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Creeping fat (CrF) is an extraintestinal manifestation observed in patients with

Crohn’s disease (CD). It is characterized by the accumulation of mesenteric

adipose tissue (MAT) that wraps around the intestinal wall. Although the role of

CrF in CD is still debated, multiple studies have highlighted a correlation between

CrF and inflammation, as well as fibrostenosais of the intestine, which

contributes to the worsening of CD symptoms. However, the mechanism

underlying the potential role of CrF in the development of Crohn’s fibrosis

remains an enigma. This study aimed to analyze CrF comprehensively using

single-cell RNA sequencing analysis. The data was compared with transcriptomic

data from adipose tissue in other disease conditions, such as ulcerative colitis,

lymphedema, and obesity. Our analysis classified two lineages of preadipocyte

(PAC) clusters responsible for adipogenesis and fibrosis in CrF. Committed PACs

in CrF showed increased cytokine expression in response to bacterial stimuli,

potentially worsening inflammation in patients with CD. We also observed an

increase in fibrotic activity in PAC clusters in CrF. Co-analyzing the data from

patients with lymphedema, we found that pro-fibrotic PACs featured

upregulated pentraxin-3 expression, suggesting a potential target for the

treatment of fibrosis in CrF. Furthermore, PACs in CrF exhibited a distinct

increase in cell-to-cell communication via cytokines related to inflammation

and fibrosis, such as CCL, LIGHT, PDGF, MIF, and SEMA3. Interestingly, these

interactions also increased in PACs of the lymphedema, whereas the increased

MIF signal of PACs was found to be a distinct characteristic of CrF. In immune cell

clusters in CrF, we observed high immune activity of pro-inflammatory

macrophages, antigen-presenting macrophages, B cells, and IgG+ plasma

cells. Finally, we have demonstrated elevated IgG+ plasma cell infiltration and
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increased pentraxin-3 protein levels in the fibrotic regions of CrF in CD patients

when compared to MAT from both UC patients and healthy individuals. These

findings provide new insights into the transcriptomic features related to the

inflammation of cells in CrF and suggest potential targets for attenuating fibrosis

in CD.
KEYWORDS

creeping fat, Crohn’s disease, inflammatory bowel disease, fat fibrosis, inflammation,
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1 Introduction

Crohn’s disease (CD) and ulcerative colitis (UC) are two major

subtypes of inflammatory bowel disease: chronic and relapsing

conditions that affect a significant number of individuals

worldwide (1, 2). Although CD and UC share some clinical

features, they differ in several aspects, including the distribution

and extent of inflammation within the gastrointestinal tract (3, 4).

One notable distinction between the two is the occurrence of

“creeping fat” (CrF) in patients with CD. CrF is a type of adipose

tissue that infiltrates and envelops inflamed intestinal segments (5).

Recent studies have found a link between the characteristics of CrF

and the development of CD (6–8). Some studies suggest that CrF

can protect against bacterial translocation and intestinal

inflammation, while others suggest that it can contribute to the

progression of the disease by triggering an uncontrolled

inflammatory response. Additionally, the buildup of CrF has been

identified as a risk factor for post-surgical recurrence in CD, leading

to the development of new surgical techniques such as mesentery

exclusion (9–13). However, the mechanisms behind the formation

of CrF and its connection to inflammation and fibrostenosis of CD

are not yet fully understood.

Adipose tissue harbors diverse cell types, including adipocytes,

preadipocytes, endothelial cells, smooth muscle cells, stromal cells,

and immune cells (14). These cells play a crucial role in regulating

inflammation by producing cytokines and interacting with each

other (15). In CrF, pro-inflammatory and pro-fibrotic cytokines,

such as TNF-a and IL-6, and adipokines, such as resistin and leptin,

are highly enriched compared to normal adipose tissue (16–18).

Recently, studies using single-cell RNA sequencing have emerged to

explore the transcriptomic features of constituent cells in CrF (19,

20). They identified an increase in bacteria recognizing M1

macrophages and pro-fibrotic M2 macrophages in CrF.

Additionally, specific subclusters of cells, including vascular
se; DEG, differentially
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endothelial cells (VECs), fibroblasts, and myeloid cells, have been

found to play a role in the inflammation and fibrosis of CrF. VECs

with high expression of lipoprotein lipase show an increased

expression of genes related to bacterial responses, indicating their

involvement in the immune response against bacteria.

Inflammatory fibroblasts producing IL-1b and NK-kB have been

found to contribute to collagen synthesis and the accumulation of

extracellular matrix, leading to fibrosis in CrF. Preadipocytes are

known to contribute to fibrosis through the up-regulation of genes

related to extracellular matrix (ECM) accumulation in CrF (19).

Their roles in fibrosis and inflammation have been observed in

other diseases, such as type 2 diabetes, liver fibrosis, and systemic

sclerosis (21–23). However, the molecular characteristics of

preadipocytes in CrF are still unclear.

Despite the emerging research on the characteristics of CrF,

there is still a need to better understand the transcriptomic features

of its constituent cells, particularly at the single-cell level. In this

study, we investigated the transcriptomic characteristics of each cell

type present in CrF of CD patients, with a specific focus on

preadipocytes at various stages of differentiation. Our study aims

to uncover these mechanisms and identify potential therapies.
2 Materials and methods

2.1 Quality control, data integration, and
unsupervised clustering

The single-cell RNA sequencing (scRNA-seq) dataset of CrF

was accessed from the public GEO database under accession

number GSE156776. The dataset was comprised of paired MAT

attached to inflamed or uninflamed ileum from three CD patients

and two UC patients undergoing bowel resection (19). The R

package Seurat (4.2.1) was used for quality control, clustering,

and data integration (24). The same inclusion criteria for cells

with more than 200 features, 200 counts, and less than 5%

mitochondrial genes were applied to all the datasets in this study.

