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MDSCs in breast cancer: an
important enabler of tumor
progression and an emerging
therapeutic target

Haoyu Liu1, Zhicheng Wang2, Yuntao Zhou2

and Yanming Yang1*

1Department of Radiotherapy, Second Hospital of Jilin University, Changchun, China, 2National Health
Commission (NHC) Key Laboratory of Radiobiology, School of Public Health, Jilin University,
Changchun, China
Women worldwide are more likely to develop breast cancer (BC) than any other

type of cancer. The treatment of BC depends on the subtype and stage of the

cancer, such as surgery, radiotherapy, chemotherapy, and immunotherapy.

Although significant progress has been made in recent years, advanced or

metastatic BC presents a poor prognosis, due to drug resistance and

recurrences. During embryonic development, myeloid-derived suppressor

cells (MDSCs) develop that suppress the immune system. By inhibiting anti-

immune effects and promoting non-immune mechanisms such as tumor cell

stemness, epithelial-mesenchymal transformation (EMT) and angiogenesis,

MDSCs effectively promote tumor growth and metastasis. In various BC

models, peripheral tissues, and tumor microenvironments (TME), MDSCs have

been found to amplification. Clinical progression or poor prognosis are strongly

associated with increased MDSCs. In this review, we describe the activation,

recruitment, and differentiation of MDSCs production in BC, the involvement of

MDSCs in BC progression, and the clinical characteristics of MDSCs as a potential

BC therapy target.

KEYWORDS

myeloid-derived suppressor cells, breast cancer, immunosuppression, immunotherapy,
tumor microenvironments
1 Introduction

Breast cancer (BC) is the primary driver of cancer-related mortality among females

globally (1). BC can be categorized into four different subtypes based on the expression of

the Human epidermal growth factor receptor (HER2/neu), the estrogen receptor (ER), and

the progesterone receptor (PR): triple negative breast cancer (TNBC), Luminal A, Luminal

B, and HER2 (+). This classification is the basis for most BC treatments, including surgery,

radiotherapy (RT), chemotherapy, targeted therapy, and immunotherapy (2).
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Immunotherapy is becoming increasingly essential in treating other

tumors, but only a tiny percentage of BC patients are aid from

immunotherapy at present. In fact, the therapeutic relevance of

immunotherapy is restricted to a minority of patients, and

secondary resistance further limits the effect of immunotherapy to

substantially better the prognosis of BC patients (3).

Immunotherapies, particularly immune checkpoint inhibitors

(ICIs), are ineffective as a sole treatment in most patients with

BC. Tumor microenvironment (TME) is widely accepted as having

an irreplaceable function in the drug resistance mechanism.

Additionally, Myeloid-derived suppressor cells (MDSCs) serve an

essential function in TME (3).

Myeloid-derived suppressor cells (MDSCs), a diverse group of

immature myeloid cells (IMCs), serve an essential function in the

immune cell network (4). MDSCs play a role in tumor development

via a variety of immunosuppressive mechanisms, including

metabolite depletion, upregulation of reactive oxygen species

(ROS), and secretion of multiple cytokines, and kinds of non-

immunosuppressive mechanisms, like epithelial-mesenchymal

transformation (EMT), promoting tumor cell stemness, as well as

tumor vascular production (5). Previous research has demonstrated

a correlation between MDSCs and poor overall survival (OS) in

patients (6). Consequently, cancer immunotherapy can be proven

to enhance by fostering MDSCs elimination, inhibiting their

recruitment, expansion, and function.

In this review, we summarize the immunosuppressive function

of MDSCs, their role in BC, and strategies for targeting them in

various cancer treatments. We explore the feasibility and

prospective development of multiple targeted MDSCs detection

methods and therapeutics for the treatment or prevention of BC.
2 MDSCs in breast cancer

2.1 Classification of MDSCs in
breast cancer

MDSCs from BC patients are functionally and phenotypically

similar to MDSCs that come from bone marrow, indicating that

MDSCs emerge from myeloid precursors (4). Granulocytic (G)-

MDSCs (CD11b+Ly6G+Ly6Clow) and monocytic (M)-MDSCs

(CD11b+Ly6G-Ly6Chigh) could be precisely identified relying on

their phenotypic and morphological characteristics in mice as

research demonstrates (7). In contrast to mouse MDSCs, isolating

and identifying human MDSCs is difficult due to their
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heterogeneity, proximity phenotypic and functional closeness to

other cell subpopulations, and lack of definitive markers (7, 8).

MDSCs are correspondingly classified into two categories in

humans. CD11b+CD33+HLA-DR-/low CD14+CD15- identifies M-

MDSCs, whereas CD11b+CD33+HLA-DR-/lowCD14-CD15+(or

CD66b+) identifies G-MDSCs (6, 7). The identification of CD84

as MSDC-specific cell surface markers in BC was reported using a

single-cell transcriptomic approach by Alshetaiwi et al. (9). In

addition, a subpopulation of MDSCs in humans is comprised of

undifferentiated progenitor cells known as e-MDSCs, identified as

HLA-DR-CD33+Lin- (CD3/14/15/19/56) for which the mouse

counterpart has not been discovered (7) (Table 1).
2.2 MDSCs production and activation in
breast cancer

The development of MDSCs is governed by a complicated

system of signals that can be categorized into two groups: those

that promote the accumulation of IMCs and those that cause the

activation of these cells (10). The signal transducer and activator of

transcription (STAT) family, IFN regulators, Notch, adenosine

receptor A2b, NLRP3, and many other signaling pathways and

regulators are responsible for stimulating myelopoiesis, inhibiting

the maturation and differentiation of progenitor cells, and

promoting the expansion of the IMCs (9, 10). The other group is

accountable for the pathological activation of immature cells that

acquire an immunosuppressive phenotype, involving diverse

signaling pathways and regulators such as NF-kB pathway,

STAT1 pathway, STAT6 pathway, prostaglandin E2 (PGE2), and

Cyclooxygenase-2 (COX-2) and ER stress response pathway (9, 10).

These two groups of signals partially overlap but are controlled by

various transcription factors and intermediates, both of which are

necessary for the accumulation of MDSCs.

In BC, factors that contribute to the amplification and

activation of MDSCs involve granulocyte-macrophage colony-

stimulating factor (GM-CSF) (10, 11), granulocyte colony-

stimulating factor (G-CSF) (11, 12), PGE2 (13, 14), vascular

endothelial growth factor (VEGF) and interleukins (IL-1 (15), IL-

6 (16), IL-13 (17), IL-17 (18), IL-20 (19), IL-33 (20), IL-34 (21)),

macrophage migration inhibitory factor (MIF) (22), microRNAs

(miRNAs) derived from tumor exosomes (23). It is interesting to

note that higher levels of psychological stress in patients with BC

might result in the production of stress-related hormones and

cytokines (IL-1Ra, IP 10, G-CSF, and IL-6), which in turn
TABLE 1 Phenotypic characteristics necessary to identify cells as MDSC.

