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squamous cell cancer
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Long Li2*, Haoran Lin1* and Yue Yu1*

1Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University,
Nanjing, China, 2Department of Thoracic Surgery, Nanjing Gaochun People’s Hospital, Nanjing, China
Background: Current paradigms of anti-tumor therapies are not qualified to

evacuate the malignancy ascribing to cancer stroma’s functions in accelerating

tumor relapse and therapeutic resistance. Cancer-associated fibroblasts (CAFs)

has been identified significantly correlated with tumor progression and therapy

resistance. Thus, we aimed to probe into the CAFs characteristics in esophageal

squamous cancer (ESCC) and construct a risk signature based on CAFs to predict

the prognosis of ESCC patients.

Methods: The GEO database provided the single-cell RNA sequencing (scRNA-

seq) data. The GEO and TCGA databases were used to obtain bulk RNA-seq data

and microarray data of ESCC, respectively. CAF clusters were identified from the

scRNA-seq data using the Seurat R package. CAF-related prognostic genes were

subsequently identified using univariate Cox regression analysis. A risk signature

based on CAF-related prognostic genes was constructed using Lasso regression.

Then, a nomogram model based on clinicopathological characteristics and the

risk signature was developed. Consensus clustering was conducted to explore

the heterogeneity of ESCC. Finally, PCR was utilized to validate the functions that

hub genes play on ESCC.

Results: Six CAF clusters were identified in ESCC based on scRNA-seq data, three

of which had prognostic associations. A total of 642 genes were found to be

significantly correlated with CAF clusters from a pool of 17080 DEGs, and 9

genes were selected to generate a risk signature, which were mainly involved in

10 pathways such as NRF1, MYC, and TGF-Beta. The risk signature was

significantly correlated with stromal and immune scores, as well as some

immune cells. Multivariate analysis demonstrated that the risk signature was an

independent prognostic factor for ESCC, and its potential in predicting

immunotherapeutic outcomes was confirmed. A novel nomogram integrating

the CAF-based risk signature and clinical stage was developed, which exhibited

favorable predictability and reliability for ESCC prognosis prediction. The

consensus clustering analysis further confirmed the heterogeneity of ESCC.
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Conclusion: The prognosis of ESCC can be effectively predicted by CAF-based

risk signatures, and a comprehensive characterization of the CAF signature of

ESCC may aid in interpreting the response of ESCC to immunotherapy and offer

new strategies for cancer treatment.
KEYWORDS

esophageal squamous cell carcinoma, fibroblasts, risk signature, tumor immune
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1 Introduction

Esophageal cancer (EC) is a prevalent form of cancer, ranking

eighth among all cancer types, and is also the sixth most common

cause of cancer-related deaths globally (1). It primarily consists of

two major subtypes: esophageal squamous cell cancer (ESCC) and

esophageal adenocarcinoma (EAC). ESCC accounts for the majority

of esophageal cancer cases worldwide with a higher incidence in

East Asia and Africa. On the other hand, esophageal

adenocarcinoma (EAC) is more prevalent in many developed

countries (2). Despite the great achievements in the management

o f ESCC, inc lud ing surge ry , endoscop i c r e s ec t ion ,

chemoradiotherapy, and immunotherapy, this aggressively

malignant tumor still extremely threatens patients’ health

attributed of its heterogeneity (3). Limited understanding of its

molecular etiology further makes up for the poor prognosis (4).

Thus, exploring the properties and identifying novel biomarkers for

ESCC is urgently needed.

Targeted therapies have made remarkable strides in the

management of diverse neoplastic conditions, such as esophageal

squamous cell carcinoma (ESCC). Immunotherapy, encompassing

the utilization of immune checkpoint inhibitors (ICIs)/

immunomodulators, therapeutic vaccines, monoclonal antibodies,

and adoptive cellular immunotherapy, constitutes a novel approach

in the management of esophageal cancer (EC). Of noteworthy

importance, ICIs have demonstrated efficacy in the management

of melanoma and non-small cell lung cancer, and have exhibited

encouraging outcomes in the treatment of advanced ESCC (5). An

overarching conclusion that the tumor microenvironment (TME) is

a multicellular context containing complex stromal-tumor

interactions has been well established (6). The induction of

proliferation, angiogenesis, inhibition of apoptosis, immune

system suppression, and evasion of immune surveillance are

intrinsically linked to TME. The tumor cells and surrounding

TME cells constantly adapt to the new conditions and promote

tumor growth. TME creates a niche for residing and interacting

cancer cells with their surrounding endothelial, and immune cells as

well as fibroblasts. The reciprocal communication between cancer

cells and stromal cells as well as immune cells induces changes in

the cellular components of TME, which predisposes cancer cells to

metastasis (7, 8). CAFs are a prominent stromal component in the

tumor microenvironment (TME) and are present in varying types

of solid tumors, making them an important target for treatment (9).
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Through various mechanisms, activated CAFs can facilitate tumor