The filtered data were log-normalized with a scale factor of 10,000,

using the NormalizeData function. Normalized individual datasets

from patients with CD and UC were combined using the R package

Seurat. The SelectIntegrationFeatures function from the R package

Seurat was used to select features repeatedly variable across datasets.
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Subsequently, the FindIntegrationAnchors function was used to

determine the integration anchors for the integration of datasets.

Individual datasets were merged into a single Seurat object using the

IntegrateData function with predetermined integration anchors.

The RunHarmony function in the R package was used to

eliminate batch effects from different samples. To select the top

2000 highly variable features, we applied the FindVariableFeature

function with a variance-stabilizing transformation to the

integrated Seurat object. Prior to the dimensional reduction, the

data were scaled using the ScaleData function. The RunPCA

function was applied to the scaled data using previously identified

highly variable features to determine the principal components

(PCs). The selected top 50 PCs were used for further clustering

analyses. The data were clustered based on the shared nearest-

neighbor graph generated using the FindNeighbors function. After

determining the nearest neighbors, the cells were clustered by the

Louvain algorithm using the FindClusters function with the

resolution parameter set to 1. To graph the uniform manifold

approximation and projection (UMAP) plot, the RunUMAP

function was used with previously defined PCs. The integrated

dataset consisted of 8373 cells that were clustered into 20 clusters.

Each cluster was annotated by identifying cluster markers using the

FindAllMarkers function in the Seurat package. The cluster markers

were matched with reference markers for each cell type, as shown in

Figure 1C. After annotation of each cell cluster, immune cells were

subgrouped by lineage for subclustering. The subclustering process

was identical to that of the UMAP clustering process, with 20 as the

dimension parameter of reduction and 0.7 as the resolution

parameter. Preadipocyte clusters were subclustered following the

same procedure as the immune cells.
2.2 Differential gene expression analysis

To identify differentially expressed genes (DEGs) for each

subcluster, the Seurat FindAllMarkers function based on the

Wilcoxon rank-sum test was applied to the integrated data. Genes

with a Bonferroni-corrected p-value < 0.05 and an absolute value of

log2 of the fold change > 0.2 were considered significant. The

significant DEGs for each cluster were input into the enrichGO

function of the clusterProfiler (4.6.0) package to assess the activated

pathways in each cluster (25). Significantly upregulated pathways

were defined as gene ontology of biological process with Benjamini–

Hochberg adjusted p-values < 0.05. The results of the DEG analysis

were plotted as a bar plot and enrichment map using the

emapplot function.
2.3 Preadipocyte cluster comparison

The clustered PAC clusters were compared to scRNA-seq

dataset on adipose tissues obtained from five patients with

secondary lymphedema in thigh after cervical cancer surgery. The

annotated scRNA-seq dataset of the cancer-associated lymphedema

dataset was provided by the author of the original article (26). The
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annotated single-nucleus RNA sequencing data of visceral

adipose tissue from obese individual was downloaded from Gene

Expression Omnibus (GSE176171) (27). The spatial transcriptomic

dataset on periumbilical subcutaneous white adipose tissues from

lean and obese individuals were obtained from Mendeley Data and

analyzed using Seurat (28). The PAC clusters were compared to

those from individuals with lymphedema and spatial transcriptomic

dataset by calculating the similarity of clusters from different

origins. The top 10 upregulated DEGs for each cluster in the

lymphedema data were selected as module genes for each cluster,

and the top 15 upregulated DEGs for each cluster in the

obese spatial transcriptomics dataset were selected as module

genes. To calculate the similarity of the subclusters, the Seurat

AddModuleScore function was used to calculate the module score

for each subtype of PACs based on the lymphedema and obese

spatial transcriptomic PAC clusters.
2.4 RNA velocity analysis

The RNA velocity was determined by analyzing the relative

abundance of spliced and unspliced RNA, thereby estimating the

direction and rate of cellular differentiation. Raw FASTQ files for

the identical dataset available from the Sequence Read Archive

under the project accession number SRP278645 were used for RNA

velocity analysis. Paired FASTQ files for each sample were used as

inputs for ddSeeker to generate bam files tagged with cell barcodes

and unique molecular identifiers (UMI) (29). The samtools (1.16.1)

bam2fq function was used to generate single-ended FASTQ files

from the unmapped bam files, and the single-ended FASTQ was

aligned to the reference genome GRCh38.p13 using STAR (2.7.10b)

(30–32). The aligned bam file was then merged with the unmapped

bam files using the MergeBamAlignment function of the Picard

package (2.27.5) (33). The merged bam file was input to the velocyto

run function of the Python module velocyto (0.17), and the

generated loom files were used as input for the scvelo (0.2.5)

pipeline (34, 35). After separately generating loom files for each

FASTQ file, the loom data were imported and merged into a single

annotated loom file. The integrated Seurat data was imported into

the annotated data format and merged with the annotated loom.

Cellular dynamics data were recovered from the merged data using

the tl.recover_dynamics function, and the RNA velocity for each

cell was computed in the dynamical mode of the tl.velocity function

in the scvelo package. The estimated RNA velocity was mapped

onto a UMAP plot with subtype annotations. All analyses for

mapping RNA velocity were performed in Linux 20.04 or

python 3.8.8.
2.5 Intercellular interaction analysis

Intercellular interactions between cell clusters were analyzed

using the R package CellChat (1.6.0) by computing the expression

patterns of ligand-receptor pairs (36). The computeCommunProb

function was applied to the clustered data using the trimean as the
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average expression level for each cluster to infer the interaction

strength. The netAnalysis_signalingRole_scatter function was used

to generate a scatter plot of the incoming and outgoing signaling

interaction strengths. The rankNet function was applied to the

dataset to compare the strength of information flow between

inflamed and uninflamed tissues. The Wilcoxon test was used to

identify significantly enriched signaling ligand-receptor pairs with

p-value < 0.05. Signaling pathways that were upregulated only in the

CrF data were plotted using the netVisual_individual function to

visualize cell-to-cell interactions between cell clusters.
2.6 Statistical analysis

DEGs for each subcluster was defined as genes with two-sided

Bonferroni adjusted p-value < 0.05, and upregulated pathways were

defined using Benjamini-Hochberg adjusted p-values < 0.05.