Human Mouse

G-MDSCs CD11b+CD33+HLA-DR-/lowCD14-CD15+(or CD66b+) CD11b+Ly6G+Ly6Clow

M-MDSCs CD11b+CD33+HLA-DR-/low CD14+CD15- CD11b+Ly6G-Ly6Chigh

e-MDSCs HLA-DR-CD33+Lin- (CD3/14/15/19/56) Not clearly determined
MDSCs, myeloid-derived suppressor cells; G-MDSCs, polymorphonuclear-MDSCs; e-MDSCs, early-stage MDSCs; M-MDSCs, monocytic-MDSCs.
While phenotype is a necessary step in defining MDSCs, please note that the identification of MDSCs cannot be based on immunophenotype alone, but requires proof of their lymphocyte
suppressive function.
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stimulate the production and accumulation of MDSCs

(24) (Figure 1).

Tumor cell derived G-CSF and GM-CSF are key factors

contributing to MDSCs accumulation (10, 11). CSF raises the

levels of FcgRIIB on hematopoietic progenitor cells (HPCs) by

activating specific protein 1 (Sp1), which then activates the STAT3

signaling pathway, which biases hematopoiesis toward the myeloid
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lineage spectrum and promotes MDSCs production by HPCs (10,

25). Moreover, chondroitin polymerase factor (CHPF), which is

frequently highly expressed in BC tissues, facilitates the binding of

G-CSF to cell surface Chondroitin sulfate (CS) and promotes the

accumulation of MDSCs (26). In addition, aldehyde dehydrogenase

1A1 (ALDH1A1) relies on its enzymatic activity to reduce

intracellular pH in BC cells in order to increase TGF-b-activated
FIGURE 1

Mechanism of MDSCs production and activation, recruitment and differentiation in BC. MDSCs, myeloid-derived suppressor cells; HPCs,
haematopoietic progenitor cells; Sp1, specific protein 1; GM-CSF, granulocyte-macrophage colony-stimulating factor; G-CSF, granulocyte colony-
stimulating factor; ALDH1A1, aldehyde dehydrogenase 1A1; TAK1, TGF-b-activated kinase 1; CS, Chondroitin sulfate; CHPF, chondroitin polymerase
factor; SMS2, Sphingosine synthase 2; MSCs, mesenchymal stem cells; TAMs, tumor-associated macrophages; M1, M1 macrophages; M2, M2
macrophages.
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kinase 1(TAK1) phosphorylation and activate NF-kB pathways,

which then induces GM-CSF secretion, thereby inducing MDSCs

amplification and promoting BC progression (27).

With a diameter of 50–200 nm, exosomes are lipid bilayer

structures that are important in the reprogramming of TME. IL-6,

IL-10, and other cytokines released by BC cells (4T1) exosomes

would boost the stimulation and expansion of MDSCs by

promoting STAT3 phosphorylation in myeloid cells, which

would, in turn, reduce myeloid proliferation and death and

hasten their differentiation into MDSCs (23). Jiang M et al. used

miRNA microarrays to identify miRNAs secreted by tumor

exosomes; two of them, miR-9 and miR-181a, were shown to

target protein inhibitors of activated STAT3 (PIAS3) and cytokine

signaling protein 3 (SOCS3), respectively, therefore activating the

JAK/STAT signaling cascade (28). Moreover, the accumulation of

early-stage MDSCs was stimulated by prolonged SOCS3

suppression and aberrant upregulating of the JAK/STAT signaling

pathway (29).

In addition, various pathway signaling molecules overlap with

each other and can form loops to regulate each other. In BC cells

Mammalian target of rapamycin (mTOR) signaling stimulates

MDSCs accumulation by regulating G-CSF, and MDSCs were

found to mutually increase Tumor-initiating cells frequency by

activating Notch in tumor cells, which in turn promotes G-CSF

secretion, forming a feed-forward loop leading to further MDSCs

expansion (30). Furthermore, by inducing autocrine secretion of

GM-CSF, IL-33 in the TME inhibits apoptosis and maintains

MDSCs survival, resulting in a positive feedback cycle for MDSCs

accumulation (20).
2.3 MDSCs recruitment in breast cancer

Many different variables can induce the recruitment of MDSCs

into tumor tissue. These factors include chemokines, cytokines, and

complements generated by tumor cells and normal cells.

Chemokines are an essential component in the process of

recruiting MDSCs (31).

BC regulates the production of chemokines by MDSCs via

multiple pathways. Enhanced lung fibroblast CXCL1 secretion

reduces the immunity of lung microenvironment by recruiting G-

MDSCs and facilitates the formation of niches in the anterior lung

metastases of BC (32). Inactivation of retinoblastoma enhances the

secretion of the chemoattractant CCL2. Consequently, the activated

CCL2-CCR2 axis in the TME promotes tumor angiogenesis and

recruitment of tumor-associated macrophages (TAMs) and MDSCs

to the TME (33). BC exosomes convey upregulated miR-200b-3p,

taken by alveolar epithelial type II cells, and targets PTEN

straightforwardly. Suppression of PTEN facilitates activation of the

AKT/NF-kBp65 pathway, which increases CCL2 expression and

MDSCs recruitment, thereby promoting pulmonary metastasis of

BC (34). ERO1-a, a tumor-associated endoplasmic reticulum

disulfide oxidase, facilitates the oxidative folding of G-CSF, CXCL1,

and CXCL2 to produce and recruit G-MDSCs (35). TGF-b1 promotes

miR-494 upregulation in MDSCs, and miR-494 expression enhances

CXCR4-mediated MDSCs chemotaxis (36). The transcription factor
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DNp63 has been reported to directly regulate CXCL2 and CCL22 to

promote MDSCs recruitment in TNBC (37).

A diversity of other elements also influences the recruitment of

MDSCs. S100A8/A9 proteins are chemotactic for MDSCs; for

instance, the lung and liver can express high levels of S100A8,

which promotes the recruitment of MDSCs at these sites, thereby

promoting BC metastasis (38). Chen JY et al. found that BC-derived

VEGF-C upregulates chemokines derived from lymphatic

endothelial cells (LECs) to recruit MDSCs to TME and lymph

nodes (LNs) via CXCR2 (39). There is experimental evidence that,

in coordination with LECs, interstitial fluid flow promotes the

spread of MDSCs at the existence of 4T1 cells and that inhibition

of VEGFR 3 reduces the flow response of MDSCs and 4T1 cells (40).

Moreover, epigenetic regulation is implicated. The epigenetic

regulator Lysine acetyltransferase 6A (KAT6A) dependent

SMAD3 protein acetylation promotes MDSCs recruitment and

TNBC metastasis (41). In addition, complement activation and

C5a signaling are involved in the recruitment of MDSCs into TME

and in the inhibition of CD8+ T cell mediated tumor elimination,

thereby inducing angiogenesis in the lungs of tumor-bearing mice,

promoting BC lung metastasis (42). Interestingly, Cheng R et al.

discovered that periodontal inflammation (PI) could upregulate

CCL5, CXCL12, CCL2, and CCL5. These chemokines recruit

MDSCs, which can generate pre-metastatic ecological niches at

inflammation sites to promote the metastasis of BC (43).
2.4 MDSCs differentiation in breast cancer

MDSCs can differentiate under the regulation of multiple

transcription factors (Figure 1). They differentiate into TAMs and

inflammatory dendritic cells (inf-DCs). Since G-MDSCs are

typically have a brief half-life and differentiate into tumor-

associated neutrophils (TAN), the differentiation of M-MDSCs

has been studied in more detail (44). In response to

environmental stresses such as hypoxia, M-MDSCs can

differentiate into TAMs after migrating to the target tissue and

undergoing migration. In response to lipopolysaccharide (LPS),

TNF-a, and IFN-g, TAMs can polarize into either the M1

phenotype, which has pro-inflammatory and anti-tumor activities,

or the M2 phenotype, which has pro-tumor activities (45).