growth, angiogenesis, invasion, and metastasis, as well as

e x t r a c e l l u l a r ma t r i x (ECM) r emode l i n g and ev en

chemoresistance. CAFs communicate with immune cells that

infiltrate the tumor microenvironment (TIME), as well as other

immunological constituents, by releasing a plethora of cytokines,

growth factors, chemokines, exosomes, and other effectual

molecules. This phenomenon leads to the molding of an

immunosuppressive TIME, which facilitates cancer cells to elude

immune surveillance (10). All cellular and non-cellular constituents

of the tumor microenvironment can engage in intricate and tightly

regulated reciprocal dialogues, thereby promoting cancer initiation,

progression, and resistance to therapy. A comprehensive

comprehension of the crosstalk between the microenvironment

and cancerous cells is indispensable for devising innovative

therapeutic strategies (11). CAFs have been identified in divergent

types of tumors, including breast cancers and esophageal squamous

cancer (12, 13). Accumulating evidence has confirmed that CAFs-

specific signatures can be utilized for prognosis prediction in colon

cancer ascribing to several markers expressing in CAFs correlated

with prognosis (14). Recently, the interplay between CAFs and the

tumor immune microenvironment (TIME) has been recognized as

a crucial element in driving tumor progression (10). A study has

revealed that primary oral squamous cell carcinoma (OSCC)

tumors exhibit a negative correlation between WNT2+ cancer-

associated fibroblasts (CAFs) and active CD8+ T cells. The use of

anti-WNT2 monoclonal antibody has been shown to significantly

restore antitumor T-cell responses within tumors and increase

active dendritic cells (DCs) in both mouse OSCC and colorectal

cancer (CRC) syngeneic tumor models, thereby enhancing the

efficacy of anti-PD-1 treatment. Direct interference with CAFs-

derived WNT2 has been found to restore DC differentiation and

DC-mediated antitumor T-cell responses. Mechanistic analyses

have further demonstrated that CAFs-secreted WNT2 suppresses

the DC-mediated antitumor T-cell response through the SOCS3/p-

JAK2/p-STAT3 signaling cascades. Targeting WNT2 might

enhance the ICI efficacy and represent a new anticancer

immunotherapy (15). Thus, CAFs were frequently targeted in

anti-tumor immunotherapy (16). Yet, the mechanisms by which

CAFs regulate the antitumor immune responses in solid tumors are

currently not fully understood.

Recent progresses in single-cell sequencing has shed new light

on exploring biological systems with revolutionary solutions (17).
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Different from bulk sequencing, which focuses on averaged data,

single-cell sequencing, including transcriptomics, epigenomics,

genomics, proteomics and metabolomics sequencing, is a splendid

tool to illuminate the cellular and molecular landscape at the single-

cell level (18). Single-cell sequencing, besides, has become

indispensable in decomposing tissues into cell type or cell states

and dissecting the cellular heterogeneity (19). Through single-cell

sequencing, conventional dendritic cell (cDC) and distinct

macrophage subsets were identified exerting enormous impact on

mediating cellular cross-talk in the tumor microenvironment,

providing myeloid-targeted immunotherapies for colorectal

patients (20). One recent research has offered a novel insight

complex cellular architecture and potential therapeutic measures

for patients diagnosed with breast cancer (21). Breaking down the

complexity of several tumors and characterizing heterogeneous

phenotypic states in extraordinary detail (20), single-cell

sequencing is quite suitable for ESCC analyses.

Numerous studies have been conducted on CAFs in esophageal

squamous cancer (ESCC), but the systematic characteristics of

CAFs and their correlation with ESCC prognosis and

immunotherapy response are not yet fully comprehended. In this

study, we obtained single-cell RNA sequencing (scRNA-seq) data

and transcriptome data from accessible databases to differentiate

CAF subclusters and establish a CAF-based risk signature for ESCC.

We evaluated the clinical significance of the CAF-based signature

and further analyzed the immune landscape and responsiveness to

immunotherapy associated with it. Finally, we developed a novel

nomogram that combines the CAF-based risk signature with

clinicopathological features to facilitate the clinical use of CAF

features in the prognosis of ESCC. Our findings could provide novel

insights into the pathophysiology of ESCC, bringing about

personalized treatments and improved outcomes for patients

with ESCC.
2 Methods

2.1 Data collection and processing

ESCC scRNA-seq data was acquired in Gene Expression

Omnibus (GEO) database (accession number GSE191756). We

screened out single cells with any gene expressed in fewer than

three cells or those expressing fewer than 250 genes. The percentage

of rRNA and mitochondria was then calculated with the

PercentageFeatureSet function in the Seurat R package (22).

Consequent ly , 12118 cel l s were tota l ly obtained for

subsequent analysis.

We further collected transcript data, single-nucleotide variants

(SNV), copy number variants (CNV), and corresponding clinical

data of ESCC from The Cancer Genome Atlas (TCGA) database.

