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Dietary artemisinin boosts
intestinal immunity and
healthy in fat greenling
(Hexagrammos otakii)

Yixin Gu, Wenjie Wang, Yu Zhan, Xiaoyan Wei, Yanyan Shi,
Dandan Cui, Tingting Peng, Jian Han, Xuejie Li , Yan Chen,
Zhuang Xue* and Wei Wang*

Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian
Ocean University, Dalian, China
Introduction: Artemisinin (ART) is very common as a diet additive due to its

immunoregulatory activities. Nonetheless, the immunoregulatory mechanism of

ART in marine fish remains unknown. This study comprehensively examined the

effects and explored the potential mechanism of ART ameliorating intestinal

immune disease (IID) in fat greenlings (Hexagrammos otakii).

Methods and results: The targets of ART were screened using the Traditional

Chinese Medicine Systems Pharmacology (TCMSP) database. Here, eight

putative targets of ART were collected and identified with the Uniprot

database, and 1419 IID-associated target proteins were filtered through the

Drugbank, Genecards, OMIM, and PHARMGKB Databases. The results of Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathways point out that ART may have immunoprotective effects by regulating

cellular responses to stress, hypoxia, inflammation, and vascular endothelial

growth factor stimulus through the hypoxia-inducible factor 1 (HIF-1) signaling

pathway. The findings of molecular docking indicated that ART contains one

active ingredient and three cross-targets, which showed a kind combination with

hypoxia-inducible factor 1-alpha (HIF1-a), transcription factor p65 (RELA), and

vascular endothelial growth factor A (VEGF-A), respectively. Furthermore, an ART

feeding model was established to assess the ART’s immunoprotect effect on the

intestine of H.otakii in vivo. The D48 group showed smaller intestinal structural

changes after being challenged by Edwardsiella tarda. The supplementation of

ART to the diet improved total superoxide dismutase (SOD), catalase (CAT), and

glutathione peroxidase (GSH-Px) and reduced the malondialdehyde (MDA) in

intestine of H. otakii. The expression of transcription factor p65, HIF1-a, VEGF-A,
cyclin D1, matrix metalloprotease 9 (MMP9), monocyte chemoattractant

protein-1 (MCP-1), tumor necrosis factor-alpha (TNF-a), and interleukin-6 (IL-

6) was decreased after dietary ART in the intestinal of H. otakii.

Discussion: The present results demonstrated that dietary ART improved

antioxidants and immunity, optimized the intestinal structure, and increased

resistance to E. tarda through the SOD2/nuclear-factor-kappa- B (NFkB)/HIF1-a/
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VEGF-A pathway in the intestinal tract of H.otakii. This study integrated

pharmacological analysis and experimental validation and revealed the

mechanism of ART on IID, which provides insight into the improvement of IID

in H. otakii.
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Hexagrammos otakii
1 Introduction

The fat greenling (Hexagrammous otakii) is a species of

Scorpaeniformes that is primarily located in China, the Korean

Peninsula, and Japan. It is a commercially significant species due to

its high nutritional value and superior meat quality (1). In recent

years, high-density intensive farming systems have become an

increasingly attractive approach to meet the rising demand for

this species. Nonetheless, these farming methods subject fish to

substantial stress conditions, exacerbating intestinal immune

disease (IID), making the fish more prone to disease, and

resulting in high mortality rates and significant economic losses

(2). Various strategies, including the extensive use of antibiotics

such as flavomycin, bacitracin zinc, halomycin, and enomycin, have

been employed to treat the disease (3–5). However, antibiotic

resistance, environmental pollution, and the accumulation of

residues in fish and subsequently human tissues have become

substantial obstacles to the growth of intensive aquaculture (6, 7).

Accordingly, the quest for environmentally sustainable and safe

alternatives to manage fish IID has gradually become the focus of

global research endeavors.

Recently, aquatic animal diseases have been controlled by

herbal medicine, which is the main direction of modern aquatic

animal medicine (8, 9). Artemisinin (ART) is a herbal medicine

extracted at low temperatures from Artemisia annua (10). It has

been shown to be the most effective treatment for malaria while also

providing antibacterial (11), immunomodulatory (12), anti-

inflammatory (13) properties and has attracted the attention of

scholars (14). Currently, the research related to ART for the

treatment of IID is concentrated in the medical field. Huai et al.

(15) reported that ART can treat IID by modulating macrophage

polarization and epithelial interstitial processes. Also, the ART

analog SM394 could alleviate dextran sulfate sodium-induced

ulcerative colitis by inhibiting neutrophils and macrophages as

well as the nuclear factor kB (NFkB) signaling pathway (16). In

addition, the supplementation of 2 mg/kg of ART could reduce

intestinal inflammation in weaned piglets and enhance intestinal

immunity and digestive capacity (17). There has been increasing

interest in recent years in improving animal health through the use

of ART additives, which have positive effects on various fish species,

including common carp (Cyprinus carpio) (18), rainbow trout

(Oncorhynchus mykiss) (19), Nile tilapia (Oreochromis niloticus)
02
(20), Mozambique tilapia (Oreochromis mossambicus) (Mbokane

and Moyo, 2018), African catfish (Clarias gariepinus) (21), and

largemouth bass (Micropterus salmoides) (22). For instance, the

supplementation of ART to the diet of Litopenaeus vannamei

significantly ameliorated Vibrio parahaemolyticus-induced

intestinal inflammation and poor histomorphology (23). The

primary beneficial impacts of ART include the enhancement of

fish performance by mitigating the immune system and improving

intestinal functionality, nutrient digestibility, and antioxidant

capacity (23, 24). However, the pharmacological and molecular

mechanisms are poorly understood despite the recognized

therapeutic benefits of ART.

