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Classifying flow cytometry data
using Bayesian analysis helps to
distinguish ALS patients from
healthy controls
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Introduction:Given its wide availability and cost-effectiveness, multidimensional

flow cytometry (mFC) became a core method in the field of immunology

allowing for the analysis of a broad range of individual cells providing insights

into cell subset composition, cellular behavior, and cell-to-cell interactions.

Formerly, the analysis of mFC data solely relied on manual gating strategies.

With the advent of novel computational approaches, (semi-)automated gating

strategies and analysis tools complemented manual approaches.

Methods: Using Bayesian network analysis, we developed a mathematical model

for the dependencies of different obtained mFC markers. The algorithm creates a

Bayesian network that is a HC tree when including raw, ungated mFC data of a

randomly selected healthy control cohort (HC). The HC tree is used to classify

whether the observed marker distribution (either patients with amyotrophic lateral

sclerosis (ALS) or HC) is predicted. The relative number of cells where the

probability q is equal to zero is calculated reflecting the similarity in the marker

distribution between a randomly chosen mFC file (ALS or HC) and the HC tree.

Results: Including peripheral blood mFC data from 68 ALS and 35 HC, the

algorithm could correctly identify 64/68 ALS cases. Tuning of parameters

revealed that the combination of 7 markers, 200 bins, and 20 patients

achieved the highest AUC on a significance level of p < 0.0001. The markers

CD4 and CD38 showed the highest zero probability. We successfully validated

our approach by including a second, independent ALS and HC cohort (55 ALS

and 30 HC). In this case, all ALS were correctly identified and side scatter and

CD20 yielded the highest zero probability. Finally, both datasets were analyzed
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by the commercially available algorithm ‘Citrus’, which indicated superior ability

of Bayesian network analysis when including raw, ungated mFC data.

Discussion: Bayesian network analysis might present a novel approach for

classifying mFC data, which does not rely on reduction techniques, thus,

allowing to retain information on the entire dataset. Future studies will have to

assess the performance when discriminating clinically relevant differential

diagnoses to evaluate the complementary diagnostic benefit of Bayesian

network analysis to the clinical routine workup.
KEYWORDS
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1 Introduction

Single-cell analysis is an emerging tool that enables the

investigation of individual cells, providing insights into cellular

heterogeneity, cellular behavior, and cell-to-cell interactions. With

the advent of advanced technologies such as single-cell sequencing,

proteomics, and high-resolution imaging, there has been a rapid

expansion of single-cell analysis applications in diverse medical

fields. However, the complexity and variability of single-cell data

present significant challenges in terms of data analysis,

interpretation, and integration.

Multidimensional flow cytometry (mFC) presents a well-

established, widely available, and cost-effective method allowing

for the broad characterization of different immune cell populations.

Historically, analysis of mFC data largely relied on manual gating

strategies. Biological knowledge provides the basis for the gating

process which can be advantageous in certain cases, however, it also

comes with several limitations, e.g., the limited possibility to

discover novel cell populations and marker dependencies. In

addition, manual gating is a time-consuming process prone to

investigator bias. The development of (semi-)automated gating

strategies and analysis tools tried to overcome these roadblocks

with multiple algorithms achieving outcomes comparable, or even

exceeding, manual strategies (1–3). In this context, different stages

of the manual analysis pipeline were automated. For example,

algorithms to identify and cluster cell subsets, to predict certain

outcome measures, or algorithms for sample classification (diseased

vs. non-diseased) were developed (1). These algorithms identify cell

populations based on their similarity. Subsequently, the outcome of

interest (e.g., diseased vs. non-diseased) is predicted based on

information obtained from cellular subsets (3). A potential

limitation to this approach is introduced by the need to reduce

the dataset to specific cellular subsets, thereby potentially losing

upstream biological information.