Samples lacking outcome status or survival data were excluded and

94 ESCC samples were obtained, which were utilized for external

validation. GSE53624 data with 119 tumor samples and 119 normal

ones was used as the training cohort after abandoning samples

without follow-up acquired from Gene Expression Omnibus (GEO)

database (The clinical characteristics of both the training cohort and
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the test cohort were exhibited in Supplementary Tables). Based on

the literature, ten cancer-associated pathways (Cell Cycle, NRF1,

MYC, NOTCH, HIPPO, PI3K, TP53, PI3K, WNT, and TGF-Beta)

were identified and analyzed about their gene expression profiles in

our dataset.
2.2 CAF definition

The scRNA-seq data of ESCC was re-analyzed using the Seurat

package, with the aim of providing a systematic characterization of

the CAF signature. To start the data preprocessing, cells with less

than 250 or more than 6000 expressed genes were removed, and the

remaining expressed genes were log-normalized. Next, the

FindIntegrationAnchors function was utilized. To reduce the

dimensionality of the data, the t-distributed Stochastic Neighbor

Embedding (tSNE) method was applied, utilizing a resolution of 0.1

and selecting 30 principal components. The tSNE method

employed was non-linear in nature. To classify the single cells

into various subgroups, we utilized the FindNeighbors and

FindClusters functions (dim = 30 and resolution = 0.1).

Additionally, we performed tSNE dimensional reduction using

the RuntSNE function. Fibroblasts were annotated according to

four marker genes, including PDGFRB, ACTA2, FAP, and

NOTCH3. Subsequently, the fibroblasts were re-clustered using

the FindClusters and FindNeighbors functions. To define the

marker genes for each CAF cluster, we used the FindAllMarkers

function with a comparison between different clusters (minpct =

0.35, logFC = 0.5, and adjust p-value < 0.05). We utilized the

CopyKAT R package to analyze the CNV characteristics of the CAF

clusters and distinguish them from tumor cells and normal ones.

Finally, Kyoto Encyclopedia of Genes and Genomes (KEGG)

enrichment analysis was conducted on the marker genes using

the clusterProfiler package (23).
2.3 Identification of hub genes based
on CAF

Differentially expressed genes (DEGs) between normal and tumor

tissue were identified using the limma package (24, 25), based on

criteria of |log2(FoldChange)|>1 and a false discovery rate (FDR)<0.05.

Next, the correlations between CAF clusters and DEGs were evaluated,

and key CAF-related genes with p<0.01 and cor>0.4 were identified. To

identify prognosis-related genes, the survival package was utilized to

conduct univariate Cox regression analysis (26). The least absolute

shrinkage and selection operator (lasso) was used to reduce the number

of genes (27).Multivariate Cox regression analysis was conducted using

the stepwise regression method to establish a CAF-based risk signature,

which was calculated using the formula: 0.093*ANGPTL7 + 0.15*C6 +

0.121*CSRP1+-0.08*EXPH5 + 0.12*F2RL2 + 0.014*KCNMA1

+-0.373*MAGEC3 + 0.143*MAMDC2+-0.188*SLC4A9. The patients

were classified into low- and high-risk groups using zero-mean

normalization. The predictive value of the risk signature was

evaluated using the timeROC package to perform receiver operating

characteristic curve (ROC) analysis. The results demonstrated that the
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risk signature had significant predictive value for patient prognosis. In

summary, our analysis provides important insights into the molecular

mechanisms underlying tumor development and highlights the

potential of CAF-related genes as prognostic biomarkers for

cancer patients.
2.4 A novel nomogram constructed based
on the risk signature

After conducting univariate and multivariate Cox regression

analyses based on the risk signature and clinicopathological features

(24, 28), a novel nomogram was constructed to predict the

prognosis of ESCC using variables with p<0.05 in the multivariate

Cox model. The predictive accuracy of the model was evaluated by

generating a calibration curve.
2.5 Immune landscape analysis

The correlation between the risk signature and the tumor

immune microenvironment (TIME) was comprehensively

assessed using several algorithms, including CIBERSORT, EPIC,

MCPCOUNTER, and TIMER (29). Stromal scores, immune scores,

and estimate scores (stromal scores + immune scores) were

calculated using the “estimate” R package to evaluate differences

in the tumor microenvironment of patients (30, 31). Besides, the

proportions of 22 immune cell subtypes were estimated using the

CIBERSORT algorithm based on the GSE53624 cohort. The

correlation between genes comprising the signature and immune

score were further explored to illuminate the great impact those

genes exert on immune-related functions.
2.6 Response to immunotherapy

Anti-PD-1 or anti-PD-L1 checkpoint inhibition therapy has

gained increasing attention as a crucial component of

immunotherapy. Transcriptomic data as well as corresponding

clinical data from patients who received anti-PD-L1 therapy from

the IMvigor210 cohort were collected to evaluate the performance

of the risk signature in predicting responsiveness to

immunotherapy (immune checkpoint blocks). Additionally,

transcriptomic data from the GSE78220 cohort, which included

melanoma patients who received anti-PD-1 checkpoint inhibition

therapy before treatment, were downloaded.
2.7 Consensus clustering analysis and
immune infiltration

To further probe into the heterogeneity of ESCC, all ESCC

patients were separated into different clusters according

to the expression of CAF-related genes with the R package
Frontiers in Immunology 04
‘ConsensusClusterPlus’ (22). Differences in survival, TIME, and

immune checkpoints were evaluated among subgroups using the

same methodology as previously employed. The immune landscape

of ESCC patients based on different clusters was demonstrated in

the form of heatmap.
2.8 RNA isolation and quantitative
RT-PCR assay

Total RNA was isolated from ESCC cells or tissues using TRIzol

reagent (Thermo Fisher Scientific, Waltham, MA, USA). The

complementary DNA (cDNA) was synthesized as per the

manufacturer’s instructions, utilizing the RevertAid™ First Strand

cDNA Synthesis Kit (Thermo Fisher Scientific). qRT-PCR was

performed with SYBR Green PCR kit (Takara Bio, Otsu, Japan)

on a StepOne Real-Time PCR system (Thermo Fisher Scientific).