Systems pharmacology is a burgeoning field that amalgamates

aspects of pharmacology, drug target networks, and

pharmacodynamics. The holistic approach it embraces is congruent

with the principles of trellis-coded (TCM) modulation (25). However,

systems pharmacology has been relatively understudied in the realm of

aquaculture. It is noteworthy that our preceding experiments

confirmed that dietary ART enhanced the growth performance and

nonspecific immunity of H. otakii (data not shown). Therefore, this

study set out to assess the molecular mechanisms of ART via active

compound screening, therapeutic target prediction, and experimental

verification to provide the basic data for the research and development

of exclusive feed additives for H. otakii.
2 Materials and methods

2.1 Putative target protein and IID-
associated protein screening

The artemisinin was searched in the Traditional Chinese Medicine

Systems Pharmacology Database (TCMSP, http://tcmspw.com/

tcmsp.php) to obtain its corresponding active ingredients and targets,

and then these targets were imported into the UniProt database

(https://www.uniprot.org/), and the organism was selected for

“Zebrafish (Danio rerio)”.

The DrugBank database (https://go.drugbank.com), Online

Mendelian Inheritance in Man (OMIM) database (https://omim.org),

Genecards database (https ://www.genecards.org) , and

Pharmacogenomics Knowledgebase (PHARMGKB) database (https://

www.pharmgkb.org) to search for IID-related targets. The active goals
frontiersin.org

http://tcmspw.com/tcmsp.php
http://tcmspw.com/tcmsp.php
https://www.uniprot.org/
https://go.drugbank.com
https://omim.org
https://www.genecards.org
https://www.pharmgkb.org
https://www.pharmgkb.org
https://doi.org/10.3389/fimmu.2023.1198902
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Gu et al. 10.3389/fimmu.2023.1198902
were searched from the Genecards database with a relevance score of ≥

10 as a screening standard.
2.2 Gene Ontology and Kyoto
Encyclopedia of Genes and Genomes
Pathway Enrichment and Network
Constructions

The targets were entered into the DAVID database (https://

david.ncifcrf.gov) for Gene Ontology (GO) and Kyoto Encyclopedia

of Genes and Genomes (KEGG) pathway enrichment analyses.

Zebrafish and 0.05 were chosen as the species and p-value limit ,

respectively. The −log10 (p)- values for enrichment results were

sorted from highest to lowest.

The targets were entered into Cytoscape 3.8.2 software for

significance screening. The overlap between ART targets and disease

targets was calculated using the Venny platform 2.1.0 (https://

bioinfogp.cnb.csic.es/tools/venny), and the intersecting targets were

then entered into the STRING 11.0 platform (https://cn.string-

db.org) to create a PPI network plot, where the species and “medium

confidence” were identified as Zebra fish and 0.400, receptively.
2.3 Molecular docking

The three target gene sequences were obtained from the

transcriptome database (https://report.majorbio.com/drna/

specimen_general/task_id/b5ml_leh1nhp7g5395igcov5puu) of H.

otakii, and subsequently converted into protein sequences at the

National Center for Biotechnology Information (https://

www.ncbi.nlm.nih.gov/). The software Alphafold 2 (https://

colab.research.google.com/github/sokrypton/ColabFold/blob/

main/AlphaFol2.ipynb#) is used to calculate the highly accurate

structure through the target protein sequence.

The ART ligand was obtained as a PDB coordinate for Drosophila

by downloading it from PubChem and using ChemDraw 3D software.

The ligand follows Lipinski’s “Rule of Five,” which establishes

standards for drug-like characteristics (26). The binding sites were

forecast for individual proteins by Deepsite (https://

www.playmolecule.com/deepsite/). The binding energy of the ligand–

receptor complex was calculated using Auto Dock Vina 1.5.7 software

to simulate ligand entry into the active site of the protein. Nine docking

positions of each ligand–protein complex were predicted based on

computer docking. The protein has a preference for a lower binding

affinity score with the preferred binding orientation of this compound,

which warrants that it be further investigated. The visualization was

performed using Pymol 2.4.0 for three-dimensional (3D) and docking

structures and LigPlot 2.2.5 for two-dimensional (2D) structures.
2.4 Experimental diets and design

The experiment was conducted by adding 600 mg/kg of ART to

the diet in two groups labeled 0 (A0) and 600 mg/kg (D0),

respectively, as shown in Table 1. All the diet materials were
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crushed through a 60-mesh sieve, and the ingredients were mixed

step by step according to the recipe, during which an appropriate

amount of water was added to give them a suitable adhesion and

granulated into 2-mm pellets by a granulator. The diet was dried at

43°C to about 10% moisture, sealed in plastic bags, and maintained

at −20°C.
2.5 Experiment feeding management

H. otakii was obtained through artificial breeding at the Key

Laboratory of Applied Biology and Aquaculture of Fish (Dalian,

China). This experiment followed the regulations of the National

Institute for Animal Research and the Animal Experiment Ethics

Committee of Dalian Ocean University. A total of 60 healthy
TABLE 1 Formulation and proximate composition of the experimental
diets (% dry matter).