Intercellular interaction was analyzed using the Wilcoxon test,

and significantly enriched ligand-receptor pair was defined as

pairs with p-value < 0.05. All tests were subjected to the same

criteria for statistical significance, with p < 0.05 being regarded as

statistically significant. We denoted significance levels as follows: *

(p < 0.05), ** (p < 0.01), and *** (p < 0.001).
2.7 Ethical and legal considerations

The study protocol was approved by the institutional review

board at Gangnam Severance Hospital, Yonsei University of Korea

(approval number: 3-2023-0331). The study complies with the

Declaration of Helsinki and the principles of Good Clinical Practice.
2.8 Histological and
immunohistochemistry analysis

We randomly selected 3 patients with Crohn’s disease, 3

patients with ulcerative colitis, and 1 patient with diverticulitis

(with normal colonic mucosa) who underwent surgical resection at

Gangnam Severance Hospital between January 2022 and January

2023. We reviewed all hematoxylin and eosin (H&E) slides used at

the time of diagnosis. We selected regions with creeping fat in

Crohn’s disease, mucosal ulceration in ulcerative colitis, and normal

colonic mucosa in diverticulitis for Masson’s trichrome and

immunohistochemistry by light microscopy. Masson’s trichrome

and IHC staining were performed on 4 mm sections obtained from

selected formalin-fixed paraffin-embedded (FFPE) blocks. The IHC

staining for PTX3 (1:1000, sc-373951, mouse monoclonal, Santa

Cruz Biotechnology, Santa Cruz, CA, USA), and CD138 (1:1000,

EPR6454, rabbit monoclonal, Abcam, Cambridge, UK) was

performed using Benchmark® automatic immunostaining device

(Roche Tissue Diagnostics, Tucson, USA) and an UltraViewTM

Universal DAB Detection Kit (Ventana Medical Systems, Tucson,

USA), according to the manufacturer’s instructions.
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3 Results

3.1 Single-cell RNA-seq reveals cellular
diversity and heterogeneity in mesenteric
adipose tissue of patients with CD and UC

To investigate the cellular diversity and gene expression profiles

of CrF in patients with CD, we analyzed scRNA-seq data of

mesenteric adipose tissue (MAT) adjacent to both inflamed and

uninflamed regions in three patients with CD and two patients with

UC (Figure 1A). We will refer to the mesenteric adipose tissue

(MAT) adjacent to inflamed and uninflamed intestine in UC

patients as iMAT and uiMAT, and to the MAT adjacent to

inflamed and uninflamed intestine in CD patients as CrF and

uiMAT, respectively. The data were deposited in the GEO

database under the accession number GSE156776. After filtering

out low-quality cells, 8373 cells were included in further analysis.

Unbiased UMAP clustering resulted in 18 clusters (Figure 1B), and

each cluster was annotated using cell type-specific markers into 10

different lineages of PACs, proliferative lymphocytes, T cells,

macrophages, B cells, plasma cells, endothelial cells, lymphatic

endothelial cells, mast cells, pericytes, and a single cluster of

unidentified cell types (Figures 1C–E). Four clusters (C02, C03,

C06, and C07) expressed PDGFRA, THY1, COL1A1, and DCN,

which are markers of PACs, and one cluster (C18) expressed

TOP2A and MKI67, which are marker genes for proliferative

lymphocytes. Three clusters (C01, C04, and C10) of T cell

lineages expressed IL7R, CD3D, CD3G, and CD8A, which are

markers for T cells, and two clusters (C08, C12) of macrophages

expressed CD68, CD163, and CD86. A cluster (C05) of B cells

expressed MS4A1 and CD79A, and two clusters (C11 and C16) of

plasma cells expressed MZB1 as a marker gene. A cluster (C13) of

endothelial cells expressed CDH5 and VWF, whereas a cluster (C14)

of lymphatic endothelial cells expressed PROX1. A cluster (C17)

expressed mast cell markers, such as KIT, and a cluster (C15) of

pericytes expressed RGS5 and STEAP4 (Figures 1B, C).
3.2 Analysis of differentially expressed
genes reveals distinct transcriptomic
characteristics of immune cell
subclusters in CrF

After annotating each cluster as a specific cell type, we

performed subclustering on immune cells grouped by the lineage

of differentiation. The subclustering of macrophage clusters resulted

in three subpopulations, Mj1, Mj2, and Mj3 (Figure 2A), each

exhibiting distinct molecular signatures (Figures 2C, D). The Mj1
population was confirmed to be the most polarized (Figure 2B) and

displayed an increase in pro-inflammatory cytokines, including

IL1A, IL1B, and NLRP3, suggesting that it is a pro-inflammatory

macrophage population (37, 38). The Mj2 population expressed

marker genes for both M1- and M2-polarized macrophages,

including CD86 and MRC1, respectively (39), and had a high
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1198905
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Hwang et al. 10.3389/fimmu.2023.1198905
expression of antigen-presenting genes, including CD1C and MHC

class II genes (40), designated as antigen-presenting macrophages.

In contrast, Mj3 expressed high levels of M2-polarized macrophage

markers, such as MRC1 and CD163 (41), and displayed high

expression of LYVE1, a marker for tissue-resident macrophages.