The relative gene expression levels were quantified by employing

the 2-△△CT method.
2.9 Statistical analysis

All statistical analyses were performed using R software (version

4.1.0). The Wilcoxon test was used for comparing two groups, while

Spearman or Pearson correlation was used for correlation matrices.

Survival differences through K-M curves were assessed using the

Log-rank test, where statistical significance was defined as p-value

< 0.05.
3 Results

3.1 CAFs screening based on
scRNA-seq samples

The flow-process diagram of our study was depicted in Figure 1.

After initial screening, 18024 cells were totally obtained based on

the scRNA-seq data. As was shown in Figure S1, the details of data

preprocessing were demonstrated. After conducting log-

normalization and dimensionality reduction, 32 subpopulations

were obtained (Figure 2A). As presented in Figure 2B, six CAF

populations were further identified with four marker genes

(FDGFRB, FAP, ACTA2, and NOTCH3). The proportions of the

six clusters in each cohort were then calculated and the results were

illustrated in histograms (Figure 2C). Moreover, KEGG analysis

illuminated that the DEGs (which were obtained using R package

‘FindVariableFeatures’) were significantly enriched in various

pathways, including tight junction, complement and coagulation,

focal adhesion and so on (Figure 2D). Additionally, distributional

differences between tumor and normal cells in the six CAF clusters

were presented in Figure 2E. In addition, the expression of TOP 5

DEGs were respectively exhibited in heatmap (Figure 2F), bubble

diagram (Figure 2G), and volcano plot (Figure 2H).
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3.2 The exploration of cancer-related
pathways in CAF

To probe into the correlations between tumor progression and

the CAF clusters, we explored the features of ten tumor-related

pathways based on the six CAF clusters. GSVA scores of these

divergent pathways were estimated based on various CAF clusters,

and the results were depicted in Figure 3A. Significant differences

about the ratio of malignant cells were obtained in CAF_0 and

CAF_4, where the malignant cells accounted for a few proportions.

By contrast, the ratio of malignant cells was remarkably higher

among CAF_1, CAF_2, CAF_3, and CAF_5 (Figure 3B). Besides,

slight differences were identified after performing the GSVA

analysis of these tumor-related pathways between non-malignant
Frontiers in Immunology 05
and malignant cells in each CAF cluster (Figures 3C-F). (GSVA

scores analysis based on CAF_0 CAF_1 was shown in Figures

S2A, B)

Furthermore, the ssGSEA score of the marker genes (the TOP 5

DEGs obtained in Figures 2F-H) were analyzed in each CAF cluster

based on the GSE53624 cohort to illustrate the relationships

between the CAF clusters and crucial clinicopathological

characteristics. Interestingly, tumor samples were found having

higher scores compared with normal ones only in CAF_0 and

CAF_3, while among the other clusters, normal samples gained

significantly higher scores (Figure S2C). In addition, ESCC samples

of GSE53624 cohort were divided into high-and-low score groups

according to the optimal cut-off value with survminer R package. In

the CAF_2, CAF_4, and CAF_5 clusters, samples in the low-CAF
FIGURE 1

The flow chart of this study.
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score subgroup shared a more favorable prognosis compared with

those in high-CAF subgroup. CAF_0, CAF_1, and CAF_3, however,

were identified not associated with the prognosis of ESCC

(Figure S2D).
3.3 Identification of hub genes correlated
with CAF

Firstly, DEGs were screened out between normal and tumor

samples to establish a risk signature. As depicted in Figure 4A, 17080

DEGs were totally obtained, with 7556 down-regulated and 9524 up-

regulated DEGs. Among them, a total of 642 genes were identified

significantly related with those prognosis-related CAF clusters

(Figure 4B). After univariate Cox regression analysis, the prognosis

of each gene was evaluated, with 8 genes being identified related to

protective factors and 18 genes correlated with risk values. Lasso Cox

regression analysis was then performed to reduce the number of genes

(Figure 4C). Furthermore, the stepwise regression method was utilized

to develop the risk signature after performing multivariate Cox

regression analysis. The signature was composed with nine genes

(Figures 4F, G), namely complement C6, MAM domain containing

2 (MAMDC2), cysteine- and glycine-rich protein 1 (CSRP1),

coagulation factor II thrombin receptor like 2 (F2RL2), angiopoietin

like 7 (ANGPTL7), potassium calcium-activated channel subfamily M
Frontiers in Immunology 06
alpha 1 (KCNMA1), exophilin 5 (EXPH5), solute carrier family 4,

sodium bicarbonate cotransporter, member 9 (SLC4A9), and MAGE

family member C3 (MAGEC3). And the risk model formula is as

follows: RiskScore=“0.093*ANGPTL7 + 0.15*C6 + 0.121*CSRP1

+-0.08*EXPH5 + 0.12*F2RL2 + 0.014*KCNMA1+-0.373*

MAGEC3 + 0.143*MAMDC2+-0.188*SLC4A9”. The risk score of

each sample was calculated using z-mean normalization, and the

patients were then separated into high-and-low-risk groups. The

Kaplan-Meier survival analysis exhibited that patients in high-risk

groups encountered with worse prognosis compared with those in

low-risk groups both in GSE53624 (Figure 4D) and TCGA cohorts

(Figure 4E). Additionally, both the GSE53624 and TCGA cohorts

exhibited satisfying AUC values of the model, revealing that the

predictive power of the signature was excellent. The last, the

distribution of patient survival status, risk score, and expression of

hub genes in GEO and TCGA cohorts were depicted in Figure S3.
3.4 Independent risk factors recognition
and nomogram construction