Development and progression of BC are accompanied by a

transition from MDSCs to TAMs. In MDSCs, IL-33 induces the

expression of IL-13 while suppressing that of IL-12. As a result, M2

macrophages and Th2 cells may become polarized inside the tumor

site, which is detrimental to anti-tumor immunity (20). Similarly

both Sphingosine synthase 2 (SMS2) and exosomes secreted by

mesenchymal stem cells (MSCs) can speed the progression of BC by

inducing the differentiation of M-MDSCs into immunosuppressive

M2-polarized macrophages (45, 46). Tumor cells resistant to

doxorubicin (DOX) secrete PGE2, which stimulates the EP2-EP4/

cAMP/PKA signaling pathway in MDSCs and, in turn, increases

MDSCs growth and M2 polarization by inducing miR-10a

expression (13). In addition, Natural killer T (NKT) cells have

been shown to promote the transformation of CD11b+ HLA-DR-

MDSCs into CD11b low HLA-DR dendritic cells (DCs) (47).
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2.5 Identification and detection of MDSCs
in breast cancer

The current methods commonly used for MDSCs detection are

magnetic selective enrichment, sorting and purification, flow

cytometry sorting, and density gradient separation (48). MDSCs

identification and functional assays are aided by the secretion of

downstream molecules and the determination of target cell effects.

Recently several novel assays have been proposed. Hoffmann SHL

et al. demonstrated that targeting MDSCs cell surface integrin

CD11b with radionuclide-labeled monoclonal antibody (mAb)

has little effect on cell viability and function, and can be used to

image MDSCs in tumor-bearing mice using PET (49). Sceneay J

et al. discovered that BM-MDSC (GM-CSF and IL-6 cultured bone

marrow cells to produce MDSCs nearly identical to G-MDSCs)

could be persistently tagged with a near-infrared fluorescent dye

called DiD and monitored in vivo by optical imaging (OI), as well as

repositioned and identified in vitro by flow cytometry. This

technique permits the study of the distribution and destiny of

DiD-labeled BM-MDSC in breast tumor-bearing mice as a way of

finding MDSCs in BC that present new organ-specific changes (50).
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Although there have been many attempts of targeted detection

methods for MDSCs, most of them can only stay in the laboratory

stage and still have problems of complex methods and confusing

detection. There is still a need to develop more rapid functional

assays as well as definitive marker molecular assays.
3 Immunosuppressive effects and
non-immune functions of MDSCs in
the progression of breast cancer

MDSCs substantially suppress tumor-fighting T and B cells,

particularly cytotoxic T lymphocytes (CTL) and pro-inflammatory

cells like natural killer (NK) cells in TME. Additionally, MDSCs

support cancer progression by inducing Tregs and Th17 cells,

therefore modifying the microenvironment that fosters tumor

development and driving cells to evade immune surveillance (51)

(Figure 2). In addition, MDSCs also promote BC progression

through non-immunosuppressive pathways including promotion

of tumor stem cells, mediation of EMT, and promotion of

angiogenesis. These functions are summarized in Figure 3.
B

C D

A

FIGURE 2

Multiple immunosuppressive effects of MDSCs in BC. MDSCs, myeloid-derived suppressor cells; IDO, indoleamine 2, 3-dioxygenase; TRP,
tryptophan; ARG1, arginase 1; CYS, cysteine; PNT, peroxynitrite; TCR, T cell receptor; ROS, reactive oxygen species; RNS, reactive nitrogen species;
ADAM17, a disintegrin and metalloproteinase domain 17. (A) MDSCs suppress T cells by depleting nutrients such as ARG, TRP, and CYS. (B) MDSCs
produce ROS, RNS and NO causing oxidative stress and suppressing T cells. (C) MDSCs interfere with lymphocyte migration through direct contact
and plasma membrane expression of ADAM17.(D) MDSCs promote the conversion of naive CD4+ T cells into Tregs.
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3.1 Immunosuppressive effects of MDSCs

In the BC microenvironment, MDSCs exert immunosuppressive

effects in several ways. Themost prominent of these is the suppression

of T-cell activity. The first mechanism is nutrient depletion

(Figure 2A). MDSCs have been demonstrated to conduct their

suppressive function by stimulating the formation of indoleamine 2,

3-dioxygenase (IDO), which diminishes local tryptophan (TRP) and

creates cytotoxic metabolites such as kynurenine in the TME and

lymphatic drainage areas, which causes a rise in Tregs, inhibition of

antigen-specific immune responses, and suppression of tumor-

specific CTLs (52). Overexpression of IDO is maintained by

STAT3-dependent NF-kB activation by IL-6 (16, 52). Moreover, IL-

33 strengthened the suppressive action of MDSCs against T cells

arginase 1 (ARG1)-dependent L-arginine depletion (19, 50). The

cysteine (CYS) that T cells need for activation and proper

functioning is depleted because MDSCs devour CYS but do not

return CYS to their surroundings (53).

The second mechanism is oxidative stress generation

(Figure 2B). MDSCs can inhibit T cells in the TME via ROS,

reactive nitrogen species (RNS), and nitric oxide (NO). MDSCs

induce tolerance in T cells through nitration/nitrosylation of T cell

receptor (TCR) and CD8+ molecules on the cell surface and

production of the free radical peroxynitrite (PNT) (54). Stiff A

et al. found that MDSCs also create NO to inhibit NK cell FcR-
Frontiers in Immunology 06
mediated activity, which lowers the effectiveness of mAb treatment

and hinders anti-tumor immunity (55).

The third mechanism is the one that inhibits lymphocyte

migration (Figure 2C). In peripheral lymphoid organs, MDSCs

reduce immunological response and aggregate in sentinel LNs,

where they block CD3/CD28-induced T cell reproduction in a

contact-dependent way. And this facilitates tumor development

and metastasis (50, 55). Hanson EM et al. discovered that by

downregulating L-selectin expression on the surface of CD4+ and

CD8+ T cells via plasma membrane production of ADAM17 (a

disintegrin and metalloproteinase domain 17), MDSCs in BC

restrict the activation and entrance of naive T cells into LNs and

the transport to tumors, ultimately suppressing anti-tumor

immunity (56).

The fourth is the expansion mechanism and activation of Tregs.

MDSCs promote the expansion and transformation of naive CD4+

T cells into Tregs (Figure 2D). However, the mechanism is not

entirely comprehended. Tumor-infiltrating Tregs are important

factors in antitumor immunosuppression. Inducible interleukin-

34 (IL-34) causes the conversion of bone marrow stem cells

(BMSCs) into M-MDSCs, which indirectly attenuates the immune

response by producing CCL22-recruiting Tregs in TME, causing

chemoresistance (21). In addition, BC-induced MDSCs can induce

effector T cells and convert them into Tregs through the IDO

mechanism (52). It has been established that T cells and MDSCs
B C

A

FIGURE 3

Multiple non-immune functions of MDSCs in BC. MDSCs, myeloid-derived suppressor cells; NOS2, nitric oxide synthase 2; VEGF, vascular
endothelial growth factor; PDGF-BB, platelet-derived growth factor-BB; MMP9, matrix metalloproteinase 9; BC, breast cancer. (A) MDSCs induce
and maintain tumor cell stemness through STAT3 and Notch pathways. (B) MDSCs induce EMT through multiple mechanisms. (C) MDSCs induce
angiogenesis in tumors.
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have a retaliatory interaction, with MDSCs suppressing T cell

activation while stimulated T cells mediating MDSC death via the

Fas-FasL pathway (57).