This finding indicated that Mj3 represents tissue-resident M2-

polarized macrophages and displays high expression of LYVE1, a

marker for tissue-resident macrophages, indicating that Mj3
represents tissue-resident M2-polarized macrophages (42). When

compared to that in uiMAT, Mj1 in CrF showed an increase in the
Frontiers in Immunology 05
expression of genes related to phagocytosis, including “Positive

regulation of phagocytosis” and “Regulation of phagocytosis.” The

Mj2 population was highly enriched in antigen-presenting

pathways, such as “Antigen processing and presentation of

peptide or polysaccharide antigen via MHC class II,” whereas

Mj3 showed an increase in metal metabolism-related signals,

including “Transition metal ion homeostasis” (Figure 2E).

Next, we explored B cells and Plasma cell populations

(Figure 2F). B cells, which features high expression of CD74 and

MA4A1 (Figures 2G, H), displayed increased immunoactivity-
B

C

D

E

A

FIGURE 1

Single-Cell RNA-Seq Reveals Cellular Diversity and Heterogeneity in Mesenteric Adipose Tissue of Patients with CD and UC. (A) Schematic
representation of the experimental procedure: Uninflamed mesenteric adipose tissue (n = 3; CD_uiMAT) and inflamed mesenteric adipose tissue (n
= 3; CD_CrF) from patients with Crohn’s disease, as well as uninflamed mesenteric adipose tissue (n = 2; UC_uiMAT) and inflamed mesenteric
adipose tissue (n = 2; UC_iMAT) from patients with ulcerative colitis, were obtained from GSE156776 (B) A uniform manifold approximation
projection (UMAP) plot revealed 18 clusters of 8378 cells. (C, D) Dot plots and feature plots were used to visualize the expression of established
marker genes for each lineage in each cluster. (E) UMAP plot showing the annotation derived from panels (C, D).
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related signatures, including “B cell activation” and “B cell receptor

signaling pathway” in CrF compared to uiMAT (Figure 2I). Further

subclustering of plasma cells identified distinct populations of IgG+

and IgA+ plasma cells (Figure 2F), with the former showing

upregulation of genes encoding immunoglobulin G, including

IGHG2, and the latter displaying an increase in genes encoding
Frontiers in Immunology 06
immunoglobulin A, including IGHA2 (Figures 2G, H). Notably, IgG

+ plasma cells in CrF exhibited enhanced signals related to

complement system activation and phagocytosis, which suggests a

role in the opsonization of foreign antigens through the

complement system (43). Conversely, IgA+ plasma cells showed

insignificant activity in CrF compared with that of uiMAT. We also
B C D

E

F G H

I

A

FIGURE 2

Analysis of Differentially Expressed Genes Reveals Distinct Transcriptomic Characteristics of Immune Cell Subclusters in CrF. (A) UMAP plot shows
the macrophages isolated from Figure 1E, and the cluster analysis revealed three distinct clusters. (B) RNA-velocity analysis was performed on the
macrophage clusters, with the velocity field projected onto the UMAP plot from (A). The arrows depict the local average velocity assessed on a
regular grid, indicating the extrapolated future states of cells. (C) Violin plots showing the RNA expression levels of selected cluster markers for
specific cell clusters. (D) Distinct expression profiles of the three subpopulations of macrophages (E) Enriched Gene Ontology terms of the
molecular signature for each subpopulation, hypergeometric test, adjusted p < 0.01. (F) UMAP plot shows the B cells and plasma cells isolated from
Figure 1E, and the cluster analysis revealed three distinct clusters. (G) Violin plots showing the RNA expression levels of selected cluster markers for
specific cell clusters. (H) Distinct expression profiles of the three subpopulations of B cells and plasma cells (I) Enriched Gene Ontology terms of the
molecular signature for each subpopulation, hypergeometric test, adjusted p < 0.01. *** adjusted p < 0.001.
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subdivided T cells into four groups based on their gene expression

and enriched pathways: Naïve T cells, characterized by the

expression of IL7R+ and CD3D-; CD4 T cells, defined by CD3D+

and CD4+ expression; CD8 T cells, marked by CD3D+ and CD8A+

expression; and NK cells, identified by the expression of NKG7+,

GZMB+, and CD8A- (Figures S1A-D). We observed no significant

difference in immune activity among the T cell clusters in CrF,

emphasizing the crucial role of macrophages, B cells, and plasma

cells in the pathology of CrF. (Data not shown).

Collectively, our findings highlight CrF-specific immune cell

activation and demonstrate the heterogeneity of macrophages, B

cells, and plasma cell populations that drive the pathology of CrF.
3.3 CrF is characterized by an increase in
committed PACs and their enhanced
inflammatory response

The PAC clusters were reclustered into five subclusters, namely

PAC1, PAC2, PAC3, PAC4, and PAC5 (Figure 3A). Analysis of

transcriptional dynamics and the differentiation process in PACs of

CrF have been performed by RNA velocity analysis. The resulting

vector field displayed two separate lineages of PACs, with PAC1

serving as the progenitor cluster, differentiating into a lineage

leading to PAC2 and another lineage leading to PAC5

(Figure 3B). The molecular signatures of PAC2 and PAC5

differed greatly, implying heterogeneous differentiation of PACs

(Figures 3C–E, S2A). The PAC2 cluster exhibited high expression of

the CEBPB and CEBPD gene, which encodes the transcription

factor C/EBP-b and C/EBP-d that function in adipocyte

differentiation (44). An increase in the proportion of PAC2 was

observed in CrF compared with that in uiMAT, emphasizing the

role of the PAC2 subcluster in CrF formation. The PAC2 cluster in

iMAT was not significantly higher than that in uiMAT in patients

with UC, demonstrating the significance of PAC2 in CrF

(Figure 3F). The enriched pathways of the PAC2 cluster in CrF

included the adipogenic pathway of “Fat cell differentiation”

(Figures 3G, S2B). Interestingly, pathway analysis of the PAC2

cluster also showed multiple activated pathways related to bacterial

infection, including “Response to lipopolysaccharide” and

“Response to molecule of bacterial origin,” suggesting PAC2 as a

PAC subpopulation that directly responds to bacterial infection.

