levels and asthma, with inconsistent

findings. Yet, few studies have investigated the connection between serum iron

and blood eosinophil counts. Hence, we have explored the connection between

serum iron and blood eosinophil counts in asthmatics by utilizing data from

NHANES.

Methods: A total of 2549 individuals were included in our study after screening

NHANES participants from 2011 to 2018. The linear regression model and

XGBoost model were used to discuss the potential connection. Linear or

nonlinear association was further confirmed by the generalized additive model

and the piecewise linear regression model. And we also performed stratified

analyses to figure out specific populations.

Results: In the multivariable linear regression models, we discovered that serum

iron levels were inversely related to blood eosinophil counts in asthmatic adults.

Simultaneously, we found that for every unit increase in serum iron (umol/L),

blood eosinophil counts reduced by 1.41/uL in model 3, which adjusted for all

variables excluding the analyzed variables. Furthermore, the XGBoost model of

machine learning was applied to assess the relative importance of chosen

variables, and it was determined that vitamin C intake, age, vitamin B12 intake,

iron intake, and serum iron were the five most important variables on blood

eosinophil counts. And the generalized additive model and piecewise linear

regression model further verify this linear and inverse association.

Conclusion: Our investigation discovered that the linear and inverse association

of serum iron with blood eosinophil counts in asthmatic adults, indicating that

serum ironmight be related to changes in the immunological state of asthmatics.
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Our work offers some new thoughts for next research on asthma management

and therapy. Ultimately, we hope that more individuals become aware of the role

of iron in the onset, development, and treatment of asthma.
KEYWORDS

serum iron, eosinophil, asthma, National Health And Nutrition Examination Survey
(NHANES), XGBoost, machine learning
1 Introduction

Asthma is a chronic inflammatory respiratory disease

characterized by episodes of airflow obstruction (1). Asthma

prevalence has risen exponentially in recent decades, particularly

in Western and industrialized countries (2, 3). In some countries,

up to 15-20% of the general population has a diagnosis of asthma,

which is extremely concerning due to the public health issues

caused by increased asthma exacerbations, hospital admissions,

school absences, and high medical costs (4, 5). According to the

World Health Organization, 15 million disability-adjusted life years

are lost each year, and 250,000 asthma deaths are reported,

accounting for approximately 1% of the global disease burden

with an estimated prevalence of 358 million cases (6). And, the

World Health Organization predicts that the number of asthmatics

will rise by another 100 million by 2025 (7).

Asthma is a complex inflammatory disease of the airways

with numerous pathophysiological features (8). Type 2 (T2)

inflammation is a crucial immune response in the pathobiology of

asthma, leading to the categorization of asthma into T2-high and

T2-low classifications (9–11). It has been determined that

eosinophils are the most important inflammatory cells in T2 high

asthma (12). They are crucial effector cells that contribute to the

pathogenesis of asthma by inducing type 2 inflammation, the

primary asthma trigger (13). Eosinophils have been demonstrated

to boost type 2 immune responses by producing cytokines and

chemokines such as IL-4, IL-5, IL-9, and IL-13 (14–16). Many

studies have indicated a correlation between elevated blood

eosinophil levels and acute asthma attacks and asthma severity

(17–20). Furthermore Robert et al. observed that a high eosinophil

count in the blood of asthmatic patients could be a risk factor for

future asthma exacerbations (21). In addition, eosinophils are the

primary target of asthma and play a crucial role in asthma

treatment. The novel interleukin-5-targeting biologics, for

instance, can significantly reduce circulating blood eosinophils,

which is associated with fewer asthma exacerbations and

improved asthma management (22, 23). Eosinophils have a

crucial role in the onset, development, and treatment of

asthma (24).

It is thought that dietary changes may have contributed to the

development of asthma over the past few decades as a result of

society’s ongoing evolution (25). A considerable number of studies

have shown that dietary micronutrients (such as iron, magnesium,
02
calcium, copper, zinc, selenium, vitamin A and vitamin D, and so on)

are related to the pathogenesis of atopic diseases (26–30). One of the

important trace elements, iron, is crucial for many biological

processes, including the regulation of enzyme activity, oxygen

transport, and immune function (31), which may be the

mechanism affecting asthma (32). Increased systemic iron doses

were reported to dramatically reduce airway eosinophilia and Th2

cytokines, block AHR, and improve allergic asthma symptoms in a

number of animal models (33–35). Moreover, numerous clinical

studies have demonstrated and the connection between the level of

iron within the human body and the occurrence of asthma (36–42).