MDSCs in BC can also act by suppressing other immune cells.

MDSCs can act through contact-dependent mechanisms and also

indirectly by secreting NO, ARG, and IL-1 to suppress anti-tumor B

cell responses (58). MDSCs can convert normal B cells into

immunomodulatory B cell (Bregs) subtypes that suppress T cell

responses (59). Furthermore, the expression of programmed cell

death protein 1 (PD-1) is substantially upregulated in MDSCs, and

studies have implicated various mediators in TME, like LPS, in

inducing PD-1 expression in MDSCs in BC (60). Via the PD-1 and

programmed cell death ligand 1 (PD-L1) axis, MDSCs have been

demonstrated to increase PD-1/PD-L1 Bregs-mediated immune

evasion by activating the phosphatidylinositol 3-kinase (PI3K)/

protein kinase B (AKT)/NF-kB signaling pathway in B cells (61).

In addition, medroxyprogesterone acetate, a progesterone analog,

promotes MDSCs in the 4T1 tumor model to inhibit NK cell

degranulation and IFN-g production by inducing IDO production

(62). BC cells grown under hypoxia release kinds of cytokines such

as monocyte chemotactic protein-1, attract MDSCs and decrease

the cytotoxic effects of NK cells, all of which foster the metastasis of

cancer (63). Nevertheless, NKT cells may rescue suppressed T cells

by transforming CD11b+ HLA-DR− MDSCs into CD11blow HLA-

DR DCs through an NKG2D-dependent signaling mechanism (47).

C5aR signaling contributes to MDSCs function by regulating CD4+

T cells are polarized to Th2 type in the lungs of tumor-bearing mice

(42). In the lungs of tumor-bearing mice, treatment with DOX was

shown to increase miR-126 exosomes from MDSCs, which in turn

contributed to MDSCs mediated inhibition of Th1 cell activation,

suppression of T cell activity, and induction of Th2 cell

responses (64).
3.2 Non-immune functions of MDSCs

3.2.1 Induction and maintenance of stemness in
tumor cells

By generating and sustaining cancer stem cells(CSCs), MDSCs

provide a non-immune role that promotes tumor development and

metastasis. This process involves multiple mechanisms, with

STAT3 and Notch playing a significant role (Figure 3A). It has

been demonstrated that MDSCs-derived IL-6 initiates STAT3

phosphorylation and that MDSCs-derived NO activates NOTCH,

which then cooperates with IL-6 to cause sustained STAT3

activation (65). This suggests that MDSCs, via interacting with

IL-6/STAT3 and NO/Notch, could contribute to activating and

sustaining the pool of CSCs (65). In addition, the Janus kinase 1

(JAK1)-STAT3-SOX2 pathway was also discovered to be involved

in the effects of IL-20RA on BC cell stemness and the promotion of

more MDSCs (19). Sprouse ML et al. found that through activating

the nuclear factor E2-related factor 2 (NRF2)-antioxidant response

element axis, G-MDSCs increase ROS generation, which in turn

increases Notch1 receptor expression in circulating tumor cells

(CTCs). Direct cell contact between Jagged1-expressing G-MDSCs
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and Notch1 receptors on CTCs promotes Nodal secretion in Notch-

activated CTCs. Nodal induces pro-tumor differentiation of G-

MDSCs by binding to Cripto receptors abundantly expressed in G-

MDSCs, thereby promoting CTCs survival and proliferation and

BC metastasis (66). Furthermore, there is experimental evidence

that MDSCs express pro-metastatic factors, including chitinase 3-

like 1 and matrix metalloproteinase 9 (MMP9) in a DNp63-

dependent manner to promote CSCs function in TNBC and

facilitate TNBC metastasis (37).

3.2.2 Epithelial-mesenchymal transition
EMT is the process through which epithelial cells shed their

adherent phenotypes and take on more mesenchymal features

increasing cell mobility. This process has been demonstrated to

be essential in tumor progression, from initiation to metastasis.

MDSCs can facilitate this process (Figure 3B). It has been

demonstrated that surgical stress shortens the OS of mice and

raises the number of MDSCs in the TME, which induce EMT in

tumor cells and increase BC metastasis via upregulating TGF-b1,
VEGF, and IL-10 (67). Furthermore, through activating the PI3K-

AKT-mTOR pathway, MDSCs promote EMT and boost the

production of matrix MMPs in cancer cells, which may boost the

invasive and metastatic potential of BC cells (68). M-MDSC from

4T1 tumor-bearing mice with induced tumor site infiltration has

been reported to promote tumor metastasis by inducing nitric oxide

synthase 2 (NOS2) production and activating STAT1 and STAT3

signaling pathways in tumor cells to induce EMT and CSCs

phenotypes (69). Moreover, in an in vitro experiment with dog

BC cells, MDSCs-secreted IL-28 stimulated STAT3 in tumor cells,

inducing EMT and promoting tumor cell migration (70).

In contrast, G-MDSCs from the lung inhibited the EMT and

CSCs phenotypes and promoted tumor cell proliferation (69). In a

mouse model of spontaneous BC, the investigators found that

MDSCs were recruited to the pre-metastatic lung. These MDSCs

promoted mesenchymal-epithelial transformation (MET) of

metastatic tumor cells within the lung metastases by expressing

versican, which blocked TGF-b-Smad2 mother against

decapentaplegic 2 (Smad2) pathway-mediated EMT, and in turn,

promoted the growth of tumor lesions at the metastatic sites (71).

3.2.3 Angiogenesis
Through stimulating blood vessel growth, MDSCs help

contribute to tumor growth, persistence, and dissemination

(Figure 3C). CXCL17 released by BC cells upregulates MDSCs,

which in turn secretes platelet-derived growth factor-BB and

promotes the progression and metastasis of BC by establishing

angiogenesis in the lung microenvironment (72). Similarly, by

secreting IL-28, MDSCs promote tumor cell STAT3 activation

and VEGF upregulation, leading to endothelial cell-induced

angiogenesis (70). Other studies in mice with revealed that

MDSCs produced a large amount of MMP9 (73) and reduced the

production of platelet factor 4 (74), resulting in increased

permeability and abnormal barrier function of newly generated

vessels, which facilitated adhesion of peripheral CTCs to the vessel

wall and leakage from the vessel to the metastases.
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4 Clinical significance of MDSCs in
breast cancer

4.1 Staging and prognosis

Higher levels of MDSCs in BC patients are associated with poor

clinical outcomes. META analysis showed a significant association

between high levels of MDSCs and poorer estimated OS in BC (6)..