We here propose a novel unbiased approach to the analysis of

mFC data using Bayesian analysis. This approach was designed as a

classification task that allows to discriminate between two or more

groups of data. To test this strategy, we investigated standard mFC

data from diseased and non-diseased subjects. We chose to study
02
immune cells from patients with amyotrophic lateral sclerosis

(ALS) and healthy controls (HC). The latter were used to

construct a data tree. Next, HC and ALS datasets were tested

against this data tree. The utility of Bayesian analysis to

distinguish ALS patients from HC when using peripheral blood

(PB) mFC raw data as input for the algorithm was confirmed in two

independent cohorts with different mFC panels. Taken together,

Bayesian analysis might provide a strategy for automated

interpretation of mFC data without the need for data

dimensionality reduction.
2 Methods

2.1 Multidimensional flow cytometry
data acquisition

MFC raw data (Flow Cytometry Standard [FSC]) from a

previously published study analyzing immune cell changes in the

PB of ALS patients compared to HC were used (4). In total, cohort I

(Dresden cohort) consisted of 68 ALS patients and 35 HC. In this

cohort, the following markers were assessed for all patients: FSC-A,

SSC-A, CD11b, CD45RA, CD45RO, CD25, CD38, CD3, CD20,

CD8, CRTH2, CCR7, CD11c, CD4. Sample preparation and the

flow cytometry staining protocol have been previously described in

detail (4). In brief, PB samples were collected in lithium-heparin

tubes (Sarstedt) and Peripheral Blood Mononuclear Cells (PBMCs)

were isolated by Ficoll–Hypaque (Biochrom) density centrifugation.

Surface staining with antibodies targeting the above-mentioned

antigens (BD Bioscience) was performed. Samples were analyzed

using a LSR-Fortessa (BD Biosciences). To validate our approach,

we included a second cohort (Magdeburg cohort) containing 55

ALS patients and 30 HC. For this cohort, blood was collected in

tubes containing Ethylenediaminetetraacetic acid (EDTA) (BD

Vacutainer) and further processed as previously described (5).

Briefly, blood was lysed with 1X red blood cell lysing buffer

(BioLegend, 10X) and washed before surface immunostaining.

The following markers were analyzed for all patients: FSC-A,

SSC-A, CD16, HLA-DR, CX3CR1, CCR2, CD86, CD14, and
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CD66b, CD19, CD56, CD3 (serving as Dump channel). All FSC files

were uploaded to the platform OMIQ from Dotmatics

(www.omiq.ai, www.dotmatics.com) and were converted into csv

files containing scaled values for every individual channel and each

single cell. The csv files were then saved in the Excel standard

format, which was used as input for the analysis using graphical

models, more precisely, Bayesian networks. The workflow

compared to a conventional mFC analysis is illustrated in

Figure 1. The study was conducted in accordance with the

Declaration of Helsinki and was approved by the local ethics

committees (Ethikkommission an der Technischen Universität

Dresden (EK393122012) and Ethik-Kommission der Otto-von-

Guericke-Universität in Magdeburg (07/17 and 11/21)).
2.2 Mathematical modeling

2.2.1 Summary
We propose a mathematical model for the dependencies of the

different obtained markers using a graphical model, more precisely,

a Bayesian network also called directed model or belief propagation

network, see e.g (6–12). The purposes of constructing such a

Bayesian network is twofold. On the one hand, we use the

network for structured learning, i.e., for designing dependencies

across the markers, and on the other hand, we use it for inference on

new patient data, i.e., classifying whether or not the observed

marker distribution is predicted by the Bayesian network.

2.2.2 Methodology
We propose to analyze the data available through the mFC data

acquisition in the following way: We assume that the two cohorts of

patients, ALS and HC, can be differentiated by their marker

distribution. For each cohort, we are given a set of data points X_{i,j}
Frontiers in Immunology 03
where i indexes the number of cells and j indexes the number of