Ingredients Dietary ART level (%)

A0 D0

Fish meala 40 40

Soybean mealb 30 30

Caseinc 16 16

Fish oild 7 7

Flourse 2 2

Corn starchf 2 2

Vitamin premixg 1 1

Mineral premixh 1 1

Sodium alginatei 1 1

ARTj 0 0.06

Total 100 100

Proximate composition (%) moisture 9.54 9.51

Protein 50.23 50.36

Lipid 10.54 10.53

Ash 8.09 7.93
fr
aCrude protein: 58%; crude lipid: 7.2%. Purchased from Meiweiyuan Biotechnology Co.,
Qingdao, Shandong, China.
bCrude protein: 42.5%, crude lipid: 2.1%. Purchased from Meiweiyuan Biotechnology Co.,
Qingdao, Shandong, China.
cCrude protein: 86.2%; crude lipid: 1.5%; purchased from Meiweiyuan Biotechnology Co.,
Qingdao, Shandong, China.
dFish oil: purchased from Meiweiyuan Biotechnology Co., Qingdao, Shandong, China.
eCrude protein: 6.2%; crude lipid: 0.9%; purchased from Meiweiyuan Biotechnology Co.,
Qingdao, Shandong, China.
fCrude protein: 0.3%; crude Lipid: 0.1%; purchased from Meiweiyuan Biotechnology Co.,
Qingdao, Shandong, China.
gVitamin premix: 7,000 IU of vitamin A; 50 mg of vitamin E; 200 IU of vitamin D3; 10 mg of
vitamin K3; 20 mg of vitamin B1; 20mg of vitamin B2; 30 mg of vitamin B6; 0.1 mg of vitamin
B12; 80 mg of nicotinic acid; 100 mg of vitamin C; 50 mg of Ca pantothenate; 6 mg of folic acid;
80 mg of inositol (diet per kilogram).
hMineral premix: 5782 mg of MgSO4·7H2O; 100 mg of FeSO4·7H2O; 3,000 mg of NaCl; 150
mg of ZnSO4·7H2O; 50.3 mg of MnSO4·4H2O; 15 mg of CuSO4·5H2O; 1.2 mg of CoCl2·6H2O;
1.5 mg of KI (diet per kilogram).
iSodium alginate: purchased from Meiweiyuan Biotechnology Co., Qingdao, Shandong,
China.
jArtemisinin (ART): purchased from McLin Biotech Co., Shanghai, China.
ontiersin.org

https://david.ncifcrf.gov
https://david.ncifcrf.gov
https://bioinfogp.cnb.csic.es/tools/venny
https://bioinfogp.cnb.csic.es/tools/venny
https://cn.string-db.org
https://cn.string-db.org
https://report.majorbio.com/drna/specimen_general/task_id/b5ml_leh1nhp7g5395igcov5puu
https://report.majorbio.com/drna/specimen_general/task_id/b5ml_leh1nhp7g5395igcov5puu
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/AlphaFol2.ipynb
https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/AlphaFol2.ipynb
https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/AlphaFol2.ipynb
https://www.playmolecule.com/deepsite/
https://www.playmolecule.com/deepsite/
https://doi.org/10.3389/fimmu.2023.1198902
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Gu et al. 10.3389/fimmu.2023.1198902
juvenile fishes (20.1 ± 0.25 g) were selected and randomly placed

into six (30 cm × 75 cm) cages (n = 10) in a circulation pond

(presterilized). The fish were fasted for 24 h before the experiment,

and each diet was fed to three replicate groups. The test fish were

temporarily housed for 1 week to adapt to the environmental

conditions in the laboratory. For 28 days of the trial, feeding was

done (9:00 and 16:00) twice a day and during the natural

photoperiod. Parameters include a water temperature of 17.6°C ±

1.5°C, a salinity of 28 –30, a pH of 7.4 ± 0.3, dissolved oxygen of 7.4

± 0.5 mg/L, and an ammoniacal nitrogen level of no more than 0.1

mg/L. After 4 weeks of rearing, 10 healthy fish per group (10 fish per

tank) were treated with 100 mg/L methane-sulfonate-222 (MS-222,

Sigma, USA). The intestine was quickly obtained and kept at −80°C.
2.6 Edwardsiella tarda challenge