MDSCs levels can fluctuate following treatment. Experiments on

mice with surgically excised primary cancer demonstrate that

surgical stress promotes MDSCs recruitment into lung and tumor

tissue (67). Moreover, neoadjuvant chemotherapy (NAT)

influences the MDSCs count in TME (74, 75). In women with

operable BC treated with NAT, circulating G-MDSCs increased

during DOX and cyclophosphamide chemotherapy, declined

sharply during paclitaxel, and returned to levels near baseline by

the end of chemotherapy (Figure 4A). Levels of M-MDSCs were

significantly lower, accounting for 1% or less of peripheral blood

mononuclear cells, and did not differ significantly over time (76).

Similar results were obtained in an experiment in 2022 (75). In a

study of BC patients presenting with metastasis or recurrence, M-

MDSCs have been observed to greatly expand in the peripheral

circulation and associated with greater metastases to LNs and other

organs, according to experiments that specifically targeted M-

MDSCs. Patients with high levels of M-MDSCs suffer from a

more severe condition and an inferior prognosis (77). Tracking

M-MDSCs levels in patients with BC could serve as a fascinating

and straightforward biomarker for monitoring cancer progression.
4.2 MDSCs and breast cancer-related high-
risk factors: obesity

Obesity has been linked to an increased incidence of BC,

especially in postmenopausal women, and a poorer prognosis of

BC disease in all age groups of women patients (78). Obesity and a
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high-fat diet substantially boost the number of MDSCs in TME,

thus further promoting tumor progression (78, 79). Obesity has

been reported to increase CXCL1 concentrations in the BC

microenvironment, contributing to CXCR2-mediated chemotaxis

and the accumulation of G-MDSCs expressing the Fas ligand

(FasL). In vitro and in vivo studies revealed that G-MDSCs cause

immunotherapy tolerance by inducing Fas/FasL-mediated

apoptosis of T cells (80) (Figure 4B). In two mouse models of

TNBC, 4T1 and Py8119, glycolytic restriction suppresses G-CSF

and GM-CSF expression and decreases MDSCs (81). Furthermore,

exercise has been shown to slow the tumors from developing by

inhibiting the collection of MDSCs (80–82). This indicates that a

healthy diet, weight management, and increased physical activity

can also prevent BC by preventing an increase in MDSCs.
4.3 Bone metastases and bone destruction
in breast cancer

Bone is a significant target for BC metastases, and bone

metastases are also a major cause of BC death, usually

manifesting as excessive osteoclast-mediated osteolysis, causing

fractures and pain in patients (83). During this process, MDSCs

suppress the immune system and induce osteolysis in patients with

BC by developing into osteoclasts (83, 84) (Figure 4C). In particular,

MDSCs could only differentiate into osteoclasts under the local

microenvironmental conditions of BC bone metastases. In contrast,

MDSCs isolated from mice without bone metastases did not

undergo such differentiation (83, 85). Studies have revealed that

MDSCs cause osteolysis in BC bone metastases by acting as BC

osteoclast progenitors and maturing into viable osteoclasts through

a NO-dependent mechanism (84, 86). Kun Z et al. found that the

tumor-derived integrin ligand epidermal growth factor-like repeat

and disc-like structural domain 3 (EDIL3) suppresses tumor-

induced MDSCs differentiation into osteoblasts in vitro and

lowers tumor-induced MDSCs proliferation in vivo (86). Thus,
B CA

FIGURE 4

Clinical significance of MDSCs in BC-related staging and prognosis, obesity and bone metastases. (A) MDSCs levels varied with treatment
progression. In women with operable breast cancer treated with NAT, circulating G-MDSCs increased during DOX and cyclophosphamide
chemotherapy, decreased sharply during paclitaxel chemotherapy, and reached near baseline levels at the end of chemotherapy. (B) BC-related
high-risk factors for obesity contribute to more MDSCs. (C) MDSCs not only promote breast cancer bone metastasis, but also differentiate into
osteoclasts and cause bone destruction.
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treatments that aim specifically at MDSCs may be able to diminish

not only their immunosuppressive activity but also MDSCs-

mediated osteolysis and the management of BC sequelae.
5 MDSCs as a target for breast cancer
treatment

As mentioned previously, MDSCs play an irreplaceable role in

the progression of BC. Therefore, MDSCs have been identified as a

target for tumor immunotherapy. Clinical trials of targeted MDSCs

related to BC are summarized in (Supplementary Table 1).

Currently, targeting MDSCs includes four main approaches

(Supplementary Table 2): (1) depletion of MDSCs; (2) blocking the

recruitment of MDSCs; (3) suppressing the immunosuppressive

function of MDSCs; (4) differentiation of MDSCs to a non-

suppressive immune state.
5.1 Depletion of MDSCs

First strategy for targeting MDSCs: removal of circulating and

tumor-infiltrating MDSCs. It has been demonstrated that low-dose

chemotherapy can eradicate MDSCs populations in tumor-bearing

rodents; chemotherapies such as gemcitabine, 5-fluorouracil (5-FU)

(87), Docetaxel (88) and paclitaxel (89) deplete MDSCs and

enhance anti - tumor immune function. However, gemcitabine

and 5FU activate the thermal protein structural domain of the

NOD-like receptor family containing the 3-protein-dependent

inflammasome complex in MDSCs, resulting in the generation of

IL-1b. MDSCs-derived IL-1b further stimulates CD4+T cell IL-17

production and impairs their anti-tumor activity (87).

Inhibition of VEGF receptor signaling resulted in reduced

infiltration of MDSCs. R84 is an anti-VEGF suppressant that

blocks the creation of cytokines and chemokines in tumors,

especially CXCL1, IL-6 and IL-1b (90). R84 specifically

suppresses VEGF binding to VEGFR2, which leads to efficient

control of tumorigenesis and suppression of suppressive immune

cell (MDSCs, Tregs, macrophages) infiltration while boosting the

number of mature DCs (90). Anti-angiogenic treatment with the

hypoxia-inducible factor-1 (HIF-1) dimerization inhibitor acridine

flavin in combination with sunitinib reduced MDSCs accumulation

in the spleen, significantly reduced the production of VEGF and

TGF-b and retarded the growth of tumors in a mouse model (91).

Based on the preceding, we hypothesized that the number of

MDSCs could be effectively reduced by targeting VEGF.

Other methods have also been demonstrated to decrease

MDSCs. DKN-01 is an IgG4 antibody that specifically neutralizes

human and mouse DKK1, a secreted Wnt signaling regulator, and

causes a reduction in MDSCs in tumors and spleens and

upregulation of PD-L1 on MDSCs in a mice BC model (92).

Zonneville et al. found that pharmacological p38 inhibitors (p38i)

substantially reduce MDSCs within the TME in TNBC, while

depleting MDSCs and simultaneously reducing the expression of

chemokines derived from tumors and stroma that are thought to
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contribute to the recruitment of pro-tumor bone marrow

populations (93). Moreover, type I interferon reduces MDSCs in

both bone marrow and blood and dramatically reduces bone

metastases and metastasis-free survival (94). In addition, a

pharmacotherapy liver X nuclear receptor (LXR) agonism

decreased the number of MDSCs in a mouse model and in the

first human dose-escalation phase 1 trial (95). It has been found that

MDSCs have elevated levels of TNF-related apoptosis-inducing

ligand receptors (TRAIL-Rs); thus, DS-8273a, a new agonistic

TRAIL-R antibody, can induce MDSCs apoptosis and decrease

the quantity of MDSCs in the peripheral circulation of BC patients

(NCT02076451) (96). In addition, a unique strategy of using

spherical nucleic acids encapsulated with antigens encapsulated in

lysates containing TNBC cells reduced the frequency of MDSCs in

TME, significantly inhibited tumor growth, and prolonged life

span (97).