markers. The value of X_{i,j} denotes the measured number of markers

j of cell i. The range of i is typically of the order of 10^6 to 10^7 while

the range of j = 1,…,J for our mFC data. Since the number of cells is

large compared to the number of markers, we assume that each cell i is

a realization of an unknown J-dimensional random variable x,

equivalently, each data set (X_{i,1}, … X_{i,J}) is considered as single

realization of the random variable x on the probability space R^J and

the canonical set of Borel measures. For simplicity, we assume that x is

absolutely continuous with respect to the Lebesgue measure. We

propose to develop a model for the probability density x → p(x) of

the random variable x, i.e., R(x = x) = p(x). We assume that the cohorts

ALS and HC can be distinguished by their respective (unknown)

probability density function p.
2.2.2.1 Modeling and approximation of p

The probability density function p: R^J → [0,1] is an unknown

function in J variables. We use marginal statistics of x to derive (an

approximation to) p. We approximate the j = 1,.J, marginal

probabilities of x (over R) by

p _ j(y)   =   INTEGRAL   p(x _ 1,  …   x _ j − 1f g,   y,   x _ j + 1f g,  …  ,   x _ 14f g)
  dx _ 1  …   dx _ j − 1f g   dx _ j + 1f g  …   dx _ Jf g

using the data on markers j over all cells, see Supplementary

Figure 1. Due to the large number of cells, we expect this

approximation to be accurate. However, in order to obtain the

model of the cohort we require to have p. This function is still a J-

dimensional probability distribution that we assume can be

approximated by products of first and second-order probability

distributions Q(x_j|x_k), for some j, k, see formula (1) in Ref 7:

p(x)  ∼   q(x) = PRODUCT _ i  Q(x _m(i)   =   x _m(j(i))
FIGURE 1

Workflow compared to conventional gating. Created with BioRender.com.
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Mathematically, the obtained approximate probability

distribution x → q(x) is a Bayesian network. Bayesian networks

belong to the class of graphical models for probability distributions

and assign each event a certain probability, see also (6) and

references therein. Note that the previous assumption implies that

each marker x_{m(i)} is assumed to be conditioned on at most one

other marker x_m(j(i)). This induces a dependence tree between the

markers. It also breaks the complexity of the problem, having now

only to determine the corresponding marker relations. From a

numerical point of view, a basic method for constructing such a

Bayesian network is given by the Chow-Liu algorithm (7).

2.2.2.2 Algorithm to obtain q

In the following, we outline the basic algorithmic steps to

construct the approximation q. At first, we normalize the data X

column-wise. Then, we construct the marginal distributions p_j for

each marker j = 1,…, J. Those are then binned in order to obtain

discrete distributions with N_x number of bins for each marker j.

Theoretically, we could approximate the obtained marginal

distributions by (binned) Gaussian distributions, but the results did

not show any improvement using this procedure. Using the now

discrete marginal distributions we apply the Chow-Liu algorithm and

obtain the mutual information distribution of each combination of

markers, see formula 2 in Ref 7. This requires to compute n(n-1)/2

distributions on the bins Nx, where n is the number of markers.

Then, Kruskals algorithm is applied to obtain the minimal spanning

tree where the weights are given by the mutual information. The tree

then defines the indices m(i) and m(j(i)) in the probability density q.

The probability Q is obtained from the mutual information of the

previous step. This fully defines q. Assuming that marker

distributions are different between the ALS and HC cohort, we

repeat the previous approach for each cohort separately and obtain

corresponding probability densities q_ALS and q_HC, respectively.

This completes the structural learning part.

2.2.2.3 Inference on new patient data

Including a new patient with cell-marker data Y_{i,j}, we

propose the following method to classify this patient. We

compute the likelihood that Y_{i,j} is a realization of x using

the Bayesian network q. For each cell i, the (normalized) values

Y_{i,1}, … Y_{i,J} represent a point in the J-dimensional marker

space. Hence, the probabilities for i = 1,…, q(Y_{i,1}, … Y_{i,J})

is evaluated using the previously constructed probability density.

If this probability is equal to zero, we assume that this cell data is

an unlikely realization of x. Hence, we propose to solely count

the relative number of cells for this patient that leads to a

probability of zero and classify the patient as ALS or HC using

this relative number as outlined in sections 3.2. and 3.3.