To improve the accuracy of our predictive model, we

incorporated clinicopathological characteristics and the risk score

through univariate and multivariate Cox regression analyses. Our

multivariate analysis revealed that the risk signature was the most
B

C D E

F G H

A

FIGURE 2

The identification of CAF clusters according to scRNA data of ESCC patients. (A) tSNE plots of distribution of 32 clusters and fibroblasts-based
marker genes expression. (B) tSNE plots of distributions of five fibroblasts after clustering. (C) Subgroups in cancer and adjacent tissue and
proportion as well as cell number calculation. (D) KEGG analysis of five fibroblasts subgroups. (E) tSNE distribution of malignant and non-malignant
cells predicted by copycat package. (F) Heatmap of the top5 marker gene expression of subgroups. (G) Bubble diagram of the top5 marker gene
expression of subgroups. (H) Volcano plot of the top5 marker gene expression of subgroups.
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significant independent prognostic factor for ESCC, with a p-value

of less than 0.001 (Figures 5A, B). We have developed a new

nomogram that incorporates T-stage, N-stage, and the risk score

(shown in Figure 5C). Through calibration plot analysis, this

nomogram was found to have strong predictive power for actual

survival outcomes (Figure 5D). The TimeROC analysis in the

TCGA cohort has confirmed that the area under the curve (AUC)

of both the nomogram and risk score outperformed other

indicators (Figure 5E).
3.5 Pathway enrichment analysis

To explore the fundamental functions those DEGs play in

initiation and progression of ESCC, Kyoto Encyclopedia of Genes

and Genomes (KEGG) and Gene Ontology (GO) analysis were

conducted. As shown in Figures 6A–E, the up-regulated genes were

most enriched in base excision repair, cell cycle, and DNA

replication, while the down-regulated genes were significantly

correlated with arachidonic acid metabolism, calcium signaling

pathway, and histidine metabolism. Likewise, the results of GO

analysis were presented in Figures 6B-D. Furthermore, Gene Set

Enrichment Analysis was conducted based on the nine genes

involved in the risk signature. The results illustrated that 7

pathways were remarkably associated with these nine genes
Frontiers in Immunology 07
(Figures 6F, G). Interestingly, olfactory transduction was

positively correlated with the genes except for EXPH5, MAGEC3,

and SLC4A9, which were identified to have protective values in

ESCC, indicating that olfactory transduction might suppress the

immigration and progression of ESCC.
3.6 Immune infiltrations landscape
and relationship between risk
genes and immunity

After conducting an investigation into the landscape of immune

and stromal cell infiltrations in both low- and high-risk groups,

Figure 7A demonstrated that patients in the high-risk group exhibit

higher proportions of immune and stromal cell infiltrations when

compared to those in the low-risk group. Besides, the immune cells

proportions between the low-and-high-risk groups were estimated

using the CIBERSORT algorithm. It was found that the high-risk

group had higher proportions of resting memory CD4 T cells,

Macrophages (M2), and resting mast cells, while naive B cells were

more enriched in low-risk group (Figure 7B). Figure 7C exhibited

the results of immune-related functions differences between high-

and-low-risk groups.

Additionally, the relationship between risk genes and immunity

was probed into. On the one hand, Figures 7D–H demonstrated
A

B D

E F

C

FIGURE 3

The characteristics of tumor-associated pathways in CAF clusters. (A) Heatmap of 10 tumor-associated pathways enriched in CAF cells.
(B) Comparison between each cluster based on proportions of malignant and non-malignant cells. Comparison of each pathway between malignant
and non-malignant cells based on GSVA score in CAF_0 (Figure S2A), CAF_1 (Figure S2B), CAF_2 (C), CAF_3 (D), CAF_4 (E), CAF_4 (F). (Wilcox. Test,
*P < 0.05; **P < 0.01; ***P < 0.001; ns, not significant.).
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that the protective genes (including EXPH5, MAGEC3, and

SLC4A9) were found negatively correlated with stromal score,

immune score, and estimate score. On the other hand, the risk

genes (including PR1, F2RL2, KCNMA1, and MAMDC2) were

identified positively correlated with divergent immune cells

(Figures 7F, I). Finally, the reciprocal communication between the

75 immune-related genes and the nine model genes were displayed

in Figure 7G.
3.7 Response prediction of risk signature
to immunotherapy

Under the circumstances that T-cell immunotherapy has gained

great achievements in recent years, we performed the assessment of

prognostic value of our signature for immune-checkpoint therapy

in GSE78220 and IMvigor210 cohorts. Divergent degrees of

responsiveness of anti-PD-L1 receptor blockers were identified in

the 348 patients from the IMvigor210 cohort, including partial

response (PR), complete response (CR), progressive disease (PD),

and stable disease (SD). As depicted in Figures 8A-C, patients in the

high-risk group accounted for more proportions in PD/SD, and had
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worse prognosis than those in the low-risk group. Besides, SD/PD

patients tended to gain higher risk scores than CR/PR patients.