The strain of E. tarda used in the fish infection experiment was

obtained from the Key Laboratory of Seafood Disease Prevention

and Control, Dalian Ocean University. The strains were removed

from the −80°C state. We used sterile test tubes and added 4 mL of

liquid Luria–Bertani (LB) medium and 50 µL of strain. It was then

incubated for 12 h in a shaker incubator under sealed conditions at

37°C. The strains were activated, counted according to the

procedure, and stored at 4°C until use. Each of the nine sterilized

tubes were numbered, and 900 µL of sterile water was added. Test

tube 1 should be filled with 100 µL of the activated strain after it has

been diluted with sterile water at a ratio of 1:10 and add ed into nine

test tubes. The diluted strain in test tubes 7, 8, and 9 should then be

removed and spread evenly over the nutrient agar culture dish. The

control group was given an equal amount of saline. The strains were

then incubated in a constant- temperature incubator for 24 h at 25°

C, and the number of colonies and the concentration of the strain

suspension were calculated. Finally, the strain suspension at the

determined concentration was diluted to the infection

concentration. Briefly, each 0.1 mL of strain contains 1 × 107

colony-forming units (CFU) of bacteria. The calculation formula

is CFU = the number of colonies × dilution times × 5. After 4 weeks

of the feeding trial, the remaining five fish were injected

intraperitoneally with E. tarda (0.1 mL) and continued to be

infected for 48 h (A48 and D48). The fish were then anesthetized

with 100 mg/L MS-222. The samples were preserved at −80°C

for use.
2.7 Histopathology

Histology of the intestine was performed according to Zeng

et al. (27). Intestinal tissues are dehydrated in an alcohol solution

before being embedding in paraffin wax. The slices (5 µm) were

colored with hematoxylin and eosin and closed with neutral

adhesive. The histomorphological structure of four selected

sections was observed with an imaging microscope (Nikon

YS100, Japan).
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2.8 Intestinal biochemical
parameter measurement

The intestinal biochemical indexes were used for the lipase

assay kit (code: A054-1-1), amylase assay kit (code: C106-1-1),

pepsin assay kit (code: A080-1-1), superoxide dismutase assay kit

(code: A001-1-2), catalase assay kit (code: A007-1-1),

malondialdehyde assay kit (code: A003-1-2), total antioxidant

capacity assay kit (code: A105-1-2), and glutathione peroxidase

assay kit (code: A005-1-2) to detect the lipase (LPS), a-amylase

(AMS), pepsin (PEP), superoxide dismutase (SOD), catalase (CAT),

malondialdehyde (MDA), total antioxidant capacity (T-AOC), and

glutathione peroxidase (GSH-Px). These kits were purchased from

the Institute of Biological Engineering (Nanjing, China, http://

www.njjcbio.com/).
2.9 Quantitative real- time PCR analysis

The quantitative real- time PCR analysis was conducted based

on the study of Zhou et al. (28). In brief, RNA was extract ed from

the intestinal tract of H. otakii at −80°C using the Trizol method

(29). The total RNA concentration and quality are determined using

a microspectrophotometer (Uyunpop Photoelectric Technology Co.

Shangdong, China). The cDNA was synthesized by reverse

transcription using the reverse transcription kits (Baisai

Biotechnology Co., Shanghai, China), which used total RNA as a

template and stored at −20°C. The primers for genes were designed

by Primer 5, using b-actin as the housekeeping gene (Table 2), and

the primers of b-actin are based on the study of Diao et al. (30). The

reaction system is as follows: upstream primer: 0.6 mL, downstream
primer: 0.6 mL, 2 × Talent qPCR premix: 10 mL, cDNA: 1 mL,
RNase-Free ddH2O: 7.8 mL, for a total volume of 20 mL. After 3 min

at 95°C, the annealing was carried out at 60°C for 15 s for 40 cycles,

denaturing for about 5 s at 95°C, and the temperature was raised

upward from 55°C to 95°C. A melting curve analysis was

performed. The presence of individual amplicons was confirmed

by agarose gel electrophoresis of the end product. The standard

curves were created with six various dilutions (in triplicate). The

expression analysis results were subjected to the 2−DDCT

approach (31).
2.10 Statistical analysis

The one-way ANOVA was performed on the experimental data

using SPSS 19.0 software (SPSS, Chicago, IL, USA). Data were

expressed in mean ± standard error of the mean (SEM). The

normality of the distribution and the Chi-square values of the

original data were tested using Kolmogorov –Smirnov and Levene’s

test. If at least one hypothesis was not confirmed, a mathematical

transformation was applied. Multiple comparisons between groups

were performed using Duncan’s method. In the figures, * p < 0.05,

** p < 0.01, and *** p < 0.001 are shown.
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3 Results

3.1 Construction and analysis of the
integrated network model

Figure 1 presents the process by which network pharmacology

identifies potential mechanisms of action and provides

experimental validation of the effects of ART on IID. A number

of 15 gene targets were required in the TCMSP database species,

and eight gene targets possessed by Zebra fish were filtered in the

Uniprot software (Figure 2A).