Quite a few studies to date have focused on the correlation

between systemic iron levels and asthma. Yet, few research have

examined the relationship between eosinophil counts and serum

iron levels in asthmatics. Using National Health and Nutrition

Examination Survey (NHANES) data, we investigated the

connection between serum iron concentrations and blood

eosinophil counts in American adults with asthma to gain insight

into the role of serum iron in asthma.
2 Materials and methods

2.1 Data source

Every two years, the National Health and Nutrition

Examination Survey (NHANES), sponsored by the Centers for

Disease Control and Prevention, collected data on the health and

nutritional status of the U.S. population. NHANES uses a complex,

mult istage probabil i ty design to sample the civi l ian,

noninstitutionalized population residing in the 50 states and D.C.

The NCHS Institutional Review Board authorized the NHANES

database in conformity with the revised Helsinki Declaration.

Before the data collecting procedures and exhaustive health tests,

the informed consent forms were completed. Details of the design

and content of NHANES are available on the NHANES website.
2.2 Study population

The data from the 2011-2018 NHANES from were utilized in

our investigation. For the second analyses, these data comprised

demographic information, examination information, dietary
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information, laboratory information, and questionnaire data.

During 2011 to 2018, the NHANES collected an aggregate of

39156 samples. We eliminated populations who were (1): younger

than 18 years old (n=15331); (2) lost data on blood eosinophils

(n=2147); (3) lost data on serum iron (n=450); (4) without asthma

(n=17999); (5) lost data on more than one of following covariates

(n=680): educational background, marital state, poverty to income

ratios (PIR), body mass index (BMI), smoking state, alcohol intake,

folate intake, vitamin A intake, vitamin B12 intake, vitamin C

intake, iron intake, hypertension history, diabetes history, steroid

use. Eventually, a large, nationally representative sample (n=2549)

of asthmatic adults in the U.S. was recruited for our investigation.

Figure 1 depicts the flowchart for the screening procedure.
2.3 Measurement of serum iron and blood
eosinophil counts

The serum iron concentration was measured using the DcX800

method, which is a timed-endpoint method. Acetic acid releases
Frontiers in Immunology 03
iron from transferrin, which is then reduced to the ferrous form by

hydroxylamine and thioglycolate. The ferrous ion is complexed

instantly with the FerroZine Iron Reagent. At a predetermined time

period, the system measures the change in absorbance at 560 nm.

This variation in absorbance is related to the iron concentration in

the sample. Using a Becker Coulter MAXM analyzer, complete

blood counts with 5-part differential measurements were done on

whole blood samples obtained over the NHANES 2011–2018 cycles.

The 5-part differential measure yielded cell counts of lymphocytes,

monocytes, segmented neutrophils, eosinophils, and basophils (103

cells/L), which were utilized for post-hoc analyses. On the NHANES

website, you can find a thorough overview of laboratory procedures.
2.4 Covariates and asthma assessment

Covariates comprised demographic information, examination

information, dietary information, and questionnaire data.

Demographic information involved sex, age (years), race

(Mexican American, other Hispanic, non-Hispanic white, non-
FIGURE 1

Flowchart for choosing asthmatic subjects.
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Hispanic black, others), educational background (less than high

school, high school, more than high school), poverty to income

ratios (grouped by trisection: low, middle, high; high poverty to

income ratio means richer), marital state (married, single, living

with a partner). Next, we also comprised examination information

and diet information, such as body mass index (kg/m2), smoking

state (whether smoked over 100 cigarettes in a lifetime), intake of

alcohol, vitamin A, vitamin B12, vitamin C, folate and iron (average

intake from two 24-hours recall data on diet and supplements),

hypertension history (Yes, No), diabetes history (Yes, No,

Borderline), and steroid drugs use history (whether steroid and

other anti-allergy drugs use in past 30 days). The assessment of

asthma was predicated on information obtained from the

questionnaire segment of the National Health Interview Survey

conducted in the United States. To evaluate the presence of asthma,

the participants were queried with the following question: “Have

you ever been diagnosed with asthma by a healthcare professional?”