However, significant survival differences were identified neither in

Stage I+II nor in Stage III+IV patients between the different risk

subgroups (Figures 8D, E). To validate our findings, the GSE78220

cohort was enrolled for further analysis. Corresponding with the

results from IMvigor210, patients who achieved partial or complete

response had lower risk scores and were less likely to be in the high-

risk group (Figures 8F-H).
3.8 Consensus clustering and
immune infiltrations

Moreover, unsupervised consensus clustering was conducted to

explore molecular subtypes based on the expression of CAF-related

genes comprising the risk signature. With k = 3 deemed as the

optimal clustering stability, patients in GSE53624 cohort were

grouped into three clusters (Figure 9A). The ridge plot exhibited

the distribution of various clusters (Figure 9B). Besides, as presented

in Sankey diagram (Figure 9D), Cluster 1(C1) and Cluster 3(C3)

made up the low-risk group while the high-risk group was
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FIGURE 4

A novel risk signature constructed based on several CAF-related genes. (A) Volcano plot of differentially expressed genes between tumor and normal
samples in GSE53624 cohort. (B) Volcano plot of prognosis-correlated genes obtained by univariate Cox regression analysis. (C) Each independent
variable’s trajectory and distributions for the lambda. (D) K-M and ROC curves of the risk signature in GSE53624 cohort. (E) K-M and ROC curves of
the risk signature in TCGA cohort. (F) The multivariate Cox coefficients for each gene in the risk signature. (G) Circle plot showing the multivariate
Cox multivariate Cox.
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comprised of Cluster 2 (C2) and Cluster 3 (C3). Subsequent survival

analysis illustrated those patients in the C1 group had the most

favorable prognosis, while patients in the C3 group had the worst

clinical outcomes (Figure 9C). The immune landscape based on

different clusters were shown in heatmap (Figure 9E), which

indicated that C2 cluster beard the highest immune cell

infiltrations. The TME scores of varying clusters were then

calculated, revealing that C2 cluster had the highest immune,

stromal, and estimate score as well as lower tumor purity than

the other clusters. (Figures 9F-I). After applying the immune

checkpoints inhibitors analysis, it was identified that C2 cluster

was significantly correlated with BTLA, CTLA4, CD48, and so on,

suggesting that patients involved in the C2 group might benefit

from immunotherapy, especially anti-PD-1 receptor blockers.
3.9 Drugs sensitivity

After comparing the efficacy of various chemotherapeutic

agents across different clusters, we discovered that patients

belonging to cluster 2 (C2) exhibited elevated IC50 values for

chemotherapeutic medications such as Bosutinib, Gefitinib, and

AICAR. Additionally, patients in cluster 1 (C1) were observed to be

more receptive to AMG.706, IPA.3, and the like, while those in
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cluster 3 (C3) demonstrated poorer response rates to the majority of

chemotherapeutic treatments (Figure 10).
3.10 The experiment of genes involved in
the risk signature

To explore potential ESCC cancer risk-related genes, four genes

involved in the risk signature were selected for further validation in

ESCC patients. As demonstrated in Figure 11, F2RL2 exhibited

elevated expression levels in tumors, whereas SLC4A9, EXPH5, and

MAGEC3 exhibited significantly reduced expression levels in

tumors. These distinctions align with our bioinformatic findings,

suggesting that these genes may serve as innovative biomarkers for

early ESCC diagnosis.
4 Discussion

The tumor microenvironment, as well known, encompasses the

non-cancerous cells and components that are found within a tumor,

along with the molecules that they produce and release (32).The

continuous interactions between tumor cells and the tumor

microenvironment are crucial in determining the tumor’s
B
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FIGURE 5

Development of a novel nomogram integrating the risk signature and several clinicopathologic features. (A) Results of univariate Cox regression
analysis based on risk score and clinicopathologic features. (B) Results of multivariate Cox regression analysis based on risk score and
clinicopathologic features. (C) Construction of the nomogram integrating the T,N-stage clinical stage and risk score. (D) Calibration curves for 1, 2,
and 3 years of nomogram. (E) Evaluation of predictive capacity of nomogram and clinicopathologic features by time-ROC analysis. (*P < 0.05; **P <
0.01; ***P < 0.001).
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initiation, progression, metastasis, and response to therapies (33).

Numerous studies have provided compelling evidence to support

the idea that there is a dynamic crosstalk between tumor cells and

stromal cells, which plays a critical role in tumor progression (34).

