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The global population has been severely affected by the coronavirus disease

2019 (COVID-19) pandemic, however, with older age identified as a risk factor,

children have been underprioritized. This article discusses the factors

contributing to the less severe response observed in children following

infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),

including, differing viral entry receptor expression and immune responses. It also

discusses how emerging and future variants could present a higher risk to

children, including those with underlying comorbidities, in developing severe

disease. Furthermore, this perspective discusses the differential inflammatory

markers between critical and non-critical cases, as well as discussing the types of

variants that may be more pathogenic to children. Importantly, this article

highlights where more research is urgently required, in order to protect the

most vulnerable of our children.
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1 Introduction

The current coronavirus disease 2019 (COVID-19) pandemic has become common

knowledge to most, including the general community, and is caused by the severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2). Studies have identified that ‘older age’

and being ‘male’ remain primary risk factors for infection (1, 2). These along with

underlying comorbidities or respiratory illness have been suggested to possibly increase

susceptibility to infection and severe disease (2, 3). Furthermore, children <14 years
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appeared to have significantly lower susceptibility to infection, with

seroprevalence of SARS-CoV-2 increasing with age (4). However, a

recent systematic review did note variability in the reporting of age-

specific infection rates with most estimated attack rates (AR) in

pediatric groups now being comparable to adults (5). If true, it raises

the question as to why children appear less susceptible to SARS-

CoV-2 infection and associated disease?

The currently known clinical spectrum of COVID-19 in adults

is broad with about 80% of presentations being mild, 15% needing

hospitalization, and 5% requiring intensive care (6). These rates still

appear far lower in children (cumulative hospitalization incidence

was 49.7 per 100,000 children) as the pandemic continues (7). The

disease presents predominantly as a respiratory illness (Figure 1),

but presentation can range from asymptomatic infection to

extrapulmonary manifestations (3). A common subsequent

complication includes acute respiratory distress syndrome

(ARDS), but infection with SARS-CoV-2 may also lead to other
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types of organ failure and death (2, 3). Most children do not present

with respiratory illness, but higher proportion of fever, vomiting,

and diarrhea are observed upon admission to hospital (Figure 1) (2,

8). They are also at risk of a rare complication with non-specific

symptoms and organ dysfunction termed COVID-19 associated

multisystem inflammatory syndrome in children (MIS-C), also

termed pediatric inflammatory multisystem syndrome temporally

associated with SARS‐CoV‐2 (PIMS‐TS) (9–11). These differences

suggest a possible deviation in the underlying immune response of

adults and children to the virus.
2 Immune responses

Viral pathogens typically bind to host receptors, which then

stimulate appropriate immune responses to control infection.

However, since these receptors interact with the virus, they can
FIGURE 1

Clinical progression of SARS-CoV-2 infection in children (left) and adults (right). In children, higher proportion of fever, vomiting, and diarrhea were
reported compared to adults and severe disease can manifest as severe respiratory symptoms or multisystem inflammatory syndrome (MIS-C),
Adults typically present with common respiratory illness symptoms, which can lead to severe complications such as acute respiratory distress
syndrome (ARDS) and as well as cardiac, neurological, and renal complications. Created with BioRender.com.
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also facilitate viral entry into cells. Consequently, one of the main

factors thought to affect SARS-CoV-2 infection susceptibility is the

expression of its receptors and relevant host factors (enzymes),

namely angiotensin converting enzyme 2 (ACE2) and

transmembrane protease serine 2 (TMPRSS2), in the airways (12,

13). Interindividual variations of distribution and expression of

these receptors in the upper airway have been suggested to influence

the infectivity of SARS-CoV-2 (12). This has been supported by

several other studies where higher receptor expression is associated

with increased age and the male sex (Supplementary Table 1).