If the respondent answers affirmatively, they were classified as an

individual with asthma. On the NHANES database website, you

may find more comprehensive explanations of all variables.
2.5 Statistical analysis

We performed statistical analyses of serum iron concentrations

and blood eosinophil counts in accordance with the NHANES

database’s guidelines. Mean ± SD and percentage were used to

illustrate continuous and categorical variables, individually. Initially,

blood eosinophil counts were transformed into four quartiles. We

calculated the p-value of categorical variables using the weighted chi-

square test, and the p-value of continuous variables using the Kruskal

Wallis rank sum test. The link of serum iron with blood eosinophil

counts was then determined using three types of weighted linear

regression models (Model 1, Model 2, Model 3). The model 1

adjusted no covariates; the model 2 adjusted sex, age, and race; and

the model 3 adjusted gender, age, race, educational background,
Frontiers in Immunology 04
marital state, PIR, BMI, smoking state, alcohol intake, vitamin A

intake, vitamin B12 intake, vitamin C intake, folate intake, iron

intake, hypertension history, diabetes history, and steroid drug use.

Next, we utilized the machine learning of XGBoost algorithm model

to discuss the relative importance of selected variables on the effect of

blood eosinophil counts. And, the stratified analyses were then

undertaken to determine the stratified correlation between serum

iron concentrations and blood eosinophil counts. To analyze the

potential linear link of serum iron with blood eosinophil counts, we

created a smooth curve according to the penalty spline approach

using the generalized additive model. In addition, the segmented

regression model was employed to confirm the linear or nonlinear

association between serum iron concentrations and blood eosinophil

counts. If a non-linear association was found, a two-piecewise linear

regression model was used to assess the threshold influence of serum

iron levels on blood eosinophil counts. When the ratio between

serum iron levels and blood eosinophil counts became apparent in a

smoothed curve, the recursive technique automatically estimates the

inflection point at which the maximum model likelihood will be

applied. R software (Version 4.2.0) with the R package was used to

conduct all statistical analyses. In our research, a p-value of less than

0.05 indicated statistical significance.
3 Results

3.1 Baseline characteristics of
analyzed individuals

Weighted distributions of the baseline characteristics,

comprising demographic information, examination information,

laboratory information, and questionnaire information from the

2011-2018 NHANES survey, were displayed in Table 1. In our

investigation, the average age of selected participants was 47.3 years

old, and non-Hispanic White people comprised the majority of the

population. And afterwards, we quartiled the blood eosinophil
TABLE 1 Weighted characteristics of the study population in disaggregated by quartiles of blood eosinophil counts.

Q1 (0) Q2 (100) Q3 (200) Q4 (300-2200) P value

Gender (%) <0.0001

Male 34.01 32.11 38.59 45.06

Female 65.99 67.89 61.41 54.94

Age (years old) 45.93 ± 1.82 43.42 ± 0.74 46.33 ± 0.81 47.18 ± 0.71 0.0012

Race/ethnicity (%) 0.1971

Mexican American 4.99 5.09 5.4 6.43

Other Hispanic 5.6 5.73 6.61 6.46

Non-Hispanic White 62.91 68.85 67.58 68.38

Non-Hispanic Black 22.6 12.21 11.48 10.76

Other Race 3.91 8.12 8.93 7.97

(Continued)
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counts (Q1–Q4). The distributions of sex, age, educational

background, body mass index, smoking state, vitamin A intake,

vitamin C intake, iron intake, hypertension history, and serum iron

were statistically distinct (p value < 0.05), whereas the distributions

of race, marital state, poverty to income ratio (PIR), alcohol intake,

folate intake, vitamin B12 intake, diabetes history, and steroid drugs

use were not statistically distinct (p value > 0.05). Relative to groups

with the higher blood eosinophil count, groups with the lower blood

eosinophil counts exhibited higher serum iron concentrations.
Frontiers in Immunology 05
3.2 The relationships of serum
iron concentrations and blood
eosinophil counts

We utilized three weighted linear regression models to examine

the relationship between serum iron and blood eosinophil levels in

persons with asthma (Table 2). In accordance with the outcomes,

we noticed a statistically significant inverse connection between

serum iron levels and blood eosinophil counts in models 2 and 3,
TABLE 1 Continued