In addition, a number of extensively utilized clinical treatments

have been proven to decrease MDSCs. A clinical study showed that

resection of the primary tumor in metastatic BC reduced the

frequency of MDSCs and improved patient prognosis (98).

However, another study showed that resection of the primary

tumor in 4T1-bearing mice certainly reduced the number of

MDSCs, but did not affect the eventual progression of metastatic

BC (99). Furthermore, Habibi M et al. demonstrated that

intratumoral injection of IL-7 and IL-15 into mammary

carcinoma-bearing mice after radiofrequency thermal ablation

reduces MDSCs, induces an immune response to the tumor, and

inhibits tumor progression and lung metastasis (100). It has been

proven that NKT cell activation therapy could reduce the number

and inhibitory activity of MDSCs. However, NKT cell activation in

conjunction with either gemcitabine or cyclophosphamide did not

further reduce the number of MDSCs (101).
5.2 Blocking MDSCs recruitment

The second strategy for targeting MDSCs: blocking the

recruitment of MDSCs. As mentioned above, the production and

recruitment of MDSCs is regulated by multiple pathways, and

targeting and blocking some of these pathways, such as

chemokines and CSF, will achieve the goal.

5.2.1 Chemokine
Chemokines serve an essential role in MDSCs recruitment, and

a variety of drugs targeting chemokines are currently under

investigation. Therefore, MDSCs accumulation can be diminished

by inhibiting cytokine or chemokine receptors on MDSCs. In a

mouse model of BC, the poly (ADP-ribose) polymerase inhibitor

(PARPi) olaparib was shown to inhibit MDSCs migration via the

SDF1a/CXCR4 axis (102). In addition, MDSCs express large

amounts of CXCR2. DNp63 promotes MDSCs recruitment to

primary and metastatic sites through transcriptional activation of

chemokines, such as CXCL2 and CCL2. The use of inhibitors of

CXCR2 (SB 225002) or CCR4 inhibitors (Tocris) or the reduction of

transcription factor DNp63 levels greatly reduces MDSCs
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recruitment and the angiogenesis and metastasis it causes (37).

Another study demonstrated thatlow dosages of entinostat (ENT)

and 5-azacytidine decreased the recruitment of MDSCs by

downregulating CCR2 and CXCR2, correspondingly, and

extended the OS of mice following surgical excision of the

primary tumor (103). Similarly, Silibinin, a natural flavonoid

from Sylibum marianum seeds, can down-regulate tumor-specific

homing of MDSCs by decreasing CCR2 expression on MDSCs

(104). Moreover, neutralization of CXCL1 with antibodies was

observed to prevent the recruitment of senescent lung fibroblast-

mediated G-MDSCs in the MMTV-PyVT recombinant mice (32).

Indeed, by targeting the CCR5-CCL5 interaction, the CCR5

antagonist Maraviroc reduced lung metastases in a preclinical

mouse model of BC (105). Moreover, AMD3100 is an antagonist

for the CXCR4 receptor that diminishes the impact of SDF-1a on

MDSCs recruitment, whereas gemcitabine is a drug that eliminates

MDSCs directly. The accumulation of MDSCs in the TME is

promoted by estrogen-induced production of SDF-1a, an effect

which can be inhibited by AMD3100 or gemcitabinem (106)..

Notably, Chinese medicine can also block MDSCs recruitment

through various mechanisms. The XIAOPI formula led to a

substantial reduction in the quantity of MDSCs in lung tissue by

reducing CXCL1 expression in a mouse model of BC (107).

Baoyuan Jiedu decoction is a traditional Chinese medicine that

inhibits MDSCs recruitment in pre-metastatic niches in the lung via

the TGF-b/CCL9 pathway in BC (108).

5.2.2 CSF
CSF-1R is another major target to inhibit MDSCs recruitment

to tumor sites to constrain tumorigenesis. Mice with p53N-C

tumors had fewer MDSCs after treatment with the mTOR

inhibitor rapamycin. Mechanistically, the accumulation of

MDSCs is mediated by G-CSF, a downstream target gene of the

mTOR pathway. Blocking G-CSF therefore may inhibit MDSCs

accumulation (30). In addition, BMP4, a constituent of the TGF-b
family, inhibits NF-kB function in human and mouse BC to reduce

G-CSF expression (109). Kumar V et al. found that both TAMs and

G-MDSCs were diminished at the tumor site by the combination of

CSF1R and CXCR2 inhibitors. In contrast to the absence of

antitumor activity exhibited by each inhibitor alone, combination

therapy drastically decreased tumor growth (110). However,

depleting MDSCs with anti-Gr1 or anti-G-CSF antibodies

reduced the growth and proliferation of IL-17A-expressing 4T1

tumors but had no impact on control 4T1 tumors (111).

5.2.3 Interleukin
The interleukin family also plays a crucial role in MDSCs

recruitment. In TNBC, Bo Yu et al. proved that IL-6 knockdown

inhibited SMAD3 K20/117Q -induced MDSCs recruitment (41). In

addition, Anakinra, an IL-1 receptor antagonist, was found to

reduce MDSCs and M2 macrophage recruitment in a mouse

model of mammary tumors with PI, but had no significant effect

on M1 macrophages (43). Dominguez C et al. proved that when

combined with docetaxel, a clinical-stage mAb that neutralizes the

chemokine IL-8 (HuMax-IL-8) was shown to reduce the
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recruitment of G-MDSCs at tumor sites (112). Curcumin, a

substance with IL-6 inhibiting function, reduces the production of

IL-6 in BC, thus reducing the number of MDSCs (113).

5.2.4 Others
In addition to the drugs mentioned above, a variety of drugs can

inhibit MDSCs recruitment. Leukadherin-1, a allosteric regulatory

agent of CD11b, leads to reduced tumor CD11b+ MDSCs (114). In

addition, AZD4547, a small molecule inhibitor of tyrosine kinases

targeting fibroblast growth factor receptors (FGFRs), reduces

MDSCs accumulation in carcinoma and lung tissue and

suppresses tumor development and lung metastasis (115). The

Apelin/Apelin receptor signaling pathway, which is independent

from VEGFR signaling pathway, is associated with developmental

angiogenesis. It was found that genetic and pharmacological

inhibition of Apelin led to a massive decrease in G-MDSCs in

tumors, remodeling of TME, reduction of angiogenesis, and

effective inhibition of tumor growth (116). Moreover, MIF

inhibitor sulforaphane also inhibits MDSCs formation (22). F1

antibody to aspartate protease cathepsin D (cath-D) blocks

recrui tment of immunosuppress ive tumor-associated

macrophages M2 and MDSCs and inhibits tumor growth in two

TNBC xenografts (117). In a mouse model of BC, PI-3065, an

inhibitor of phosphatidylinositol 3-kinase d (PI3Kd) signaling

enzyme, was able to indirectly inhibit MDSCs recruitment in the

TME (118). Atovaquone, an antiprotozoal medication that used

treat malaria, decreases the production of ribosomal protein S19

(RPS19) in tumors, thereby decreasing the number of MDSCs and

Tregs (119). Markiewski MM et al. discovered that C5aR1 inhibitor

(C5aRA) therapy reduced tumor-infiltrating MDSCs and peripheral

blood MDSCs in FVB/N Her2/neu transgenic mice (120). Analysis

revealed that inhibiting C3a signaling in conjunction with DOX

therapy substantially reduced G-MDSCs and eosinophils

recruitment, while reducing M-MDSCs recruitment (121).