Collectively, these observations suggest that the lack of

respiratory symptoms in children might be due to a distinct

infection course resulting from the difference in receptor

expression. The lower expression of these host receptors in

children could account for reduced viral entry and hence a less

severe course of infection. However, it should be noted, that several

studies have reported no correlation between age or sex with ACE2

or TMPRSS2 (14–16) (Supplementary Table 1). How “children”

have been defined as part of study inclusion criteria may have also

contributed towards these conflicting observations. Some have used

the term to broadly encompass children and adolescents between 0-

17 years of age (15–17), whereas others have utilized a restricted age

range, i.e. <10 years (13, 18). This is a likely factor for the

inconsistency seen for ACE2 expression levels where younger
Frontiers in Immunology 03
children (<10 years) appear to have significantly lower ACE2

expression expression compared to their older counterparts (10-

17 years) (19). Thus, a more standardized approach in the

terminology used for age cohorts or in the study design regarding

the inclusion criteria will assist in interpreting results generated in

future studies. Multiple other host receptors and factors with affinity

to SARS-CoV-2 have also started to be implicated in the infection

process by providing alternative entry pathways and enhancing

viral entry (Supplementary Table 1). As this is an extensive list of

potential receptors, there is still a lack of corroborated information

on the relationship between their expression levels, especially in

children and the potential effects they might have on susceptibility

to SARS-CoV-2 infection.

Studies have also investigated the initial innate immune

responses of children compared to those of adults which have led

to the discovery of multiple differences, both prior to and following

SARS-CoV-2 infection (Supplementary Table 2 and Figure 2).

Amongst these, children appear to be capable of eliciting a more

immediate and stronger anti-viral response when infected as shown

by significantly higher levels of IFNG and CCL5 expression in the

nasal epithelium (15) (Figure 2). This stronger anti-viral response

would allow for better control of SARS-CoV-2 replication in the

airway and thereby, prevent the development of COVID-19-

associated symptoms. This is in line with pediatric nasal epithelial
B

C

A

FIGURE 2

The age-specific innate and adaptive immune responses of children. (A) Baseline variances found in children compared to adults prior viral infection.
(i) Greater number and diversity of immune cells with a neutrophil predominance. (ii) Higher levels of genes coding for SARS-CoV-2 pattern
recognition receptors (PRRs) and viral RNA sensing enhancers. (iii) Stronger immune-epithelial cell cross-talk. (iv) Presence of a subpopulation of
cytotoxic T-cells that allows preservation of virus-specific CD8+ T cell response without apoptosis. (B) Differences found in the nasal epithelium/
mucosa immune response of children compared to adults following infection of SARS-CoV-2. Children are suggested to mount a stronger anti-viral
response with: (i) increased gene expression levels involved with an activated neutrophil phenotype, epithelial repair, and innate immune responses
such as response to TNF, leukocyte activation, and IFNG and CCL5 expression, and (ii) presence of a distinct CD8+ T cell population with a memory
phenotype. (iii) Stable maintenance of the proportion of immune and epithelial cells in nasal epithelium of children. (C) Systemic immune differences
found in the blood of children compared to adults. (i) Higher levels of serum IL-17A and IFNg and circulating CD63+ neutrophils. (ii) Reduced
proportions of circulating monocytes subsets (classical, intermediate, non-classical), dendritic cells, and natural killer cells. (iii) Antibody response in
children primarily consists of anti-S protein IgG antibodies with an overall lower neutralizing activity, but children maintain higher antibody titers
against the S protein and RBD six months after seroconversion. Created with BioRender.com. IFN, interferon; IL, interleukin; N, nucleocapsid; RBD,
receptor-binding domain; S, spike; TNF, tumor necrosis factor.
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cells being found to be less permissive to SARS-CoV-2 replication

and mount a heightened antiviral response resulting in reduced

viral replication following infection (20). Furthermore, lower viral

loads were also found in upper respiratory tracts of asymptomatic

children (<17 years) compared to children who present with

symptoms (21). Interestingly, a very recent study by Koch and

colleagues (16) did, however, report similar interferon gene

responses in the nasal mucosa of children and adults infected

with SARS-CoV-2.