Q1 (0) Q2 (100) Q3 (200) Q4 (300-2200) P value

Education (%) 0.0033

Less than high school 13.7 10.8 14.26 14.12

High school 16.21 18.05 19.69 24.15

More than high school 70.09 71.15 66.05 61.73

Marital status (%) 0.2471

Married 42.41 51.29 48.42 51.43

Single 53.13 40.96 42.84 41.12

Living with a partner 4.45 7.74 8.75 7.44

Poverty to income ratio 2.51 ± 0.23 2.91 ± 0.09 2.74 ± 0.11 2.79 ± 0.1 0.1173

BMI (kg/m2) 29.32 ± 1.01 29.61 ± 0.37 30.86 ± 0.49 31.66 ± 0.42 0.0016

Smoked at least 100 cigarettes in life (%) 0.0004

Yes 50.77 43.75 45.25 53.49

No 49.23 56.25 54.75 46.51

Alcohol intake (gm) 14.62 ± 3.62 12.11 ± 1.4 12.23 ± 1.96 13.03 ± 1.76 0.8534

Folate intake (mcg) 367.6 ± 33.65 391.04 ± 13.11 419.59 ± 16.06 422.69 ± 16.15 0.1645

Vit A intake (mcg) 510.22 ± 56.72 620.82 ± 23.35 701.69 ± 26.69 639.68 ± 38.23 0.0238

Vit B12 intake (mcg) 4.62 ± 0.61 4.86 ± 0.16 5.37 ± 0.24 5.28 ± 0.27 0.1538

Vit C intake (mg) 56.54 ± 6.82 83.13 ± 5.38 78.52 ± 4.71 79.96 ± 4.31 0.027

Iron intake (mg) 12.88 ± 1.16 13.85 ± 0.29 14.61 ± 0.5 15.73 ± 0.6 0.0166

Hypertension (%) 0.0013

Yes 38.55 30.05 38.02 41.66

No 61.45 69.95 61.98 58.34

Diabetes (%) 0.0778

Yes 15.91 8.33 13.32 14.64

No 80.94 88.72 84.37 82.74

Borderline 3.15 2.95 2.31 2.61

Steroid drugs use (%) 0.1466

Yes 20.74 14.2 16.12 19.08

No 79.26 85.8 83.88 80.92

Serum iron (umol/l) 15.53 ± 0.63 15.39 ± 0.31 14.14 ± 0.26 14.67 ± 0.28 0.0183
fro
Data are presented as weighted means ± SD or proportions. Q1–Q4: Blood eosinophil counts have been grouped by quartile. Q1: Eosinophils number is 0 cells/uL; Q2: Eosinophils number is 100
cells/uL; Q3: Eosinophils number is 200 cells/uL; Q4: Eosinophils number is 300-2200 cells/uL. gm, gram; mg, milligram; mcg, microgram.
ntiersin.org

https://doi.org/10.3389/fimmu.2023.1201160
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wen et al. 10.3389/fimmu.2023.1201160
but not in model 1. Blood eosinophil counts fell by 1.57 (-2.74,

-0.40)/ul for each increased unit of serum iron (umol/L) in model 2,

which adjusted for gender, age, and race. Adjusted for sex, age, race,

educational background, marital state, PIR, BMI, smoking state,

alcohol intake, vitamin A intake, vitamin B12 intake, vitamin C

intake, folate intake, iron intake, hypertension history, diabetes

history, and steroid drugs use, model 3 revealed that blood

eosinophil counts fell by 1.41 (-2.60, -0.23)/ul for each increased

unit of serum iron (umol/L). And we observed the trend test was

statistically significant in the model 2 (p for trend < 0.05), whereas

not in the model 1 and 3 (p for trend > 0.05), which indicated serum

iron was linearly associated with blood eosinophil counts in the

model 2, but not in in the model 1 and 3. At the same time, we

conducted linear regression analyses and trend testing on non-

asthmatic populations who met the standards for inclusion and

exclusion (Supplementary Figure 1). It was observed that serum

iron exhibited a linear and inverse correlation with blood eosinophil

counts in non-asthmatic populations (p < 0.05 and p for trend <

0.05) in Supplementary Table 1.
3.3 Stratification connection of serum iron
with blood eosinophil counts