Another terminal type of PAC, the PAC5 cluster, highly expressed

fibrotic genes, such as FN1 and FBN1, and expressed ACTA2, a

marker gene for myofibroblasts (Figures 3C-E, S2A) (45–47). These

results suggest that PAC5 is a type of PAC involved in adipose tissue

fibrosis. We compared the CrF dataset with a spatial transcriptomic

dataset generated from subcutaneous adipose tissue (SAT) of lean

individuals and those with obesity to evaluate the function of the

two distinct lineages of PACs (Figure 3H). Within each PAC cluster

in SAT, we identified unique sets of genes, called “modules,” that

exhibited distinct expression patterns. These modules comprised

the top 15 most highly upregulated genes in each cluster (Figure 3I).

By analyzing the module scores in CrF PACs, we observed that the

genetic signature of the PAC2 cluster closely resembles that of the

committed cluster in SAT. On the other hands, the genetic signature
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of the PAC5 cluster exhibits the highest similarity to the fibrotic

cluster in SAT (Figure 3J). These results support our finding that the

two distinct lineages of PACs in CrF, as determined by RNA

velocity estimation, have functional roles in adipogenesis

and fibrosis.
3.4 Pro-inflammatory and fibrotic
signatures increase in committed
PACs in CrF

We explored the dysregulated pathways and identified enriched

gene sets in PACs in CrF. Notably, pathways related to the response

to the bacterial origin, such as “cellular response to biotic stimulus”,

“cellular response to lipopolysaccharide”, “response to molecules of

bacterial origin”, and “response to lipopolysaccharide”, were

significantly upregulated in CrF compared to that in uiMAT in

patients with CD (Figure 4A). However, no significant changes were

observed in the iMAT of patients with UC. Our analysis revealed

that the upregulated DEGs in PAC2, related to the “response to

molecule of bacterial origin” included various cytokine genes, such

as MIF, IL6, TNFAIP3, and CCL2 (Figure 4B). Preadipocytes

respond to bacterial infections by producing and releasing

proinflammatory cytokines such as TNF-a, IL-6, and IL-8, which

trigger inflammation and attract immune cells to the affected area

(48, 49). Once activated, these immune cells also secrete cytokines

and other inflammatory molecules, amplifying the overall

inflammatory response in the local and systemic tissues.

Therefore, our results suggest that PAC2 contributes significantly

to the inflammatory response in CrF. We found that pathways

related to fibrosis, including “extracellular matrix remodeling” and

“extracellular component remodeling,” were significantly enriched

in CrF (Figure 4C). These pathways were broadly enriched not only

in PAC2 but also in other subtypes of PACs, including the highly

fibrogenic PAC5 in CrF. Studies indicate increased fibrosis and

inflammation in the adipose tissues of obese individuals (50–52). To

better understand the characteristics of PACs in CrF, we analyzed

single nucleus RNA sequencing data from the visceral adipose tissue

(VAT) of obese individuals (BMI 40-50) (Figure S3A) (27). In

comparison to PACs in CrF, obese individuals showed a decrease in

the enrichment score for fat cell differentiation and gene expression

related to insulin reactivity and lipid storage (Figure S3B). No

significant differences were found in the pathways associated with

the inflammatory response. However, similar to CrF, obese

individuals exhibited an elevated enrichment score for pathways

related to extracellular matrix organization.
3.5 Fibrotic PACs in both CD patients and
lymphedema patients exhibit
transcriptional similarities

Next, we compared the gene signatures of PACs in CrF with

those of PACs in subcutaneous adipose tissue in patients with

lymphedema (Figures 5A, S4A, B). Lymphedema is a chronic

condition that occurs when the lymphatic flow is blocked, leading
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1198905
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Hwang et al. 10.3389/fimmu.2023.1198905
to the expansion of adipose tissue and fibrosis around lymphatic

vessels in response to injury or bacterial infection (53). As CrF is

rich in lymph nodes, there may be similarities between the changes

observed in adipose tissue in lymphedema and those found in CrF
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(54, 55). This similarity could potentially provide insights into the

mechanisms underlying adipose tissue changes under these

conditions. First, we identified modules consisting of the top 10

marker genes for each PAC cluster in adipose tissues from patients
B
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H
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J

A

FIGURE 3

CrF Is Characterized by an Increase in Committed PACs and Their Enhanced Inflammatory Response. (A) UMAP plot shows the PACs isolated from
Figure 1E, and the cluster analysis revealed five distinct clusters. (B) RNA-velocity analysis was performed on the PAC clusters, with the velocity field
projected onto the UMAP plot from (A). The arrows depict the local average velocity assessed on a regular grid, indicating the extrapolated future
states of cells. (C) Distinct expression profiles of the three PAC subpopulations. (D) Violin plots showing the RNA expression levels of selected cluster
markers for specific cell clusters (E) Feature plots depict the expression of CEBPB and FBN1 in PACs. (F) A bar plot showing the proportion of
subclusters within a PAC cluster for each patient group. (G) Enriched Gene Ontology terms of the molecular signature for each subpopulation,
hypergeometric test, adjusted a p < 0.01. (H) Schematic representation of the experimental procedure. Spatial transcriptomic data of subcutaneous
adipose tissue from lean individuals (n = 3) and those with obesity (n = 5) were recruited from 10.17632/3bs5f8mvbs (left). The distribution of the
overall cell clusters (middle) and subclusters of S_PACs (preadipocytes from the spatial transcriptomic data, right) is shown across an adipose tissue
section of an obese individual. (I) Spatial representation of each module, consisting of the top 15 upregulated genes, for S_PAC2 and S_PAC3,
respectively. (J) Violin plots showing the expression levels of each module in PACs from Figure 4H (top) and (A) (bottom). *** adjusted p < 0.001.
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with lymphedema. After scoring CrF PAC clusters using the

module of the top 10 marker genes in lymphedema, we observed

that PAC1 exhibited a gene expression signature most similar to

PAC cluster c0, while PAC2 showed the highest similarity to PAC

cluster c5. On the other hand, PAC5 had the closest resemblance to

lymphedema cluster c3, which is known as the primary contributor

to fibrosis (Figures 5B, C). Our analysis indicated that unlike CrF

PAC2, the lymphedema c5 cluster did not display significant

changes in bacterial response or inflammation-related pathways.