SARS-CoV-2 infection in children also appears to reduce

proportions of many immune cell types in the blood

(Supplementary Table 2) (22–24). However, the observed higher

serum IL-17 and IFNg levels seen suggests that other cell types may

be driving their production (22, 25). One such source may be

CD8+IL-2-TNF+IFN-g+ T-cells which have been found via flow

cytometry to drive the SARS-CoV-2 T-cell response (26). Antibody

responses also appear to differ between adults and children where,

in children, the antibody response appears to be largely limited to

anti-S IgG antibodies (Figure 2), unlike the broader response seen in

adults (1). Furthermore, antibodies generated in children appear to

have overall lower levels of neutralizing activity (1) (Figure 2). This

appear in contrast to a recent study that reports similar antibody

responses in seropositive children and adults to SARS-CoV-2

proteins (26). Distinct antibody profiles between children and

adults are also seen with increased disease severity, where severely

ill children with MIS-C show a broad non-specific IgG-driven

monocyte-activating response, while adults with severe acute

COVID-19 have enhanced IgA-related responses linked to

neutrophil activation (27). As for the longevity of the humoral

immunity, children have been reported to maintain higher antibody

titers against the S protein and RBD compared to adults at least six

months after seroconversion and these levels are only slightly

reduced 12 months post-seroconversion (26). These results

indicate the dire need for further studies to form an established

understanding of the effects of age on the response to SARS-CoV-

2 infection.
3 Multisystem inflammatory syndrome

In addition to severe COVID-19 typically seen in adults, SARS-

CoV-2 infection may also drive a multisystem inflammatory

response in children termed MIS-C or PIMS-TS (10, 22, 28, 29).

Children who develop MIS-C are more likely to require intensive

care with invasive ventilation, intravenous corticosteroids,

vasoactive infusions, and inotropic support (11). They also

typically present with leukocytosis with lymphopenia as well as

high levels of systemic inflammation markers (24, 28). Work

conducted has also identified lower lymphocyte counts in those

with MIS-C compared to their non-MIS-C counterparts with acute

presentations (25). Higher serum concentrations of IL‐1b, IL‐8, IL-
10, TNFa, and IFNg as well as more monocyte/antibody‐dependent

cellular phagocytosis (ADCP) activity has also been associated with

MIS-C (24, 25, 27, 29). Moreover, elevated pro-inflammatory

cytokines (IL-6 and IL-17A) as well as chemokines (CXCL1,

CXCL5, CXCL6, and CXCL11) including those involved with
Frontiers in Immunology 04
lymphocytic and myeloid chemotaxis and activation (CCL3 and

CCL4, CCL19, and CXCL10) and mucosal chemotaxis (CCL20)

were able to distinguish children with and without MIS-C (22).

Variance in specific lymphocyte populations, namely lower CD56lo

NK cells and CD4− T cells (mostly CD8+ T cells), have also been

shown in MIS-C cohorts relative to infected non-MIS-C cohorts

(10, 22).

Interestingly, similar antibody profiles have been exhibited in

pediatric cohorts regardless of disease severity (with or without

MIS-C) (1). This similarity may imply that the humoral immune

response to the virus is not associated with MIS-C pathogenesis.

However, Yonker et al. (9) did observe elevated IgM and IgG

responses to the SARS-CoV-2 RBD and Bartsch et al. (27),

observed higher SARS-CoV-2 S protein–specific IgM, IgG1 and

IgA1 titers in children with severe MIS-C compared with mild MIS-

C. Children with MIS-C were also found to have higher anti-S and

anti-RBD IgG as well as anti-S IgA titers with higher neutralization

activity compared with those that did not meet the criteria for MIS-

C but had severe respiratory symptoms and required increased

positive pressure support above their baseline (severe COVID-19)

(30). Although differences in antibodies were not seen between the

MIS-C and mild COVID-19 group (30) another study found higher

titers of anti-S and anti-RBD IgG in children with MIS-C compared

to children with COVID-19 (31). Variable levels of neutralizing

antibodies were also found with the mild group (30). This suggests

that children with MIS-C have greater capacity to more effectively

neutralize SARS-CoV-2 compared to children with severe COVID-

19 (30). Another distinction between the MIS-C and severe

COVID-19 groups is higher TNFa and IL-10 proportions in the

former (29). In addition, as autoreactive antibodies (with possible

targets broadly found across tissues) have recently been observed

with MIS-C, anomalous immune responses may also be promoted

leading to systemic inflammation and multi-organ involvement (10,

22). These findings show that there are certainly specific

mechanisms following SARS-CoV-2 infection that are involved

with the divergence from the standard COVID-19 progression

into the development of MIS-C, but there is still more to be

investigated and their significance still needs to be validated.
4 Pediatric responses to
SARS-CoV-2 variants