We further analyzed stratification connection of serum iron and

blood eosinophil counts in different subgroups by sex, age, race,

education background, marital state, PIR, BMI, smoking state,

hypertension history, diabetes history, and steroid drugs use to

ensure that the results of the linear regression analysis were reliable

(Figure 2). According to stratified analysis results, we discovered

that a negative connection of serum iron with blood eosinophil

counts in the specific populations, who were Non-Hispanic White

and Black individuals, high school, married state, BMI≥28, smoking

over 100 cigarettes in life, with hypertension, without diabetes and

without steroid drug use. In addition, the interaction test did not

find any statistically significant differences among all subgroups. (p

for interaction > 0.05). At the same time, we also conducted a

stratified analysis of the non-asthmatic population. And we

discovered a negative correlation of serum iron with blood
Frontiers in Immunology 06
eosinophil counts in other subgroup populations except for these

populations, who were age over 40, other Hispanic individuals, high

school and below, low PIR, BMI below 25, with hypertension,

borderline diabetes and diabetes, and with steroid drug use.

Similarly, no interaction was found in all subgroup analyses

(p for interaction > 0.05) in Supplementary Table 2.
3.4 Assessing the relative importance of
selected variables by the XGBoost
algorithm model

In the stages of model development and verification, we

implemented the XGBoost algorithmic model of machine

learning to assess the relative significance of selected variables

associated with blood eosinophil counts. The selected variables

consisted of age, poverty-to-income ratio, body mass index,

alcohol consumption, intake of vitamin A, vitamin B12, vitamin

C, folate, iron, and serum iron. On the basis of the outcomes of each

variable’s contribution by XGBoost model, we discovered that

vitamin C intake, age, vit B12 intake, iron intake, and serum iron

were the five most influential factors in the blood eosinophil counts

(Figure 3). Serum iron, as a relatively crucial variable, was

subsequently incorporated into the general additive model and

segmented regression model in order to further evaluate

the reliability of the linear regression analysis results in

our investigation.
3.5 Evaluating the linear or nonlinear
associations of serum iron levels and
blood eosinophil counts

The general additive model (GAM) is extremely sensitive to

determining whether a correlation is linear or nonlinear. We

performed GAM to explore the linear or nonlinear connection of

serum iron and blood eosinophil counts to validate the

trustworthiness of regression analysis results. We generated a

smooth fit curve based on model 3 (Figure 4) to illustrate the
TABLE 2 Three weighted linear regression models explicate the link of the serum iron with blood eosinophils counts.

Model 1 Model 2 Model 3

b (95% CI) P value b (95% CI) P value b (95% CI) P value

Serum iron -1.04 (-2.27, 0.18) 0.1008 -1.57 (-2.74, -0.40) 0.0111 -1.41 (-2.60, -0.23) 0.0256

Serum iron

Q1 (1.8-10.19) Reference Reference Reference

Q2 (10.20-13.59) -5.17 (-33.32, 22.99) 0.7204 -13.34 (-41.31, 14.62) 0.3540 -11.63 (-39.83, 16.57) 0.4247

Q3 (13.60-17.69) 0.30 (-24.40, 25.00) 0.9813 -8.47 (-33.16, 16.21) 0.5041 -7.15 (-31.56, 17.26) 0.5698

Q4 (17.70-47.60) -15.78 (-39.21, 7.66) 0.1921 -26.82 (-48.79, -4.85) 0.0204 -24.14 (-46.91, -1.37) 0.0456

P for trend 0.2312 0.0299 0.0561
Model 1 adjusted no covariates. Model 2 adjusted sex, age and race. Model 3 adjusted sex, age, race, educational background, marital state, poverty to income ratio, body mass index, smoking
state, alcohol intake, vitamin A intake, vitamin B12 intake, vitamin C intake, folate intake, iron intake, hypertension history, diabetes history, and steroid drugs use. Q1-Q4: Serum iron are
grouped by quartile.
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potential connection. We observed the linear connection of serum

iron concentrations with blood eosinophil counts in adults with

asthma after controlling all variables apart from serum iron.