The 209 targets were obtained in the Drugbank database, 44 in

the OMIM database, 900 in the Genecards database, and 688 in the

PHARMGKB database. After dismissing repeat, 418 goals were then

selected. Finally, these goals and eight ART targets were imported

into the Venny 2.1.0 platform to obtain four crossover

goals (Figure 2B).

The four intersecting goals were brought into the STRING 11.0

platform for analysis with a relationship score of > 0.98. The PPI

network is illustrated in Figures 2C, D. There are four proteins, and

one relationship exists between these four proteins. The four pivotal

targets are superoxide dismutase [Mn], mitochondrial (SOD2),

transcription factor p65 (RELA), hypoxia-inducible factor 1-alpha

(HIF1-a), and vascular endothelial growth factor A (VEGF-A).
Frontiers in Immunology 05
3.2 Exploration of ART molecular
mechanism of action

The four crossed goals were entered into the DAVID database

for GO enrichment analysis. The ranked GO enrichment level

entries were picked based on the –log 10 (p)-value and a two-

dimensional bubble plot was created (Figure 3A). The results

indicated that there were 37 enrichment results, of which 25

(65.57%) crucial targets were major concentrated in biological

processes (BP). GO enrichment analysis identified the first 15 BPs

as positive regulation of transcription from RNA polymerase II

promoter in response to hypoxia, oxygen homeostasis,

dopaminergic neuron differentiation, positive regulation of

neuroblast proliferation, cellular response to vascular endothelial

growth factor stimulus, positive regulation of pri-miRNA

transcription from the RNA polymerase II promoter, outflow

tract morphogenesis, lactation, positive regulation of blood vessel

endothelial cell migration, positive regulation of endothelial cell

proliferation, cellular response to interleukin-1, liver development,

response to hypoxia, and cellular response to hypoxia. The one

cellular component (CC) term identifies the transcription factor

complex. The five molecular function (MF) terms were identified by

GO enrichment analysis in the order listed below: transcription

coactivator binding, histone deacetylase binding, enzyme binding,

ubiquitin protein ligase binding, and identical protein binding.

Four core targets were entered into the DAVID database for

enrichment by the KEGG pathway for analysis, and a total of 12

projects were obtained. The two-dimensional bubble chart was

drawn using the projects with p-value (Figure 3B). Among them,

the hypoxia-inducible factor-1 (HIF-1) singling pathway and

chemical carcinogenesis —reactive oxygen species are the main

enrichment areas for the four core targets. Each pathway consisted

of different targets in Table S1.
3.3 Molecular docking

ART was molecularly docked with three targets, including

HIF1-a, RELA, and VEGF-A (Figure 4; Table S2). RELA showed

a high degree of binding to ART through three hydrogen bonds and

five amino acid residues, resulting in a −6. 7- kcal/mol minimum

binding energy. VEGF-A exhibited a high degree of affinity to ART

by six amino acid residues involved in hydrophobic interactions,

with a minimum binding energy of −6.3 kcal/mol. HIF1-a
displayed a higher affinity for ART via two hydrogen bonds and

seven hydrophobic residues, with the smallest binding energy of

−7.4 kcal/mol.
3.4 ART promotes digestion and improves
intestinal structure

The intestinal digestion parameters are presented in

Figures 5A–C. The activities of LPS and PEP were up-regulated at

approximately 1.59- and 1. 32-fold greater in the D48 groups as
TABLE 2 The primer sequences used in the present study.

Gene Primer sequence (5′-3′)

p65-F GACTGCAAACACGGCTACTA

P65-R TGGCCTCATTCACATCCTTC

VEGF-A-F CCTGCCTTTGGATTGGATTTC

VEGF-A-R ACGTCATGTGGACCTCTTTC

HIF1-a-F GCTGGGTGACATAAGAGAGATG

HIF1-a-R TGAAGGCAGCAGAAGTATGG

IL-6-F GTCTGTATCTGGCCGTGATATG

IL-6-R ATGACCGTTACCTGGAGTTTG

TNF-a-F CTTCTACCAGTACGCACATCC

TNF-a-R AACACTCAGACAGCCATACAC

MCP-1-F CCCACTGATGTGCTGAAGAT

MCP-1-R GTTCCCTCCTGCTGGTAAAT

Cyclin D1-F GCCGAGAAGTTGTGCATCTA

Cyclin D1-R AGGTTCCACTTGAGCTTGTT

MMP9-F CCCACTTTGACGATGATGAGT

MMP9-R GTGCAGGTGGTGTAGGATTT

b-Actin CTGGTCTGGATTGGCTGTGA

b-Actin GGAAGGAAGGCTGGAAGAGG
p65, transcription factor p65; VEGF-A, vascular endothelial growth factor A; HIF1-a,
hypoxia-inducible factor 1a; IL-6, Interleukin-6; TNF-a, tumor necrosis factor-alpha;
MCP-1, monocyte chemoattractant protein 1; Cyclin D1, G1/S-specific cyclin D1; MMP9,
metalloproteinase 9.
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D