2.2.2.4 Inference on relevant markers

Since q is composed of first and second-order probability density

functions Q(x_j|x_k) a statistic on the markers that yield a zero

probability is obtained. Here, we count the relative number of

occurrences of cell markers j and k, respectively, that lead yields Q

equal to zero (and hence leads to q equal to zero). For the new patients

the statistics of those indices is reported in sections 3.2. and 3.3.
Frontiers in Immunology 04
2.3 Citrus (cluster identification,
characterization, and regression)

A commercially available algorithm to classify mFC data

(CITRUS) was applied to the dataset to compare the performance

of Bayesian analysis with a previously validated approach. Citrus

presents a data-driven approach to identify stratifying cell

subpopulations in a mFC dataset (2). To run Citrus, the OMIQ

software from Dotmatics (www.omiq.ai, www.dotmatics.com) was

used. For this, FCS files were uploaded to the OMIQ platform and

the information on the group (diseased vs. non-diseased) was added

to the file metadata. As the algorithm is not constructed for very

high cell numbers, subsampling of cells (10 000 per sample) was

performed prior to initiating the Citrus workflow. For Citrus,

default settings were used and ‘medians’ was selected as

‘Feature Type’.
2.4 Visualization and statistical analysis

The software ‘GraphPad Prism’ (version 9.0.0) was used for

downstream analyses and data visualization. The number of zeros

was compared between the ALS and HC group. As normal

distribution of data could not be assumed based on the

D’Agostino & Pearson test, groups were compared using the

Mann-Whitney U test. A p-value of ≤ 0.05 was considered

significant. The performance of the classification based on

sensitivity and specificity represented by the area under the curve

(AUC) was assessed by receiver operating characteristic (ROC)

analysis. Figures were created with the software ‘Inkscape’ (version

1.2) (13).
3 Results

3.1 Basic cohort characteristics

MFC data from two German centers (Dresden and Magdeburg)

were used. In total, data of 123 ALS patients and 65 HC were

included. Basic demographic and clinical characteristics are

displayed in Table 1. The Dresden cohort was previously

described in detail (4).
3.2 Unsupervised analysis of mFC data
using Bayesian analysis can differentiate
ALS patients from HC

Previous studies have highlighted the potential of mFC in the

diagnostic workup of neurological disorders (3, 14, 15). Given the

fact that conventional gating of mFC data is usually time consuming

and investigator-dependent, different (semi-automated) approaches

have been introduced to the analysis of mFC data. As those

algorithms often focus on specific cell populations (and their

relative differences) and the number of input cells is limited, we

developed a mathematical model for the dependencies of the
frontiersin.org
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different obtained markers using a Bayesian network. The model

uses raw mFC data of a randomly selected control cohort (HC,

marker intensities of every single cell in the dataset) as input to

create a Bayesian network that is a HC tree. This tree was then used

for classifying whether or not the observed marker distribution

(either ALS patients or HC) is predicted. To this end, the algorithm

computes for each cell the probability q outlined above. We count

for each patient the relative number of cells where this probability q

is equal to zero (NoZ). This NoZ reflects the similarity in the

distribution of mFC markers between a randomly chosen mFC file

(either ALS or HC) and the HC data tree. Here, a low NoZ indicates

high similarity between an individual and the pooled HC cohort.

In order to assess the performance of the algorithm determined

by different parameters (number of included markers, bins, and

number of patients) we performed ROC analysis. We observed that

the algorithm is able to determine whether a tested individual

belongs to the ALS or HC cohort with a high AUC (> 0.90)

irrespective of the number of included markers, bins, and number

of patients in the pooled HC cohort (Supplementary Table 1). To

identify the best combination of parameters, we compared AUC

and p-values for the different combinations and identified the

combination of 7 markers, 200 bins, and 20 patients to

demonstrate the highest performance, measured by the AUC, on
Frontiers in Immunology 05
a significance level of p < 0.0001 (Supplementary Table 1). Next, we

randomly selected different combinations of 7 markers, which were

included in the algorithm. The combination of SSC-A, CD38,

CD45RO, CD20, CD11b, CD4, and FSC-A reached the highest

AUC (0.97) on a significance level of p < 0.0001 (Figure 2A;

Supplementary Table 2). Here, ALS showed a median of 19.661

(0.071-53.526) NoZ while HCs featured a median of 0.102 (0.057-

0.250) NoZ (Figure 2B). For 4 ALS patients, the NoZ was ≤ 0.25. In

turn, 64/68 ALS patients were correctly identified (Figure 2B).