The combination of SARS-CoV-2 accumulating mutations in 1-

2 nucleotides every month and the lack of effective containment

strategies have given rise to the most recent issue of the pandemic,

the emergence of new variants (Supplementary Table 3) (32). Work

by Salleh, Derrick, and Deris (33) have performed an in-depth

review of some of the earlier variants of concern (VoCs) which have

all been suggested to have higher binding affinity to the human

ACE2 receptor (except B.1.1.529 [Omicron]) and increased

transmissibility (33, 34) (Supplementary Table 3); suggesting

increasing adaptation of viral infectivity to humans but does not

necessarily mean greater pathogenicity. Infection with B.1.617.2

(Delta) in primary Air Liquid Interface (ALI) cultures however, has
frontiersin.org
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revealed extensive nuclear damage and syncytial formation with

increased replicative capacity compared to an ancestral Australian

clinical strain suggesting possible increased pathogenicity (35). This

is consistent with increased pathogenicity observed with Delta

compared to a D614G-bearing isolate in a hamster model study

(36). Aside from higher viral entry efficacies, B.1.1.7 (Alpha),

B.1.351 (Beta), P.1 (Gamma), and Delta were also more resistant

to the neutralizing activity of monoclonal antibodies and

convalescent sera from recovered COVID-19 patients compared

to the wildtype strain in vitro (33, 37, 38). Omicron has also been

reported to escape clinically approved monoclonal antibodies, even

in a combination which was highly potent against Delta (39). With

multiple other variants identified since the original strain, the virus

appears to be evolving, raising the potential for new variants to

emerge in the future (32). Nonetheless, as the specific antigenicity of

these variants have yet to be established, it also gives rise to the

question of how each variant would differ in pathogenicity and

respond to any vaccine or therapeutic approach.

Due to the sudden increase in incidence of SARS-CoV-2

infection in children with the emergence of new variants, there is

still a current lack of evidence surrounding the response of the

pediatric airway to them. Consequently, there is still some reliance

on pre-prints for information specifically for the more recent

variants, Delta and Omicron (40, 41). These studies compared

variants and their respective effects on transmissibility and/or

pathogenicity in children (Supplementary Table 3). The Delta

variant, for instance, has been associated with higher incidence

and increased hospitalization rates in children (7, 42, 43)

(Supplementary Table 3). However, in a study conducted in UK

comparing clinical outcomes in children infected during either an

Alpha predominance or a Delta predominance, both variants were

associated with similar median illness duration and symptoms

experienced where most symptoms were short-lived and resolved

within five days (44). Odds ratios (ORs) for some symptoms as well

as the median symptom burden were only slightly higher with Delta

compared to Alpha (44). This study suggested that these variants

cause similar illness and symptoms and short duration. Consistent

with this, another study reported that infection with Alpha or Delta

in children ≤18 years was not associated with increased disease

severity compared to non-VoCs (45). Findings implied that the

higher hospitalization rates seen with the emergence of Delta were

not a result of increased pathogenicity of the variant but simply due

to the increased prevalence of infection. However, a case series in

Tunisia reported that Delta causes critical outcomes in infants (<2

years) without any underlying conditions whose mothers were

unvaccinated, where over half of the patients had pediatric ARDS

and 20% ended with death (46). While this is not an overarching

outcome of all pediatric SARS-CoV-2 infections, it emphasizes the

potential risk new variants could bring.

Other studies on the Omicron variant have reported that

vaccine effectiveness against Omicron infection is severely

reduced compared to Delta and previous VoCs (39, 47).

Interestingly, there was a difference in the preferred entry

pathway whereby Omicron predominantly infects cells via

endosomal fusion activated by cathepsin L (CTSL) and B (CTSB),

whereas D614, Alpha, and Delta variants rely on cell surface fusion
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via TMPRSS2 proteolysis of the spike (39, 41, 47). Furthermore,

Omicron does not heavily rely on the spike-mediated fusion via

TMPRSS2, and so does not induce fusion with adjacent cells

resulting in syncytia (39, 41, 47). Syncytia formation in

pneumocytes has been associated with severe COVID-19, where

this feature was found in majority of post-mortem samples from

patients who died of COVID-19 (48). The lack of syncytia

formation with Omicron’s etiology could possibly mean lower

virulence compared to previous VoCs, which is in line with the

milder outcomes and lower risk for severe illness observed in

children following infection with Omicron (40, 49, 50)

(Supplementary Table 3). Collectively, these results do imply that

Omicron appears to be more transmissible compared to previous

VoCs due to the overall higher expression of CTSL and CTSB in

airway epithelial cells (12, 41).