Above all, the recruitment of MDSCs can be inhibited by a wide

range of medications, according to an extensive corpus of research

on BC. This indicates that research aimed at inhibiting the

recruitment of MDSCs is promising. However, most are still in

the experimental phase, and their clinical efficacy remains unclear.
5.3 Suppressing the immunosuppressive
function of MDSCs

The third strategy for targeting MDSCs: inhibition of the

immunosuppressive function of MDSCs. Studies on the

suppression of MDSCs activity are plentiful in malignant

melanoma and ovarian cancers, but few in BC (122). DC101, an

anti-VEGFR-2 antibody, partially diminishes the suppressive effect

of M-MDSCs on T-cell propagation and decreases the number of

Tregs in both the primary tumor and lung metastases. Remarkably,

ARG-1 can be induced by treatment with DC101. The ARG

inhibitor Nw-hydroxy-nor-Arginine (Nor-NOHA) reduced the

inhibition activity of MDSCs on T-cell proliferation and

diminished the number and extent of lung metastases, but the
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combination with DC101 had little additional effect (123). Chaib M

et al. proved that protein kinase C (PKC) agonists inhibited the

expansion of MDSCs in HPCs and stimulated the differentiation of

M-MDSCs into an APC-like phenotype expressing CDC1-related

markers by activating the p38 mitogen-activated protein kinase

(MAPK) pathway. Functionally, PKC agonists diminished the

inhibitory activity of MDSCs and increased their cross-

stimulatory capacity (124).
5.4 Differentiation of MDSCs to a non-
suppressive immune state

A fourth strategy for targeting MDSCs: promoting the

differentiation of MDSCs into non-immunosuppressive cells.

Effective concentrations of all-trans retinoic acid (ATRA) can

eliminate IMCs by neutralizing high ROS production in cells, and

induce the differentiation of MDSCs (125). In BC, blocking MDSC

expansion with ATRA improves the efficacy of anti-angiogenic

therapy (126). Mechanistically, ATRA significantly and specifically

upregulates glutathione synthase (GSS) and accumulates glutathione

(GSH) in MDSCs, thereby neutralizing the high ROS production in

these cells to induce MDSCs differentiation (125). In addition, the

application of other chemotherapeutic agents also promotes the

differentiation of MDSCs into new cell types that lack

immunosuppressive functions. For example, paclitaxel promotes

the differentiation of MDSCs into DCs in vitro (89); docetaxel

inhibits STAT3 phosphorylation and differentiates MDSCs to M1-

type macrophages (88).

In addition, various studies have been conducted to promote

MDSCs differentiation in BC. Inhibiting the differentiation of M-

MDSCs by utilizing ER inhibitors or anti-IL-34 monoclonal

antibodies can suppress tumor growth by inhibiting M-MDSCs

accumulation and restore tumor chemical sensitivity by promoting

G-MDSCs accumulation (21). Svoronos N et al. found that the Jak1/2

inhibitor Ruxolitinib significantly inhibited M-MDSCs differentiation

and G-MDSCs expansion, and these inhibitory effects were

significantly enhanced by concomitant use of the ERa antagonist

methylpiperidino pyrazole (MPP) (127). Moreover, serine/threonine

protein kinase CK2 inhibitors, which cause differentiation arrest,

significantly reduced the number of G-MDSCs and TAMs (128).

Cyclic di-Guanosine (c-di-GMP) is a ligand for interferon gene

stimulator (STING). Chandra D et al. demonstrated that low

concentrations of c-di-GMP can promote MDSCs maturation to

eliminateMDSCs. The antitumor activity of CD8+ T cells is enhanced

by a Listeria monocytogenes (LM) vaccine expressing the tumor-

associated antigen Mage-b (LM-Mb). The combination of LM-Mb

and c-di-GMP reduces the effect of MDSCs on CD8+ cells and

enhances anti-tumor immunotherapy further (129).

Reprogramming the epigenome is an innovative strategy for

targeting tumor-promoting properties of MDSCs. In combination

with anti-PD-1, anti-CTLA-4, or both, the histone deacetylase

inhibitor ENT significantly reduced the suppressive effect of G-

MDSCs in the TME, increased CD8+ T-effector cells, and ultimately

improved tumor-free survival in a mouse model of HER2/neu

transgenic BC (130). However, the clinical trial of ENCORE 602
Frontiers in Immunology 11
(NCT02708680), which included ENT for TNBC, failed to increase

progression-free survival.

As mentioned previously, MDSCs have been shown to be

associated with bone metastasis from BC. It has been

demonstrated that MDSCs isolated from the tumor-bone

microenvironment differentiate into functional osteoclasts both in

vitro and in vivo, with NO signaling as a key regulatory pathway.

NG-monomethyl-L-arginine acetate (L-NMMA), an inducible NO

synthase (iNOS) inhibitor, inhibited NO signaling and blocked

MDSCs differentiation into osteoclasts (85). Interestingly,

bisphosphonates, a drug that has been used in BC bone

metastases, were discovered to decrease to reduce the number of

bone marrow and peripheral blood MDSCs (131). Additionally, the

combination of anti-Gr1-mediated depletion of G-MDSCs and

zoledronic acid (ZA)-induced osteoclast blockade inhibited the

development of established skeletal metastases (132). Therefore,

targeted inhibition of MDSCs can not only slow down the course of

the primary tumor, but also prevent or delay BC bone metastases

simultaneously. Thus, further appropriate clinical studies to back up

this conclusion are much anticipated.
5.5 Novel drugs

A novel therapy targeting MDSCs based on traditional drugs is

currently under development. The new therapy has various

advantages, such as more efficient drug delivery and lower

incidence of adverse reactions. The relevant new therapies are

summarized in Table 2.
5.6 Targeted MDSCs in combination with
other antitumor therapies

5.6.1 Immunotherapy
Immunotherapy is playing an increasingly important role in

cancer treatment. And MDSCs are the essential immunosuppressive

cells. Therefore, targeting MDSCs in combination with

immunotherapy shows great potential.

Gene-engineered tumor cell derived exosome-like vaccine

(eNVs-FAP) developed by Hu S et al. inhibits tumor progression

by reducing the number of MDSCs, reprogramming TME and

promoting tumor ferrocytosis (142). Another study has shown that

a vaccine against fibroblast growth factor (FGF)-2 also reduced the

number of MDSCs in mice bearing 4T1 mammary tumors (143).

However, an epitope gene vaccine against fibroblast activating

protein (FAP) a enhanced the antitumor immune response in BC

models, but no improvement in antitumor effects was observed,

which may be related to the vaccine-induced elevation of MDSCs

(144). Moreover, the development of monoclonal antibodies

targeting MUC1 has been reported to counteract the oncogenic

effects of MUC1, eliminating MDSCs in TME and ultimately

slowing the progression of BC (145). Researches along these lines

have a promising future as a tumor vaccine.