By understanding the mechanism of this interaction, there is an

opportunity to develop enhanced therapeutics that target multiple

components of the TME simultaneously, ultimately increasing the

likelihood of favorable patient outcomes (35). Considering that

cancer-associated fibroblasts (CAFs) have been identified linked

with tumor initiation and progression (36), a comprehensive

exploration on characterization and classification of CAFs of

ESCC via scRNA-seq data was performed. Six distinctive CAF

clusters were identified, which might exert enormous influence on

divergent biological regulation of the TME. Accumulating evidence

has confirmed that CAF-related gene signature has great prognostic

value in ESCC (37, 38). Correspondingly, three clusters in our data

were found significantly associated with ESCC prognosis. After

analyzing the tumor-related pathways based on the CAF clusters,

HIPPO, NOTCH, and RAS were identified significantly enriched in

malignant parts in CAF_2, CAF_3, CAF_4, and CAF_5 clusters. It

has been revealed that HIPPO and RAS signaling pathways can

impel the tumor proliferation and immigration in ESCC (39, 40). A

recent study has illuminated that via Notch signaling pathway

METTL3-mediated m6A mRNA modification can propel

esophageal cancer initiation and progression (41). Besides, it has
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been discovered that a depletion of PARK2 promotes the

progression of esophageal squamous cell carcinoma (ESCC) via

the Hippo/YAP axis, whereas overexpression of PARK2 suppresses

tumor progression of ESCC through the Hippo signaling pathway.

Consequently, as a newfound regulator of Hippo signaling, the

manipulation of PARK2 activity or gene expression levels may

prove to be a promising strategy for treating esophageal cancer (39).

According to the genes included in the CAF clusters which were

identified significantly correlated with ESCC prognosis, a novel risk

signature based in CAFs were established. Our model comprised of

6 risk genes (C6, MAMDC2, CSRP1, F2RL2, ANGPTL7, and

KCNMA1), and 3 protective genes (EXPH5, SLC4A9, and

MAGEC3). It has been revealed that ANGPTL7 had an excellent

performance as a surrogate marker of microvascular invasion on

hepatocellular carcinoma (42). Besides, several genes (including

MAMDC2, F2RL2, and KCNMA1) were enrolled as biomarker for

the prognosis of varying cancers (43–45). It has been confirmed that

MAGEC3 can stimulate cancer metastasis via intriguing epithelial-

mesenchymal and immunosuppression in ESCC (46). The GSEA

analysis was then applied, demonstrating that protective genes were

enriched in olfactory transduction, while risk genes were

remarkably associated with other pathways, such as vascular

smooth muscle contraction, dilated cardiomyopathy, colorectal

cancer and so on. Interestingly, PLK1 has been confirmed suitable

for cancer therapy due to its function in regulating contraction of
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FIGURE 6

Gene Set Enrichment Analysis (GSEA) (A) Gene Set Enrichment Analysis of up-regulated and down-regulated genes (B) GO-BP analysis (C) GO-CC
analysis (D) GO-MF (E) KEGG analysis (F) Heatmap exhibiting enrichment score for key pathways based on the hub genes. (G) Gene-pathway
correlation heatmap.
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postmitotic smooth muscle cells (47). Moreover, F2RL2 was

identified significantly correlated with initiation and progression

of colorectal cancer (48). Several researches suggested that high

burden of doxorubicin can threaten cancer patients’ health owing to

dilated cardiomyopathy (49). Furthermore, the novel signature was

confirmed to have excellent prognostic value in ESCC after applying

TCGA ESCC cohort for external validation. After categorizing the

patients into high- and low-risk groups based on the median risk

score, the subsequent analysis revealed that the low-risk group had a

significantly better prognosis than the high-risk group.

Additionally, both univariate and multivariate Cox regression

analyses verified that the risk score was an independent predictor

of overall survival (OS). A nomogram was constructed based on the

risk signature, which displayed a high degree of consistency

between the predicted and observed results for the OS of ESCC

patients. Consequently, the study’s findings illustrated that the risk

signature created was a dependable tool for accurately predicting

the prognosis of ESCC patients. With the risk signature, earlier

diagnosis and therapy can be received in ESCC patients. The

identified CAF-related gene signature provides a potential

prognostic tool for predicting patient outcomes and may help

guide treatment decisions for ESCC patients. The signature has

the potential to improve patient stratification and identify those
Frontiers in Immunology 11
who may benefit from more aggressive treatment strategies or

targeted therapies. In addition, the identification of the specific

genes in the CAF signature provides potential targets for

therapeutic intervention, such as drugs that target the

overexpressed risk genes or enhance the expression of the

protective genes.

The vigorous development of cancer immunotherapy has shed

a novel light on the cancer treatment, which extremely depended

on the comprehensive perception of immune landscape in tumor

microenvironment (50). The tumor microenvironment is a

complex ecosystem comprised of diverse cell types that

significantly impact cancer biology and the effectiveness of

therapeutic interventions (51). Considering that such a bunch of

ESCC patients still suffer from the unfavorable prognosis in spite

of receiving immunotherapy ascribing to immune escape or

immune tolerance (52), we explored the immune landscape of

ESCC based on the CAF-related risk signature. It was found that

the high-risk group had a higher proportion of immune cells

infiltration. Nevertheless, macrophages (M2) were identified

significantly enriched in high-risk group in the subsequent

analysis, which has been confirmed to incite immune tolerance

in cancer immunotherapy (53). Taken above results into

consideration, we infer that patients in low-risk group are more
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FIGURE 7