A B

C

FIGURE 2

Comparison of IID targets and ART targets. (A) ART-target network analysis diagram and types of ART target proteins. (B) Venn 2.1.1 diagram of IID-
related targets and ART targets; (C) The “ART -Target -IID” network diagram. The PPI network of IID targets and ART targets was analyzed by
STRING 11.0. Network nodes represent proteins and margins indicate the protein–protein interactions. Known interactions: light blue edges are
representative of curation from the database, and pink edges represent an experimental determination; yellow edges are representative of text
mining, and black edges are representative co-expression. (D) PPI network of protein –protein association was verified by Cytoscape 3.8.2. ART,
artemisinin; IID, intestinal immune disease.
FIGURE 1

The schematic diagram illustrates the idea and workflow of the study. ART, artemisinin; IID, intestinal immune disease; GO, Gene Ontology; KEGG,
Kyoto Encyclopedia of Genes and Genomes; PPI, protein –protein interaction.
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A B

FIGURE 3

Enrichment analysis of pathways and processes. (A) Gene Ontology (GO) functional enrichment analysis. DAVID, the annotation. Visualization and
integrated discovery. (B) Enrichment analysis of the Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway. The bubble maps of the
top 12 bp projects.
FIGURE 4

The models of molecular docking, active site, and binding range of molecules are shown with a schematic diagram of ray tracing. (A) ART with HIF1-
a. (B) ART with VEGF-A. (C) ART with RELA (p65).
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compared to the A48 groups. There were no significant effects on

AMS activities between the groups (p > 0.05).

The intestinal mucosa was intact in the A0 group, and the

intestinal villi were tightly arranged and largely free of

inflammatory cell infiltration. In the A48 group, the intestinal

mucosa was broken, the gap between the intestinal villi was

increased, and the inflammatory cell infiltration was severe. In the

D0 group, the intestinal mucosal structure was restored, the gap

between the intestinal villi was reduced, and a few inflammatory

cells appeared (Figure 5).
3.5 ART treatment improved intestinal
antioxidant capacity in H. otakii

The intestinal antioxidant parameters are presented in Figure 6.

In the A48 group, the SOD and T-AOC were 92.87 and 0.25 U/mg

prot, respectively; in the D48 group, their activities were 173.10 and

0.96 U/mg prot. The activities of SOD and T-AOC in A48 were

markedly decreased by approximately 1.86- and 3. 84-fold greater as

compared to the D48 group (p < 0.05). In the A48 group, the

activities of CAT and GSH-Px were 11.33 U/mg prot and 43.08

µmol/L; in the D48 group, their activities were 18.57 U/mg prot and

75.15 µmol/L. The activities of CAT and GSH-Px in A48 were

markedly downregulated approximately 1.64- and 1. 74-fold greater

as compared to the D48 group (p < 0.05). Moreover, the content of

MDA was 2.03 and 1.26 nmol/mg prot in the A48 group and D48
Frontiers in Immunology 08
group, respectively, and the MDA activity was significantly

increased by approximately 3. 69-fold greater in the A48 groups

compared with the D48 group (p < 0.05).
3.6 ART modulated the inflammation and
activation of the HIF signaling pathways
in H. otakii

The intestinal relative gene expression is presented in Figure 7. In

the A48 group, the mRNA levels of transcription factor p65 (p65),

HIF1-a, andVEGF-Awere 3.84, 1.48, and 8.60, respectively; in the D48

group, their levels were 1.04, 1, and 1.96. The p65, HIF1-a, and VEGF-
Awere markedly downregulated, approximately 3.69-, 1.48-, and 4. 39-

fold greater in the D48 group as compared to the A48 group (p < 0.05).

In the A48 group, the cyclin D1, monocyte chemotactic protein 1

(MCP-1), and matrix metalloprotease 9 (MMP9) were 6.61, 6.63, and

4.15, respectively; in the D48 group, their levels were 0.27, 0.77 and

0.14, respectively. The cyclin D1,MCP-1, andMMP9 were significantly

decreased by approximately 24.48-, 8.61-, and 29. 64-fold greater in the

D48 as compared to the A48 group (p < 0.05). Moreover, the TNF-a
was 1.65 in the A48; in the D48 group, its level was 0.22. The TNF-a
was significantly downregulated approximately 7. 5-fold in the D48

group as compared to the A48 group (p < 0.05). Moreover, the

expression of IL-6 in the D48 group showed a decreasing trend

compared to the A48 group, although there was no significant

difference between the two groups (p > 0.05).
FIGURE 5

The supplementation of ART with digestive enzymes (A–C) alleviated intestinal injury and (D) induced by E tarda in H otakii. Histopathology of the
intestines was used to stain the intestines with H&E (D): (a) A0 group; (b) D0 group; (c) A48 group; and (d) D48 group. Mean values for the identical
indicator with *p < 0.05 and **p < 0.01 were remarkably different.
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4 Discussion

To comprehend the mechanism of ART action on IID in H.

otakii , network pharmacology, molecular docking, and

experimental validation were deployed to illuminate the potential

action and underlying mechanism of ART in treating IID in H.