Furthermore, we implemented the segmented regression model to

confirm the linearity or nonlinearity of the connection between

serum iron and blood eosinophil counts (Table 3). Our study

revealed that the inflection point (K=8.2) lacked statistical

significance, as indicated by a log-likelihood ratio greater than

0.05. Additionally, there were no statistically significant

distinctions observed between the one-line model and the

segmented regression model. Thus, it can be concluded that the

one-line model was a more suitable approach for elucidating the

correlation of serum iron with blood eosinophil counts. All of above

outcomes suggested a linear and inverse relationship of serum iron

and blood eosinophil counts.
4 Discussion

In recent years, there has been a significant increase in allergic

illnesses, which has accompanied with a remarkable increase in

interest in the potential link between micronutrients and asthma

(26, 31, 43). Iron is by far one of the most abundant and significant
Frontiers in Immunology 07
transition metals in nature, serving critical biological activities in a

variety of biological processes including DNA and RNA synthesis,

enzyme activity, inflammation, and oxidative stress (44). Iron may

influence the likelihood of asthma attacks or exacerbations via

affecting biological processes. Previous studies have shown that

asthmatic chronic inflammatory reactions are related to lower

systemic iron levels (45, 46).

As a result, we evaluated the relationship between serum iron

levels and blood eosinophil counts in 2,549 adults with asthma who

took part in the NHANES survey in the United States from 2011 to

2018. To our knowledge, our investigation is the first study to

discuss the connection between serum iron levels and blood

eosinophil counts in adults with asthma and one of the most

extensive cross-sectional studies. In multiple linear regression

models, we observed the negative correlation between serum iron

levels and blood eosinophil counts in American adults with asthma.

Simultaneously, we discovered that for every unit increase in serum

iron (umol/L), blood eosinophil counts reduced by 1.41/uL in

model 3, which controlled for sex, age, race, educational

background, marital state, PIR, BMI, smoked state, alcohol intake,

vitamin A intake, vitamin B12 intake, vitamin C intake, folate

intake, iron intake, hypertension history, diabetes history, and

steroid drug use. Furthermore, we created a machine learning
FIGURE 2

Stratified correlation of serum iron with blood eosinophil counts. In any of subgroups, the model adjusted sex, age, race, educational background,
marital state, poverty to income ratio, body mass index, smoking state, alcohol intake, vitamin A intake, vitamin B12 intake, vitamin C intake, folate
intake, iron intake, hypertension history, diabetes history, and steroid drugs use except for the stratification variable.
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XGBoost model to estimate the relative importance of selected

variables, and found that vitamin C intake, age, vit B12 intake, iron

intake, and serum iron were the five most influential factors on

blood eosinophil counts. Then, we determined the linear and

negative association between serum iron levels and blood

eosinophil counts by the generalized additive model and the two-

piecewise linear regression model. As shown by the findings

discussed above, the correlation between serum iron and blood

eosinophil count in American adults with asthma was linear

and negative.
Frontiers in Immunology 08
The majority of asthma cases are caused by type 2

inflammation, which is mediated by respiratory epithelium and

type 2 T-helper lymphocytes. Inflammation of the airway is most

likely caused by a combination of changes in geographical location,

environmental factors, and dietary patterns (47, 48). It is associated

with certain cytokine profiles (IL-4, IL-5, and IL-14) and

inflammatory cells (eosinophils, basophils, type 2 T helper

lymphocytes, and IgE-producing plasma cells) (49). Inflammation

obstructs the bronchial airways, producing wheezing and coughing

as clinical symptoms, which triggers asthma attacks. As a vital
FIGURE 3

The XGBoost algorithm determines the relative importance of each variable on blood eosinophil counts and assigns a variable importance score to
each variable. The X-axis represents the importance score, which is the relative importance of variables used to distribute the data; the Y-axis
represents the variables chosen. PIR, poverty to income ratio; Vit, Vitamin.
A B

FIGURE 4

Dose-response connection of serum iron levels with blood eosinophil counts based on model 3. (A) The red solid line is the smooth fitting curve
between serum iron levels and blood eosinophil counts, while the blue dashed line reflects the 95% confidence intervals of the fitting. (B) Each red
dot represents a separate sample, and the blue dots above and below the red dot represent 95% confidence intervals.
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dietary trace element, iron is important for cellular respiration and

electron transport, oxygen metabolism, DNA synthesis, gene

control, drug metabolism, and steroid synthesis (44). Deficits in

essential biological processes brought on by an iron deficiency

might have negative effects. And it has been proved that iron is

involved in controlling inflammatory reactions in asthma (50, 51).