Furthermore, we counted the relative number of occurrences of

cell markers that lead yields Q equal to zero. In this regard, CD4 and

CD38 obtained the highest counts (Supplementary Table 3). Finally,

we explored whether a reduction in the input cell number impacts

the performance of the algorithm. We found that a lower input cell

number leads to lower AUC values (1 000 cells: AUC = 0.68, p =

0.0346; 10 000 cells: AUC = 0.93, p< 0.0001; 100 000 cells: AUC =

0.93, p < 0.0001; 1 000000 cells: AUC = 0.95, p < 0.0001).

In summary, applying a Bayesian network, we were able to

differentiate ALS patients from HC with a high AUC when using

mFC raw data as input for the algorithm. The combination of 7

markers, 200 bins, and 20 patients showed the highest AUC on a

significance level of p < 0.0001. The markers CD4 and CD38 led

most often to the zero probability (Q equal to zero).
A B

FIGURE 2

Bayesian analysis differentiates diseased patients from healthy controls. (A) ROC analysis including the NoZ for every patient from the ALS and HC
cohort. The NoZ was calculated by Bayesian analysis and reflects the similarity in the distribution of mFC markers on a per cell level between an
individual and the pooled HC cohort. (B) Box plots illustrating the NoZ of the ALS and HC cohort: the box extends from the 25th to 75th percentiles
and the median is depicted by the black line in the middle of the box. Min and max values are shown by whiskers. ALS, amyotrophic lateral sclerosis;
AUC, area under the curve; CI, confidence interval; HC, healthy control; NoZ, number of zeros; Npts, number of patients; Nx, bins; ROC, receiver
operator curve; Std, standard. ****p < 0.0001.
TABLE 1 Basic cohort characteristics.

ALS (D) HC (D) ALS (M) HC (M)

Number of individuals 68 35 55 30

Sex [% female] 58.8 38.7 44.0 46.7

Age at sample collection (median with range) [years] 66.9 (41.4-85.2) 61.7 (26.0-84.0) 64.5 (23.0-81.0) 64.5 (23.0-82.0)

Disease duration (median with range) [years] 1.7 (0.1-12.0) n/a 1.67 (0-15.33) n/a

ALSFRS-R (median with range) 36 (0-47) n/a 37 (14-47) n/a
ALS, Amyotrophic lateral sclerosis; ALSFRS-R, revised Amyotrophic Lateral Sclerosis Functional Rating Scale; D, Dresden; HC, healthy controls; M, Magdeburg; n/a, not applicable.
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3.3 Bayesian analysis can reliably
distinguish ALS patients and HC using
different mFC panels

To validate our approach, we included an independent cohort

consisting of 55 ALS patients and 30 HC (Magdeburg cohort). MFC

markers assessed in this cohort differed from the Dresden cohort as

described in detail in themethod section.We again compared the AUC

and p-values, calculated by ROC analysis, for different combinations of

7 markers (Supplementary Table 4). The combination of the following

markers reached the highest AUC (1.0) when comparing ALS patients

and HC to the HC tree, respectively: CD14, FSC-A, CCR2, CD16,

Lineage, HLA-DR, CXCR1 (Figure 3A; Supplementary Table 4). The

median NoZ for the ALS cohort was 2.519 (0.130 - 24.055) while HC

subjects showed a median NoZ of 0.023 (0.005 - 0.050).

Correspondingly, the algorithm identified all ALS and HC correctly

(Figure 3B). We again counted the relative number of occurrences of

cell markers that lead yields Q equal to zero. For theMagdeburg cohort,

SSC-A and the marker CD20 yielded the highest counts

(Supplementary Table 3).