otakii. Network pharmacology provides an avenue to deeply probe
Frontiers in Immunology 09
into the components and targets of drugs, thereby facilitating their

impact analysis (32). In the present study, a total of eight drug

targets through searches in the TCMSP database and the UniProt

database were procured. ART, the chief active component of

Artemisia annua, was found to have four common targets with

IID. These targets —SOD2, RELA, HIF1-a, and VEGFA —were

utilized to construct the PPI network. Furthermore, the GO
D

A B

E

C

FIGURE 6

The supplementation of ART on antioxidative indices in the intestinal of H otakii. (A) The change of T-AOC in the intestinal tract after ART
administration and infection of E tarda. (B) The change of MDA in the intestinal tract after ART administration and infection of E tarda. (C) The
change of SOD in the intestinal tract after ART administration and infection of E tarda. (D) The change of CAT in the intestinal tract after ART
administration and infection of E tarda. (E) The change of GSH-Px in the intestinal tract after ART administration and infection of E tarda. Mean
values for the identical indexes with *p < 0.05 and **p < 0.01 were significantly different; ns, no remarkable differences between groups.
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FIGURE 7

The supplementation of ART with immune genes in the intestinal tract of H otakii. (A) The gene level of p65 after E tarda infection and ART
administration. (B) The gene level of HIF1-a after E tarda infection and ART administration. (C) The gene level of VEGF-A after E tarda infection and
ART administration. (D) The gene level of cyclin D1 after E tarda infection and ART administration. (E) The gene level of MMP9 after E tarda infection
and ART administration. (F) The gene level of MCP-1 after E tarda infection and ART administration. (G) The gene level of TNF-a after E tarda
infection and ART administration. (H) The gene level of IL-6 after E tarda infection and ART administration. Mean values for the identical indicator
with *p < 0.05, **p < 0.01 and ***p < 0.001. were significantly different ; ns, no remarkable differences between groups.
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enrichment analysis of the hub gene in BPs indicated that the cross-

targets were chiefly linked to responses to oxidative stress,

inflammation, hypoxia, and angiogenesis, which aligns with the

pathological process of IID (33–35). Subsequent exploration via the

KEGG pathway disclosed that the four core targets were primarily

concentrated in the chemical carcinogens, reactive oxygen species,

and HIF-1 signaling pathway. Crucially, molecular docking results

validated that ART has a pronounced effect on the alleviation of

IID, providing an excellent foundation for subsequent fish

experiments. This process revealed that ART could bind well to

these three target proteins. The HIF1-a and RELA proteins

established more stable hydrogen bonds with ART, which allows

the ART ligand to bind stably to the active site of the corresponding

protein. Simultaneously, hydrophobic interactions exist between

the small molecular ligands and protein residues, which serve to

augment the stability of compounds in the protein’s active

pocket (36).

In fish, the intestine holds substantial responsibility for nutrient

digestion and absorption, as well as disease defense. It is accounted

for approximately 70% of the immune function of fish (23, 37). Fish

IID is strongly correlated with its intestinal digestibility (38). For

instance, the digestive enzymes pepsin, lipase, and a-amylase have a

vital role in the digestion and absorption of nutrients, which is one

of the methods to measure the dietary adaptability of fish (39). PEP

is a digestive protease that breaks down protein in the dirt into small

peptide fragments (40). LPS is a kind of enzyme with a variety of

catalytic capacities that can catalyze hydrolysis, alcoholysis,

esterification, transesterification, and the reverse synthesis of

triacylglycerol esters and other soluble esters (41). The AMS is

found mainly in the digestive system of aquatic animals (42). This

study indicated that the activities of LPS and PEP in the D0 and D48

groups were higher than those in the A0 and A48 groups, which

suggests that ART could improve the digestive capacity of H. otakii.

Moreover, the intestine is the body’s first barrier against pathogenic

bacteria, and the intestinal villi and mucus immune complexes play

a vital role in intestinal function. In fish, the composition of

intestinal epithelial cells and colonies is essential for intestinal

immunity. The pathogenic bacteria stimulate intestinal immunity

by disrupting the intestinal barrier through mucus secreted by

cupped cell inhibition as well as by antimicrobial proteins,

chemokines, and cytokines (43). Also, pathogenic bacteria can

attack in vivo immunity by disrupting the composition of

intestinal microorganisms through signals from intestinal

immune cells, thereby inhibiting the maturation of immune

tissues, antibody production, differentiation of T cells, and

activation of the phagocytic response of macrophages (44, 45). It

was found that the intestinal injury in the D48 group was relieved,

inflammatory cells were reduced, and the villus space was tight in

the intestine of H. otakii, which all suggest that ART could

ameliorate the IID of H. otakii by improving its intestinal structure.