Rather, we observed an increase in fat cell differentiation of c5 and

an up-regulation in the extracellular matrix remodeling pathway in
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the overall PAC, similar to what was found in CrF PAC (Figure

S5A). These findings suggest that while inflammatory changes in

lymphedema and CrF may differ, both conditions are characterized

by alterations in pathways related to fibrosis. To identify key genes

related to fibrosis, we compared the gene signatures of PACs in CrF

and lymphedema adipose tissues and identified shared upregulated

genes (Figure 5D). Subsequently, we conducted a GO enrichment

analysis of these genes, which revealed pathways related to fibrosis,

with Pentraxin3 (PTX3) being a common gene in both conditions.

The PTX3 gene has been implicated in fibrotic diseases, such as

pulmonary and renal fibrosis, and its inhibition reduced fibrosis in a
B

C

A

FIGURE 4

Pro-Inflammatory and Fibrotic Signatures Increase in Committed PACs in CrF. (A) ClusterProfiler revealed upregulated pathways of PAC2 in CD_CrF
versus CD_uiMAT. Adjusted p < 0.05 was statistically significant. The pathways associated with the response to bacterial origin are indicated by red
circles. (B) Volcano plot highlighting genes belonging to the pathway of Response to molecule of bacterial origin in up-regulated DEGs of PAC2 in
CD_CrF versus CD_ uiMAT. (C) Enriched Gene Ontology terms of the molecular signature for each subpopulation in CD_CrF. Adjusted p < 0.01,
hypergeometric test.
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mouse model (56, 57). These results suggest that PTX3 may play a

significant role in fibrosis. In the context of obesity, the expression

of PTX3 in preadipocytes within VAT has been observed to be rare

(Figure S3C). Additionally, our investigation of genes associated

with extracellular matrix organization pathways, which are

commonly upregulated in both obesity and CrF, revealed no

significant upregulation comparable to the expression levels of

PTX3 observed in CrF and lymphedema.
3.6 PACs play a key role in distinctive
cell-to-cell communication in CrF

CellChat was employed to investigate changes in cell-to-cell

communication in CrF. PACs showed the highest interaction in

both CrF from patients with CD and iMAT from patients with UC

(Figures 6A, S6A). First, we analyzed the outgoing signaling, which
Frontiers in Immunology 10
refers to signals emitted by a cell to influence neighboring cells,

from PACs. We confirmed the increased signaling of PACs in CrF

compared to uiMAT from patients with CD, as well as in iMAT

compared to uiMAT from patients with UC (Figures 6B, D, S6B).

Next, we compared the upregulated interaction in CrF from

patients with CD and iMAT from patients with UC. PACs in CrF

specifically exhibited an increase in signaling pathways such as,

LIGHT, CCL, SEMA3, and ANNEXIN, whereas PACs in iMAT

from patients with UC showed an increase in PTN, CSF, and VEGF

signaling pathways. We explored incoming signals, which represent

signals received by neighboring cells, in PACs. We found enriched

PDGF, MIF, LIGHT, and SEMA3 signaling pathways in PACs from

patients with CD, while PTN was enriched in iMAT from patients

with UC (Figures 6C, D, S6C). Interestingly, in cases of

lymphedema, all prominent outgoing signals from the PAC in

CrF, including LIGHT, CCL, SEMA3, and ANNEXIN, showed an

increase. Similarly, the incoming signals such as PDGF, LIGHT, and
B C

D

A

FIGURE 5

Fibrotic PACs in Both CD Patients and Lymphedema Patients Exhibit Transcriptional Similarities. (A) Schematic representation of the experimental
procedure. Data of patients with cancer-related lymphedema (n = 5) and healthy individuals (n = 4) were recruited from HRA000901 (left). UMAP
revealed 21 distinct cellular clusters of 70209 cells, of which c0, c1, c3, and c5 were identified as preadipocytes based on the expression of
established marker genes. (right) (B, C) The expression levels of each module, which consisted of the top 10 upregulated genes in each PAC
subcluster from (A), were analyzed in preadipocytes from Figure 3A. (D) The Venn diagram illustrated the number of overlapping DEGs between
similar preadipocyte cell clusters in CD_CrF and lymphedema data. The enriched Gene Ontology terms related to fibrosis were analyzed using the
overlapping DEGs, and the genes belonging to these pathways are shown. ** adjusted p < 0.01; *** adjusted p < 0.001
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SEMA3 to the PAC in CrF also exhibited an increase, with the

exception of MIF. (Figures S7A, B). On the other hand, in the case

of obesity, only SEMA3 among the outgoing signals in PACs

showed an increase (Figures S8A, B). In various tissues, including

adipose tissue, PDGF signaling is crucial for fibrosis development
Frontiers in Immunology 11
because it promotes the proliferation and migration of fibroblasts

and their production of excessive extracellular matrix (58, 59). For

instance, high-fat diet-induced fibrosis in adipose tissue is

associated with increased PDGF upregulation and fibrosis-related

gene expression (60). In vitro studies have confirmed that PDGF
B C

D

A

FIGURE 6

PACs Play a Key Role in Distinctive Cell-to-Cell Communication in CrF. (A) Scatter plots showing the strength of outgoing and incoming
interactions, enabling identification of the cell populations exhibiting significant changes in sending or receiving signals. (B) Bar plots showing the
ranking of outgoing signals of PACs in CD_CrF versus CD_uiMAT (left) and UC_iMAT versus UC_uiMAT (right). The ranking of signals was determined
based on differences in the strength of information flow, calculated as the sum of communication probabilities among all pairs of cell groups in the
inferred network. (C) Bar plots showing the ranking of incoming signals of PACs in CD_CrF versus CD_uiMAT (left) and UC_iMAT versus UC_uiMAT
(right). (D) Circle plots showing the inferred signaling network upregulated in CD_CrF. The arrows and edge color represent the direction (source:
target). The edge colors are consistent with the sources as sender, and edge weights are proportional to the interaction strength. Thicker edge line
indicates a stronger signal.
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induces adipose-derived stem cell differentiation into

myofibroblasts (61). Consistently, our data showed that PAC3,

characterized by high PDGFA expression, was strikingly increased

in CrF compared to that in other PACs in patients with CD.