Combining tumor vaccines with other therapies has also yielded

positive results in research. A triple therapy combines T-cell
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inducible vaccine with PD-1 antagonist and CD40 agonist mAb

leads to a reduction in tumor-infiltrating G-MDSCs and Tregs,

further promoting an active CTL response (146). Geng F et al.

developed a tumor vaccine targeting both the tumor stromal

antigen FAPa and the tumor cell antigen Survivin in BC, which

can effectively inhibit tumor progression, and the combination with

low-dose DOX to clear induced peripheral MDSCs can further

promote the anti-tumor activity of this vaccine (147). Similar results

were obtained in another study combining a liposomal vaccine

containing E75 (a HER-2/neu-derived peptide) with liposomal

DOX (148). Tumor vaccines in combination with chemotherapy,

notably DOX, to eliminate the impact of MDSCs on efficacy is,

therefore, bright and promising for clinical translation.

5.6.2 RT in combination with other treatments
RT is presently one of the primary cancer therapeutic approaches.

RT activates local anti-tumor immunity and non-irradiated, distant

site anti-tumor immunity (distant compartment response) (149).

Immunosuppressive cell types, such as Tregs, M2-like TAMs, and

MDSCs, may be efficiently recruited and expanded by RT.
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It is widely established that MDSCs express PD-L1, and RT has

been shown to elevate PD-L1 expression in MDSCs. Together, RT

and anti-PD-L1 treatment were able to diminish MDSCs

accumulation (150). In one trial, triple therapy with RT, PD-1

blockade and PI3Kad inhibitors slowed tumor growth by reducing

G-MDSCs and increasing cytotoxic CD8+ T cells, converting TME

to PD-1 blockade or other conditions favourable to ICIs (151). In

addition, group V immunomodulatory receptor (VSIR, most widely

known as VISTA) is a co-inhibitory receptor, and VISTA blockade

depleted MDSCs in 4T1 tumor TME when used with RT, whereas

VISTA blockade alone had no such effect. Furthermore,

cyclophosphamide plus RT and dual PD-1/VISTA blockade had a

superior therapeutic effect. This was connected with the activation

of tumor-infiltrating CD8+ T cells as well as the reduction of G-

MDSCs inside the tumor (152).

Studies have been conducted to explore the effects of RT in

combination with a variety of other treatments, but more trials are

still required. Ruiz-Fernández de Córdoba B et al. found that using

intratumoral a-irradiation ablation in the presence of

immunosuppression and CpG inhibitors inhibited the development
TABLE 2 Novel therapies based on traditional drugs are being developed.

name Brief description Main interaction with MDSCs in breast cancer Reference

DOX/IND@NPs A polymeric prodrug nanoparticle based on indocimod
with DOX entrapment

reduced the MDSCs (133)

Tel@PGE Reduces the proportion of MDSCs in TME and
promotes polarization of MDSCs to tumor-killing
antigen-presenting cells

Reduces the proportion of MDSCs in TME and promotes polarization of
MDSCs to tumor-killing antigen-presenting cells

(134)

BAGEL-R848 A Pluronic F127/hyaluronic acid (HA)-based hydrogel
with embedded manganese dioxide (BM) nanoparticles
and TLR7 agonist Reximod (R848) for injection.

Reducing the localization of MDSCs in tumors;
Inducing in situ laser-assisted gelation of hydrogels and achieving the
desired ablation temperature within a short laser exposure time

(135)

RLA/DOX/aGC
NP

A tumor-targeted c (RGDfk) peptide-modified low-
molecular-weight heparin-all-trans retinoic acid
(LMWH-ATRA) micellar nanoparticle (RLA/DOX/
aGC NP) containing the chemotherapeutic drug DOX
and the immune adjuvant a-galactoside ceramide
(aGC)

LMWH inhibits the recruitment of MDSCs, while the hydrophobic
fragment ATRA promotes MDSC depletion by inducing MDSC
differentiation in a whole-brain model of breast cancer

(136)

LMWH-AST/
DOX, LA/DOX
NP

Colloidal low molecular weight heparin-astatin
nanoparticles containing DOX

The hydrophilic LMWH of LA/DOX NPs partially blocked the
adherence of MDSCs to VECs and inhibited their recruitment.
Hydrophobic AST partially blocked the NF-kB and STAT3
inflammatory signaling pathways in MDSCs and reduced the production
of downstream inflammatory factors.AST was effective in reducing ROS
levels in MDSCs.

(137)

pCCL2 traps Plasmid DNA encoding a CCL2 trap reduced the number of immunosuppressive MDSCs;
facilitate PD-L1 blockade immunotherapy

(138)

immuneCare-
DISC (iCD)

releasing gemcitabine; cancer vaccines suppress immunosuppressive MDSCs in the tumor and spleen (139)

DTX@VTX NP A nucleus-shell small molecule nanodrugs DTX@VTX
NP (VTX: VTX-2337 or Motolimod)

Reversal of the M2 phenotype of immunosuppressed TME to M1
phenotype by depletion of MDSCs;
Synergistic action with PD-L1 nano-inhibitors BMS-1 NPs to remodel
immunosuppressed TME and enhance the antitumor effect of breast
chemoimmunotherapy

(140)

Pseudoneutrophil
cytokine sponges
(pCSs)

Plasma membrane encasing neutrophils with
phenotype and morphology similar to G-MDSCs

Disrupts the expansion of MDSCs and reverses immune tolerance;
increases the number of tumor-infiltrating T lymphocytes and restores
their anti-tumor function

(141)
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of mammary carcinoma in mice (153). In an immunocompetent

model, leukadherin-1 therapy resulted in a decrease in tumor MDSCs

and demonstrated improved antitumor capacity in combination with

RT or paclitaxel (114). Moreover, a tyrosine kinase inhibitor,

cabozantinib, was found to reduce the number of MDSCs.

However, in a preclinical 4T1 BC model, the combination of

cabozantinib and RT did not benefit tumor growth control (154).
6 Conclusions

These proofs support the theory that the presence of MDSCs is

increased in BC patients and that they have a vital position in the

immunological resistance phenotype of the disease. Due to the

heterogeneity of MDSCs, it is necessary to develop assays that can

more accurately characterize subpopulations of MDSCs in BC

patients and to measure MDSCs in peripheral circulation and TME

at different stages of BC progression in different subtypes to better

understand their production, amplification, and function in

peripheral blood and TME, and to observe the relationship

between MDSCs and BC stage progression. This review will be

utilized to support the practical application of research findings

and serve as a foundation for the diagnosis and treatment of

targeted MDSCs. Through a complex mechanism, MDSCs in BC

promote tumor progression and metastasis. Not only do they exert

immunosuppressive effects, weakening anti-tumor immunity to

promote BC growth and metastasis, but they also diminish the

efficacy of other therapeutic approaches. Diverse MDSCs-targeted

therapies (as immunotherapy or in combination with conventional

therapies, including chemotherapy and RT) are presently being

evaluated for their efficacy in BC preclinically in order to maximize

its anti-tumor effects. We believe that an improved understanding of

the clinical relevance of MDSCs will encourage the research and

development of MDSCs-targeted therapies that will enhance the

prognosis of BC patients.
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