Taken together, we were able to validate that Bayesian analysis

can reliably differentiate ALS patients from HC when using mFC

raw data as input for the algorithm.
3.4 Bayesian analysis shows superior ability
to Citrus to classify samples based on
disease status when including raw,
ungated mFC data

Finally, we compared the performance of the Bayesian analysis

with a previously validated approach to classify mFC data. For this,

the commercially available algorithm ‘Citrus’ was used (see

methods). First, mFC data from cohort I (Dresden cohort) were

used as workflow input. Citrus constructs several models with
Frontiers in Immunology 06
increasing complexity by using a range of regularization

thresholds. Using K-fold cross-validation, error rates of these

models are estimated. Cross-validation is performed and a plot

showing the fit of all models as a function of the regularization

threshold is generated. For the Dresden cohort, the error rate

ranged from > 25 to < 50, depending on the regularization

threshold (Figure 4A). We repeated the analysis for the second

cohort (Magdeburg cohort). In this case, the model error rate was

lower (< 25 for most regularization thresholds) compared to the

Dresden cohort (Figure 4B).

In summary, Bayesian analysis shows superior ability to classify

mFC data based on the disease status compared to Citrus when

including raw, ungated mFC data.
4 Discussion

MFC is a valuable tool for analyzing the physical and chemical

properties of cells (14–16). However, the analysis of flow cytometry

data can be a challenging task, especially when dealing with large

datasets. Automated mFC analysis is becoming increasingly

important to improve the accuracy, efficiency, and reproducibility

of flow cytometry experiments. One of the main advantages of mFC

analysis using automated algorithms is the ability to standardize the

analysis process and reduce the inter-operator variability. This can

lead to more reproducible results and facilitate the comparison of

data across different studies. Additionally, automated analysis is

time-efficient and resource saving, allowing researchers to focus on

more complex analyses and interpretations.

Currently, a plethora of tools are available for automated

analysis of mFC data (1, 17). Many of these algorithms employ

dimensionality reduction techniques to reduce dataset complexity.

While this approach can improve interpretability, dimensionality

reduction also introduces a set of limitations: First, these algorithms

can result in the loss of information contained in the original high-
A B

FIGURE 3

Validation of the utility of Bayesian analysis to classify patients based on the disease status using PB mFC data. (A) ROC analysis including the NoZ for
every patient from the ALS and HC cohort. The NoZ was calculated by Bayesian analysis and reflects the similarity in the distribution of mFC markers on
a per cell level between an individual and the pooled HC cohort. (B) Box plots illustrating the NoZ of the ALS and HC cohort: the box extends from the
25th to 75th percentiles and the median is depicted by the black line in the middle of the box. Min and max values are shown by whiskers. ALS,
amyotrophic lateral sclerosis; AUC, area under the curve; CI, confidence interval; HC, healthy control; mFC, multidimensional flow cytometry; NoZ,
number of zeros; Npts, number of patients; Nx, bins; PB, peripheral blood; ROC, receiver operator curve; Std, standard.. ****p < 0.0001.
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dimensional data. This can occur because these algorithms collapse

multiple dimensions into a smaller set of dimensions, thereby

reducing the amount of information available for downstream

analysis (18). Second, dimensionality reduction algorithms can be

prone to overfitting, particularly when the number of dimensions in

the original data is large. This can lead to poor generalization

performance when the reduced-dimensional data are used for

downstream analysis.

To explore strategies for automated mFC analysis while

retaining information on the entire dataset, we constructed an

algorithm centered on Bayesian network analysis (19). A potential

advantage of Bayesian network analysis is that this algorithm allows

to incorporate new patient data into an existing model. As such, a

new set of data may be classified by an established Bayesian network

without the loss of information due to reduction techniques.