Therefore, the role of PDGF-releasing PAC3 may be important

for the activation of PACs involved in CrF fibrosis and consequently

in the fibrostenosis of CD. The LIGHT signaling contributes to

fibrosis by activating fibroblasts, stimulating extracellular matrix

production, and triggering the release of proinflammatory cytokines

in PACs, leading to metabolic dysfunction (62–64). The pro-

inflammatory cytokine, MIF, causes adipose tissue dysfunction,

leading to obesity by promoting the release of pro-inflammatory

cytokines, adipocyte differentiation, and immune cell infiltration

and activation, resulting in inflammation and metabolic

dysfunction (65–67).
3.7 High fibrotic CrF exhibits increased IgG
+ plasma cells and pentraxin-3 expression
in CD patients

To substantiate our findings at the protein level, we conducted

immunohistochemistry staining on the CrF of CD patients,

comparing it to MAT from UC patients and normal individuals.

We found a significant increase in the infiltration of IgG+ plasma

cells (CD138+ cells), particularly within the CrF (Figures 7A, B, S9).

Furthermore, we identified substantial fibrosis within the CrF,

accompanied by a noteworthy increase in pentraxin-3 expression

within highly fibrotic regions. In contrast, MAT from UC patients

and normal individuals rarely exhibited pentraxin-3 expression

(Figures 7C, D, S9).

In summary, we identified CrF-associated cell subpopulations,

particularly PACs, as well as immune cells, including pro-

inflammatory macrophages, B cells, and IgG+ plasma cells. By

comparing our results with spatial transcriptomic adipose tissue

data, single nucleus RNA-seq data of obese individuals, and scRNA-

seq data of adipose tissue from patients with lymphedema, we

identified specific genetic features of PACs related to fibrosis and

inflammation in CrF (Figure S10). The unique characteristics

observed in CrF was a distinct high inflammatory response via

committed PAC, with an enriched MIF signaling pathway via

PACs. Also, we found the similarities between PACs in CrF and

lymphedema in fibro-genic features with pentraxin-3 expression

and cell-to-cell interactions (Figure 8). Finally, by demonstrating

increased pentraxin-3 expression at the protein level within the

fibrotic CrF in CD patients, our study highlights pentraxin-3’s

potential as a novel target for treating CrF fibrosis.
4 Discussion

A comprehensive understanding of cellular heterogeneity and

regulatory modifications in affected tissues is essential for

developing effective remedies for CD. One potential target of CD

is CrF, a unique and significant feature found only in patients with

CD (68, 69). The creeping fat, a layer of visceral adipose tissue,
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surrounds the intestine in patients with CD and is characterized by

the infiltration of immune cells and fibrosis (70). This infiltration

results in the production of proinflammatory cytokines and

chemokines, leading to chronic inflammation and tissue damage.

Moreover, the inflammatory cells present in CrF can migrate to the

inflamed intestinal mucosa, further exacerbating inflammation and

tissue injury (71). To gain a deeper understanding of the cellular

and molecular mechanisms of CrF, we analyzed scRNA-seq data

from CrF and adjacent uiMAT in patients with CD and compared it

to MAT from the adjacent inflamed and uninflamed intestines of

patients with UC. Using an unbiased clustering approach, we

identified 18 cell clusters and assigned them to 10 distinct cell

lineages. We further analyzed PACs that showed the most different

transcriptomic features in CrF. By sub-clustering PACs and

calculating their velocity, we identified a two-pronged pathway

for their development into myofibroblasts or adipocytes. The

PAC2 cluster represented the cluster in the most committed stage

during adipogenesis, with high expression of CEBPB and genes

related to fat cell differentiation. The PAC5 cluster, however, was

the most similar cluster to myofibroblasts, with high expression of

marker genes, such as FN1, FBN1, and genes related to fibrosis.

Additionally, by comparing our data to spatial transcriptomic data

of adipose tissue, we confirmed that the PAC cluster with genetic

similarities to PAC2 underwent the adipogenesis stage and was

found in adipocyte-containing areas. In contrast, the PAC cluster

with genetic similarities to PAC5 was in high-fibrosis regions of

adipose tissue, indicating its potential role in the fibrosis pathway.

Furthermore, we observed a significant increase in the proportion of

PAC2 among the five sub-clusters in CrF in patients with CD,

whereas no such increase was observed in iMAT in patients with

UC. Notably, this cluster was highly responsive to bacterial stimuli,

as evidenced by the upregulated expression of pro-inflammatory

cytokine genes, whereas other disease condition including iMAT in

patients with UC, subcutaneous adipose tissue from patients with

lymphedema, and VAT in obese individual not showed

inflammatory activity. A microbiome study demonstrated that

bacterial species, particularly Clostridium innocuum, can

translocate to MAT and promote adipogenesis in a gnotobiotic

mouse with a simplified microbiota. These results suggest that

bacterial stimulation may contribute significantly to the enhanced

adipogenesis and inflammatory capacity of PACs in CrF. In

addition to immune cells, PACs with increased inflammatory

activity in CrF, could exacerbate inflammation in the adjacent

intestinal tissue in patients with CD.