In this study, the PPI protein interaction network map showed

that artemisinin may improve IID through the SOD2/NFkB/HIF1-

a/VEGF-A signaling pathway. IID can cause excessive reactive
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oxygen species (ROS) production, which destroys the intestinal

antioxidant system and leads to intestinal oxidative stress (46). ROS

plays different roles in cell and tissue health, especially in oxidative

stress (47). Fish IID disrupts the balance of ROS, which results in

oxidative stress and damage to host DNA, thus inducing protein

oxidation and cell damage (48). In fish, ROS are dissolved into

water and oxygen molecules by enzymes such as SOD, CAT, and

GSH-Px (49). SOD and CAT are significant enzymes that catalyze

the transformation of highly active superoxide radicals into

hydrogen peroxide or oxygen molecules (50). As a superoxide

producer, SOD2 encodes manganese superoxide dismutase in the

mitochondrial matrix and secreted superoxide dismutase. SOD2 has

a critical position in phagocyte counts and innate immunity in fish

by regulating mitochondrial superoxide (51). GSH-Px removes

hydrogen peroxide and lipid peroxides from the body (52). MDA

comes from the interpretation of reactive oxygen species in

polyunsaturated lipids and indirectly reflects the damage of

cellular oxidative stress (53). T-AOC reflects the ability of the fish

body to inhibit the formation of lipid peroxide (54). This study

showed that the activities of SOD, CAT, T-AOC, and GSH-Px were

downregulated, andMDAwas increased in the intestinal tract in the

A48 groups compared with the A0 groups. This situation was

changed in the D48 groups, indicating that ART could enhance

the antioxidant performance of the intestinal tract of the IID in

H. otakii.

ART allows for cell surface binding to certain toxins, viruses,

and fungi, thereby reducing the antigen’s absorption and boosting

the animal’s cellular and humoral immune reactions (55, 56). NFkB
is an essential transcription factor that is subject to regulation by

intracellular redox status, which can be induced by ROS to the

expression of genes involved in immune and cellular resistance

networks and is a major regulator of intestinal epithelial

inflammation and immune homeostasis (57). p65 is one of the

combined forms of NFkB proteins (58), and it has a vital function in

the pathogenesis of chronic intestinal inflammation (59). Moreover,

IID activates downstream proinflammatory factors such as IL-6 and

TNF-a , which are mainly regulated by NFkB-activated
endotoxemia by upregulating the levels of IL-6 and TNF-a,
inducing intestinal mucosal injury and chronic inflammatory

bowel disease (60). On the other hand, the imbalance of the

activities of these inflammatory cytokines will destroy the relative

stability of the intestinal flora, thereby activating the intestinal

epithelial HIF-1 signaling pathway (61), which reflects the

intestinal resistance to exogenous bacteria (62). MCP-1 is a small

inducible chemokine that is an effective chemotactic agent for

monocytes, T lymphocytes, natural killer cells, basophils, and

dendritic cells and whose processes can promote cell infiltration

and inflammation (63). VEGF-A is one of the target genes of the

HIF1-a signal pathway, which is considered to be a major cytokine

related to angiogenesis (64). Scaldaferri et al. (65) point out that

VEGF-A triggers IID by inducing intestinal angiogenesis and

inflammation. VEGF-A, as the target gene protein of HIF-la, can
promote the growth of vascular endothelial cells and enhanced the
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1198902
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Gu et al. 10.3389/fimmu.2023.1198902
penetration of vasculature (66). MMP9 is the most complex family

of matrix metalloproteinase and has a vital position in cell

infiltration (67). MMP9 degrades extracellular matrix components

and promotes tissue remodeling, thereby activating the binding of

VEGF-A (57). Cyclin D1 has a regulatory effect on the cell cycle.

Mutation and overexpression of the cyclin D1 gene can change the

process of the cell cycle and contribute to proliferation. The

activation of the VEGF-A-induced mammalian TOR (mTOR)

signaling cascade can promote the growth of immune cells by

activating cyclin D1 (68). In this study, supplementation with ART

at 600 mg/kg resulted in decreased mRNA levels of p65, HIF1-a,
VEGF-A, IL-6, TNF-a, MCP-1, MMP9, and cyclin D1 in the

intestinal tract of H. otakii after E. tarda infection. These results

suggest that ART could improve IID in H. otakii.

This investigation uncovers the potential mechanism of action

for ART in addressing IID, utilizing a network pharmacological

approach. This illuminates a further theoretical foundation (SOD2/

NFkB/HIF1-a/VEGF-A) for appraising the protective mechanism

exerted by ART on the intestine of H. otakii (refer to Figure 8).

When supplemented at a dosage of 600 mg/kg in diets, ART

significantly enhanced the immune capabilities, along with

fostering improved digestion and growth in H. otakii (data not

presented). In essence, dietary ART can be deployed as an

efficacious additive to augment intestinal health in H. otakii and

alleviate intestinal immune disease.
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FIGURE 8

KEGG enrichment pathway revealed the interaction between ART and IID of H. otakii. It is possible that ART inhibits the SOD2/NFkB/HIF1-a/VEGF-A
pathway by enhancing antioxidant capacity and then inhibiting cell proliferation (cyclin D1), infiltration (MMP9), angiogenesis (VEGF-A), and the levels
of major proinflammatory cytokines (TNF-a, IL-6, and MCP-1), which are important in preventing the acute intestinal damage caused by E. tarda and
maintaining intestinal function.
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