Concurrently, Bayesian network analysis is scalable and not

hindered by large numbers of cells to be analyzed. Applying this

approach, we were able to successfully discriminate ALS patients

from HC with a high AUC using mFC raw data as input. The utility

of Bayesian analysis in this context could be validated in a second,

independent cohort of ALS patients and HC using a different mFC

panel. This indicates robust changes in peripheral immune cell

profiles of ALS patients compared to HC. In addition, Bayesian

network analysis can be used to assess the relative number of

occurrences of cell markers that lead yields Q equal to zero

potentially providing novel biological information about the

disease. The lower performance of the algorithm with decreasing

input cell numbers could indicate a relevant impact of low abundant

cell subsets when differentiating between ALS und HC.

Currently, our algorithm is designed to facilitate a classification

task (diseased vs. non-diseased patients). Once established, the
Frontiers in Immunology 07
Bayesian tree can be used to predict the disease status of new

patients. The performance of the algorithm when discriminating

clinically relevant differential diagnoses has to be evaluated in future

studies to assess the diagnostic benefit of Bayesian network analysis

as a complement to the current clinical routine workup. In this

context, it has to be acknowledged that different diseases might have

similar effects on the peripheral immune response. Thus, choosing

the optimal mFC marker combination can be challenging and

might be crucial for the performance of the algorithm. In this

regard, the combination of cell surface and intracellular mFC

markers might prove useful.

Another challenge might be the implementation of Bayesian

analysis into the clinical routine workup. Different variables, which

can potentially influence the peripheral immune cell profile of

patients (e.g., age, sex, comorbidities, medications), as well as

technical differences between centers should be taken into

consideration. Therefore, multiple center-specific control cohorts

considering potential confounding factors might be necessary.

Apart from classifying patients based on the disease status,

Bayesian analysis has the potential to predict treatment responses

or clinical outcomes. Well-characterized, center-specific reference

cohorts could be used to establish Bayesian networks and to define

the NoZ serving as ‘cut-off’ values between two opposing outcomes

(e.g., response to treatment vs. no treatment response or good

clinical outcome vs. unfavorable clinical outcome). Subsequently, a

new set of data can be classified by this Bayesian network. Thus,

applying Bayesian analysis to flow cytometry data opens up

manifold novel possibilities which might stimulate future research.

A limitation to the current design is that the immunological

parameters driving this classification are difficult to discern. Larger

cohorts using similar marker combinations will be necessary to
A B

FIGURE 4

Comparison of the Bayesian analysis with citrus. Cross validation error plots for cohort I (A) and cohort II (B) illustrating the estimated model
accuracy and feature false discovery rate as a function of the model regularization threshold. Plots were generated using the citrus workflow of the
OMIQ software from Dotmatics (www.omiq.ai, www.dotmatics.com). The method is described in detail by Bruggner et al. (2). In brief, the nearest
shrunken centroid and lasso-regularized logistic regression methods are used to construct classification models. Both methods automatically select
subsets of informative features and construct classification models. The number of model regressors is restricted by applying a regularization penalty
(l) for every single feature included in the model. Multiple models are built using different regularization thresholds as it is unknown which subset of
cluster features is optimal to stratify the user-specified sample group. Subsequently, cross-validation and permutation tests are performed to
calculate and plot the classification error rates and feature false discovery rates of each model. CV, cross validation; FDR, false discovery rate; Se,
standard error.
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obtain relevant biological information. Bayesian analysis might be

beneficial to identify stratifying markers between clinical differential

diagnosis, which could improve the pathophysiological

understanding of the diseases. Another limitation of this

approach might be that only two outcomes can be differentiated

by one Bayesian tree. However, to date, reliable diagnostic and

prognostic biomarkers are lacking for many diseases. Bayesian

analysis could support outcome prediction in the future using PB,

which can be obtained easily and non-invasively. Additional studies

will be necessary to assess the value of Bayesian network analysis in

this context.
5 Conclusion

As the field of mFC continues to evolve, it is likely that more

sophisticated algorithms and analytical tools will become available

for research. These algorithms might benefit from incorporating

Bayesian networks as they allow for the inclusion of new patient

data without the need for dimensionality reduction. Further

scientific effort is needed to standardize automated algorithms

used for interpretation of mFC data.
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