The immune infiltrations analysis (A) Heatmap of results on immune cells of tumor microenvironment (TME) in ESCC with multialgorithm, including
existing data from platform TIMER and MCP-counter. TME-related scores were exhibited in the top bar. (B) Comparison of proportions of 22
immune-related cells between high-and-low-risk groups. (C) Comparison of proportions of immune-related functions between high-and-low-risk
groups. (D, E) Correlations between the nine hub genes and immune score. (F, I) Correlations between nine hub genes and 22 immune-related cells.
(G) The correlation analysis between nine hub genes and 75 immune-associated genes. (H) Correlations between the four nine genes and immune
score, stromal score, estimate score. (*p < 0.05, **p < 0.01, ***p < 0.001).
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likely to benefit from immunotherapy. The relationship between

immune infiltration and genes composing the risk signature were

further analyzed. Risk genes were positively correlated with

immune score while protective genes were negatively associated

with immune score. In addition, to probe into the response to

anti-cancer immunotherapy, IMvigor210 and GSE78220 cohorts

were enrolled for analysis. Within the two cohorts, patients

belonging to low-risk group account for higher proportions of

partial response (PR) and complete response (CR) after

immunotherapy of anti-PD-L1 receptor blockers. Consistent

with above results, patients in low-risk group benefit more from

immunotherapy than those in high-risk group. However,

immunotherapy in ESCC is far from anti-PD-1 or anti-PD-L1,

further researches are urgently needed to provide precise and

comprehensive management for patients diagnosed with ESCC.

An overarching conclusion that esophageal squamous cancer

is highly heterogeneous has been well received. Uncovering the

heterogeneity of ESCC could revolutionized the management of

this malignant cancer and provide patients with more favorable

prognosis (51). Thus, we preformed consensus clustering in

GSE53624 cohort based on the risk signature. Cluster 2(C2) was

found made up by the high-risk group and with the worst

prognosis. Besides, C2 had the highest immune score, stromal

score, and estimate score and was identified significantly

correlated with several immune checkpoints (including BTLA,

CD48, CD44, CTLA4, CD28, IDO2, and so on), revealing that

patients in Cluster 2 might be suitable for immunotherapy of
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immune checkpoints inhibitors. Last but not the least, various

CAF-associated genes implicated in the risk signature were

subsequently subjected to validation using ESCC tissues. In line

with our bioinformatic findings, F2RL2 was determined to be

highly expressed in tumors; conversely, SLC4A9, EXPH5, and

MAGEC3 were observed to be significantly under-expressed in

tumors. It has been revealed that F2RL2 can promote the

tumorigenesis and immigration of breast cancer (44), indicating

that these genes may serve as innovative biomarkers for early

ESCC diagnosis. Although our study provides valuable insights,

there are some limitations that require attention. Firstly, our risk

signature was established based on retrospective data obtained

from public databases. Thus, more prospective and multi-center

cohorts of ESCC are necessary to mitigate any potential bias.

Secondly, our risk signature only predicts the responsiveness to

anti-PD-L1 immunotherapy, further research is urgently needed

to assess its potential for predicting the response to other precision

therapies in the future.
5 Conclusion

In our study, we conducted an extensive investigation into the

populations of CAFs in ESCC and identified six distinct CAF

clusters. Three of these clusters were significantly associated with

ESCC prognosis and were used to establish a prognostic risk
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FIGURE 8

Prediction of responsiveness to immunotherapy using our signature based on public database. (A) Prognostic differences between risk subgroups in
the IMvigor210 cohort. (B) Differences among immunotherapy responses based on risk scores in the IMvigor210 cohort. (C) Distribution of
immunotherapy responses based on risk subgroups in the IMvigor210 cohort. (D) Prognostic differences between risk subgroups based on early
stage (stage I-II) in the IMvigor210 cohort. (E) Prognostic differences between risk subgroups based on advanced patients (stage III-IV) in the
IMvigor210 cohort. (F) Prognostic differences between risk subgroups in the GSE78220 cohort. (G) Differences among immunotherapy responses
based on risk scores in the GSE78220 cohort. (H) Distribution of immunotherapy responses based on risk subgroups in the GSE78220 cohort.
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FIGURE 9

Consensus Clustering based on nine prognostic CAF-related genes expression. (A) ESCC patients were divided into three clusters (k=3). (B) PCA
depicted the distribution for clusters. (C) Survival analysis based on the three clusters. (D) The Sankey diagram of the connection between clusters
and high-and low-risk group. (E) Immune infiltrations based on three clusters. (F) ImmuneScore difference between three clusters. (G) SromalScore
difference between three clusters. (H) TumorPurity difference between three clusters. (I) ESTIMATEScore difference between three clusters.
(J) Expression difference of immune checkpoints between three clusters. (*p < 0.05, ***p < 0.001).
FIGURE 10

Prediction of chemotherapy drug sensitivity in ESCC patients based on different clusters. The experiment of ESCC risk-related genes. (*p < 0.05, **p
< 0.01, ***p < 0.001).
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signature consisting of nine genes based on the CAFs. Moreover,

we developed a novel nomogram that combined the risk signature

with clinicopathological characteristics, which exhibited excellent

performance in predicting the clinical outcomes of patients with

ESCC. We also observed that our risk signature was associated

with tumor mutations and immune landscape, and that it is

suitable for predicting the responsiveness of ESCC patients to

immunotherapy targeting PD-L1 blockade.
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