With regards to possible cross-reactivity between variants,

Dowell et al. (26) reports that children previously infected by the

original strain of the virus, produced SARS-CoV-2 specific

antibodies that were also cross-reactive to Alpha, Beta, and

Gamma. Levels of these cross-reactive antibodies in children six

months post-infection were also higher than that of adults (26).

However, it should also be noted, that antibodies in all individuals

showed reduced capacity to neutralize infection by live virus (26).

Another study on a relatively small sample size reported higher

lymphocyte and white blood cell counts but lower IL-6 levels in

younger children <12 years old infected with Delta compared to

those ≥12 years (51). Age cohorts also differed in antibody levels

with lower anti-SARS-CoV-2 IgG and IgM found on admission,

and lower IgG but higher IgM in in younger children at

convalescence (51). Younger children were also associated with a

higher asymptomatic rate and milder illness with lower incidence of

severe cases, pneumonia, and respiratory failure reported (51). With

new studies being performed, clinical impacts of these new variants

on the pediatric population are becoming more evident, however,

additional studies are still required to elucidate the potential cellular

and molecular differences these variants would incite in children.
5 Impact of comorbidities

With certain comorbidities highlighted to increase the risk of

susceptibility to the effects of SARS-CoV-2 infection in adults, it is

important to know if children living with underlying health

conditions are also at higher risk. Overall, children (and young

adults <21 years) living with comorbidities have been found to be

more likely to develop severe COVID-19 requiring critical care and

COVID-19-associated death than those without, and this risk

increases with the number of comorbidities they have (11, 52).

Further insights can be made from a recent cross-sectional study

conducted by Kompaniyets et al. (53), who examined data from

43,465 patients ≤18 years of age who presented to hospital with

COVID-19. Results showed that 28.7% of children had an

underlying medical condition, and this increased to 62.9% in

those who were hospitalized. Observed comorbidities included

asthma, neurodevelopmental disorders, anxiety and depressive

disorders, and obesity (53). Although asthma was the most
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common risk factor observed, its adjusted risk ratio (aRR)

for hospitalization was not amongst the highest at 1.23. Instead,

type 1 diabetes was reported to have the highest aRR (4.6), followed

by obesity (3.07), and congenital cardiovascular anomalies (2.12)

(53). Children with type 1 diabetes and congenital cardiovascular

anomalies were also reported to have the highest risk of developing

severe COVID-19 (53). Other studies have also associated asthma,

neurological, cardiovascular, and immunological/hematological

disorders (immunocompromised), gastrointestinal disease,

respiratory comorbidities, prematurity, obesity, and diabetes in

children with higher risk of requiring hospital admission (11, 28,

52). This is also observed during the period where Delta was

predominant, with underlying respiratory and endocrine

disorders found more common in adolescents who were

hospitalized with COVID-19 compared to age-matched controls

(54). Age-stratification showed that chronic lung disease,

neurologic disorders, cardiovascular disease, prematurity, and

airway abnormality were risk factors for severe COVID-19 in

infants and toddlers under 2 years (53, 55). For older aged

children, diabetes mellitus and obesity were the predominant risk

factors associated with severe COVID-19 (53, 55). As of writing this

review, the underlying mechanisms as to why and how these

specific comorbidities increase the risk of developing severe

disease in children remain unknown, however, several theories

are now emerging including the potential for the accumulation of

viral mutations during a period of prolonged infectivity (21, 56).
6 Conclusions

In summary, we present a current overview on pediatric

COVID-19 literature, particularly the differences suggested to

contribute to the lower severity seen in children infected with

SARS-CoV-2. Despite progress being made in identifying age-

related immune response differences to infection, little is still

known as to how and why, in some children, the disease

progression leads to MIS-C and varies from what is typically seen

with adults. With vaccines being made available for the younger

population, it is encouraging that unexposed children will have

vaccine-derived immunity, however many of our youngest remain

vulnerable. Consequently, the priority now should include

understanding how emerging variants will affect these individuals

as well as identifying complementary therapeutics that can be

adapted and tailored to the relevant variant at the time. With

continued scientific advances, we will be able to fully comprehend

the underlying biology of all SARS-CoV-2 variants and hopefully

identify therapies for the youngest of our population where none

currently exist, to keep our children safe.
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