Quite a few published studies reported the connection between

asthma and iron intake. A case-control study found that iron

supplementation improved chronic cough and bronchial

hyperreactivity (52). Haim Bibi et al. found that iron-chelating

complex attenuated allergic airway inflammation in this mouse

model of allergic asthma (53). Moreover, another study indicated

that in a mouse model of IgE-mediated allergic asthma, iron

supplementation could beneficially decrease the severity of

allergic asthma (54). The above studies indicated that sufficient

iron intake levels may contribute to a protective effect on asthma.

Maazi et al. observed that the administration of iron supplements

causes a noteworthy reduction in airway eosinophilia. Additionally,

the use of systemic iron injections resulted in a significant

suppression of both allergen-induced airway eosinophilia and

hyperreactivity in comparison to the administration of a placebo.

But compared with their iron-sufficient counterparts, mice fed on

an iron-deprived diet did not exhibit any discernible variance in the

development of experimentally induced allergic asthma (28).

However, the above studies did not indicate whether there was

information about iron absorption disorders, so the conclusions

were not completely consistent. In addition, some researches have

investigated the association between iron status and asthma. For

instance, according to a study conducted in the United States, a

higher ferritin level was associated with a decreased risk of lifetime

asthma, current asthma, and asthma attacks in women (55).

Another case-control study involving 1102 matched participants

revealed a negative association between asthma prevalence and

urine iron levels in Chinese adults (56). Other researchers, however,

obtained different results. For instance, Narula MK et al. observed

that elevated plasma iron levels in asthmatics may lead to worsening

lipid peroxidation, indicating a link between plasma iron levels and

asthma severity (57). And a Japanese study comprising 1 025
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patients revealed that serum iron and bronchial asthma were not

associated (58). A variety of confounders might well have led to

inconsistent findings in previous studies. Yet, our study revealed a

negative correlation between serum iron and blood eosinophil

count in American adults with asthma, indicating that serum

iron was associated with changes in the immunological state

of asthmatics.

Compared to past studies, ours has some advantages. Our study

presents a rather large, nationally representative sample of

individuals with asthma and involves quite a few potential

confounders. Second, we use stratified analysis to determine the

connection between serum iron and blood eosinophil counts in the

different population because confounders may affect the results.

Then, we use the XGBoost algorithm model’s machine learning to

determine the relative importance of selected variables. And the

linear and inverse relationship between serum iron and blood

eosinophil counts is further confirmed by generalized additive

model and segmented regression model. Our work offers some

new thoughts for next research on asthma management and

therapy. More studies will be required in the future to clarify the

connection between serum iron and blood eosinophil counts and to

determine the underlying mechanism.

Despite this, we recognize that our study has some limitations.

Due to the limitations of the NHANES database, we included

asthmatic individuals based on questionnaire data as opposed to

the lung function test. And the pharmaceuticals included in our

study that altered blood eosinophils were predominantly cortisol

drugs and other anti-allergy medications, but no biologics. Owing

to constraints in the NHANES database, our analysis includes only

serum iron but not iron binding capability, transferrin saturation,

and information of pre and peri-birth nutrition. The XGBoost

algorithm remains an algorithm, created by humans, and as such

is not guaranteed to be 100% objective. And participants’ physical

conditions at the time of blood collection, such as whether they have

acute or stable asthma, are not known. Therefore, additional

prospective studies will be necessary to shed light on the potential

role of serum iron in the control, progression, and treatment of

asthma and to uncover potential mechanisms of action.
5 Conclusion

Our investigation discovered that the linear and inverse

association between serum iron and blood eosinophil counts in

asthmatic adults, indicating that serum iron might be related to

changes in the immunological state of asthmatics. Our work offers

some new thoughts for next research on asthma management and

therapy. Ultimately, we look forward to more people recognizing

the role of iron in the onset, development, and treatment of asthma.
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b (95% CI) P value
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