Fibrosis is a major contributor to the pathology of CD, particularly

in the development of strictures (72). The accumulation of fibrotic

tissue in CrF can lead to the narrowing of the intestinal lumen and

obstruction, as well as distortion and thickening of the intestinal wall,

which can lead to inflammation and further tissue damage (73). In our

study, we found that PAC5, along with PAC2 and PAC3, were

significantly enriched in the fibrosis pathway, including “extracellular

matrix organization” and “collagen formation,” indicating the severity

of fibrosis in CrF. To identify potential target genes for alleviating

fibrosis in CrF, we compared the gene expression of PACs from

adipose tissue between lymphedema and CrF. Our findings revealed

that PTX3was themost highly overlapping gene, suggesting that it may
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be a promising target for reducing fibrosis in CrF. In the case of VAT in

obese individuals, there was an increase in the expression of genes

related to extracellular matrix organization; however, the expression of

PTX3 was barely observed. This suggests that the up-regulated

expression of PTX3 is a distinct characteristic of creeping fat and

fibrotic adipose tissue in lymphedema. As revealed in other study (19),

pro-inflammatory roles of macrophages are significantly increased in

CrF, such as cytokine secretion, phagocytosis, and antigen presentation.

Moreover, we found that B and IgG+ plasma cells showed increased

immunological activity in CrF. B-cell activation is important for
Frontiers in Immunology 13
generating specific antibodies that can neutralize pathogens and

protect the body against infections. The IgG+ plasma cells, which

produce IgG isotype antibodies, play a critical role in systemic

immunity. These antibodies provide long-lasting protection against

pathogens by binding to them and promoting their clearance by

immune cells such as macrophages and natural killer cells (74, 75).

Additionally, IgG antibodies activate the complement system, which

directly kills pathogens and amplifies their immune response (76). Our

findings suggest that immunological tissue dysfunction may contribute

to the pathophysiology of CrF. Furthermore, our investigation of
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FIGURE 7

High Fibrotic CrF Exhibits Increased IgG+ Plasma Cells and Pentraxin-3 Expression in CD Patients. (A, D) Representative images for histopathological
evaluation of CrF in CD patients (n=3), iMAT in UC patients (n=3), and MAT from a normal individual (n=1). (A) IgG+ plasma cells were stained with
CD138 (syndecan-1). (B) Densitometry analysis of CD138+ cells in (A, Figure S9). Box plots compare the relative CD138+ cell regions in CD and UC
patient samples to those in the normal sample. (C) Hematoxylin-eosin (H&E) and masson trichrome (MT, staining tissue fibers), and pentraxin-3
(PTX3) staining was presented separately. (D) Box plots compare the relative PTX3 intensity in CD and UC patient samples to those in the normal
sample. *** p < 0. 001; two-tailed t test.
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intercellular communication in CrF using CellChat revealed significant

changes, with PACs displaying the highest levels of interaction in both

patient derived CrF and iMAT from patients with CD and UC,

respectively. We identified specific signaling pathways enriched in

PACs in CrF, including CCL, ANNEXIN, LIGHT, PDGF, MIF, and

SEMA3 pathways. These pathways may play a role in the recruitment

and activation of immune cells, particularly endothelial cells, in

response to inflammation, potentially contributing to the

development of fibrosis and metabolic dysfunction in adipose tissue.

Interestingly, there is a significant overlap in the patterns of increased

interactions observed in perivascular adipocyte progenitor cells (PACs)

between lymphoma and CrF. However, the MIF signaling pathway is

unique to PACs in CrF.

In summary, our study has yielded novel findings that extend

beyond previous single-cell studies. First, we identified two distinct

PAC lineages in CrF, each following a two-pronged pathway

towards adipocyte and myofibroblast differentiation. Notably, we

observed that committed PACs in CrF exhibited pro-inflammatory

activity and displayed increased MIF signals, which distinguish

them from adipose tissue in other disease conditions. Furthermore,

we identified significant similarities in the fibrotic features of PACs

between CrF and SAT in lymphedema, including the up-regulation
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of PTX3, a fibrosis-associated marker, as well as specific cell-to-cell

interactions involving ANNEXIN, LIGHT, CCL, and PDGF.

There still exists a dearth of well-designed randomized

controlled trials specifically focusing on the resection of CrF.

Furthermore, the standardization of CrF excision as a surgical

procedure has not been achieved (77). Therefore, ongoing studies

are dedicated to further investigating and addressing this subject.

Notably, a significant finding from a single-center cohort study

indicated that performing concurrent mesenteric excision during

surgery led to a reduced risk of recurrence in patients with CD (78).

Additionally, extensive mesenteric excision at the time of surgery

was found to be an effective approach in lowering the risk factors for

reoperation compared to limited mesenteric excision in CD cases

(79). In this context, our research on the characteristics of CrF has

promising potential as a valuable resource for clinical studies

exploring the link between the presence of Creeping fat and the

disease-free survival of individuals with CD.

Our study has several limitations. Firstly, conducting

experimental validation in vitro or in vivo is necessary to confirm

our findings. Specifically, further studies are needed to establish the

relationship between PTX3 expression and the fibrotic phenotypes

observed in CrF. Additionally, investigating the upstream cell-to-
FIGURE 8

A Schematic Showing the Results of This Study. The committed PACs in CrF demonstrated both pro-inflammatory and pro-fibrotic activity, as well
as specific cell-to-cell interactions within CrF.
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cell interactions that influence the upregulation of PTX3 would

enhance our understanding of the underlying mechanisms. Finally,

as the stromal vascular fraction in this study’s single-cell dataset

excluded mature adipocytes, it is imperative to conduct further

investigations to explore the genetic characteristics of the overall cell

composition, including adipocytes, in CrF.
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between microbiota, immune response and creeping fat in Crohn’s disease. J Crohn's
Colitis. (2021) 16(3):472–89. doi: 10.1093/ecco-jcc/jjab159
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