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During the past decade, there has been a revolution in cancer therapeutics by the

emergence of antibody-based immunotherapies that modulate immune

responses against tumors. These therapies have offered treatment options to

patients who are no longer responding to classic anti-cancer therapies. By

blocking inhibitory signals mediated by surface receptors that are naturally

upregulated during activation of antigen-presenting cells (APC) and T cells,

predominantly PD-1 and its ligand PD-L1, as well as CTLA-4, such blocking

agents have revolutionized cancer treatment. However, breaking these inhibitory

signals cannot be selectively targeted to the tumor microenvironment (TME).

Since the physiologic role of these inhibitory receptors, known as immune

checkpoints (IC) is to maintain peripheral tolerance by preventing the

activation of autoreactive immune cells, IC inhibitors (ICI) induce multiple

types of immune-related adverse effects (irAEs). These irAEs, together with the

natural properties of ICs as gatekeepers of self-tolerance, have precluded the use

of ICI in patients with pre-existing autoimmune diseases (ADs). However,

currently accumulating data indicates that ICI might be safely administered to

such patients. In this review, we discuss mechanisms of well established and

newly recognized irAEs and evolving knowledge from the application of ICI

therapies in patients with cancer and pre-existing ADs.

KEYWORDS

Immune checkpoint inhibitors (ICIs), immune-related adverse events (irAEs),
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Cancer immunosurveillance
and immune escape in the
tumor microenvironment

The tumor microenvironment (TME) is a complex multicellular

space in which cancer can be subjected to immune-mediated

control during the early stages of its evolution, such as the

eradication and equilibrium phase, but ultimately favors the

development of cancer immune escape by fostering cancer

immunoediting. During that stage, under continuous immune

pressure, cancer cells develop alterations to overcome the

immune attack, resulting in tumors that are resistant to the

physiological mechanisms utilized by innate immune cells to

recognize and present antigens while shutting down the activation

of helper and effector T cells (1).

Tumor-promoting factors in the TME include defective antigen

presentation by antigen-presenting cells (APC), mainly dendritic

cells (DC), which express inhibitory ligands, upregulation of

multiple inhibitory receptors during persistent activation of T

cells, such as PD-1, LAG-3, TIGIT, TIM-3, expansion of cell

populations that mediate T cell inhibitory functions such as

myeloid-derived suppressor cells (MDSCs) and T regulatory

(Treg) cells, generation of tumor associated macrophages (TAMs)

that lose the ability to phagocytose and present antigens but instead

acquire protumorigenic functions, and soluble factors such as IDO,

VEGF, and TGF-b, which support cancer cell survival and tumor

growth while suppressing the function of immune cells (2).
Expression of immune checkpoints
in the TME

T cells of the TME are critical determinants of tumor

containment and progression. During the phase of cancer escape

from immune control, T cells that can recognize tumor-associated

antigens lose the ability to control tumor growth due to mechanisms

of tumor-induced tolerance and immunosuppression. These

dysfunctional T cells are characterized by features of T cell

exhaustion (TEX) similar to those in chronic viral infections,

including high expression of ICs including CTLA-4, PD-1, TIM-3,

TIGIT and LAG-3, loss of expansion capacity, and impaired effector

function as determined by the diminished production of cytokines

such as IFN-g and TNF-a (3). Conceptually, a central goal of novel

immunotherapies is to achieve re-invigoration of tumor-specific TEX

cells, for which the state of T cell exhaustion might be still reversible,

and blockade of ICs has been the main approach to achieve this

goal (4, 5).

The co-inhibitory molecules, such as CTLA-4 (CD152) and PD-

1 (CD279), are induced during physiologic T cell activation. CTLA-

4 being upregulated and acting early during T cell activation, is the

high affinity receptor of CD80/CD86. CTLA-4 directly competes

with CD28 for binding on CD80/CD86, but also induces depletion

of CD80/CD86 by trans-endocytosis (6). Importantly, this

interaction simultaneously releases free PD-L1 by eliminating

availability of CD80 for PD-L1 engagement in PD-L1: CD80
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interaction in cis (7). Thus, the interactions of CTLA4 interfere

both with the key costimulatory pathway CD80/CD28 and the key

co-inhibitory pathway PD-1/PD-L1.

PD-1 is physiologically induced upon TCR-mediated T cell

activation. Engagement of PD-1 by its ligands PD-L1 (B7-H1 or

CD274) and/or PD-L2 (B7-DC or B7-H3) counteracts TCR

signaling and CD28-mediated co-stimulation (8–10). The

expression of PD-L1 on tumor cells has served as a biomarker for

patient stratification for anti-PD-1 ICI therapy. However, the

relative contribution of PD-L1 on tumor cells and other cell types

in limiting anti-tumor responses in the TME remains under

investigation. By genetic deletion of PD-L1 in tumor cells or

innate immune cells of host mice, it was found that PD-L1

expression on each of these compartments equally contributes to

immune suppression (11). Subsequently, it was determined that

PD-L1 expressed in APC, particularly DC, has the key and causative

role in compromising anti-tumor T cell responses (12, 13).

Parallel studies revealed that PD-1 expression in myeloid cells

has an important role in lineage fate commitment, effector

differentiation and antigen presenting function (14). Specifically,

it was found that PD-1 is expressed predominantly in myeloid

progenitors, whereas ablation of PD-1 expression resulted their

differentiation into mature myeloid cells with predominant features

of monocyte and DC differentiation (14). RNAseq studies showed

that PD-1 ablation in myeloid cells resulted in the differentiation of

tumor infiltrating macrophages with features of potent immune

function including activation, differentiation, phagocytosis and

enhanced signaling and metabolic programs (15). Consistent with

these findings, PD-1 expression in TAMs was associated with

diminished phagocytosis and enhanced tumor growth (16). Thus,

therapeutic targeting with PD-1/PD-L1 blocking compounds might

lead to proinflammatory activation of both T cells and myeloid cells

and release of multiple proinflammatory cytokines from both

immune compartments.

PD-1 and CTLA-4 are the prototype ICs and the most

extensively utilized therapeutic targets in cancer immunotherapy.

However, other ICs, such as LAG-3, TIM-3, TIGIT, GITR, or

VISTA are also exploited by tumor cells, contributing to the

generation of an immunosuppressive TME and escape of

immunosurveillance (17). Because clinical experience with ICIs

for these receptors is limited, irAEs induced by therapies blocking

these ICs have not been well-characterized. For these reasons, in the

present review, we will focus on irAEs induced by blockade of

CTLA-4 and the PD-1/PD-L1 pathway.

Role of ICs in central and peripheral
tolerance and lessons from
genetic models

CTLA-4

The importance of the CTLA-4 receptor in the establishment of

peripheral tolerance was identified early by studies with CTLA-4-

deficient mice. These mice developed splenomegaly and

lymphadenopathy which led to death within 3-4 weeks of age
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(18–20). This extensive spontaneous lymphoproliferation resulted

in massive infiltration of mononuclear cells in the heart, pancreas,

liver, lungs, and other organs causing extensive damage to these

tissues (18, 19). T cells from the spleen and lymph nodes showed an

activated phenotype with upregulation of activation markers like

CD69, CD25, and CD44 (18–20). Depletion of CD4+ but not CD8+

T cells led to inhibition of immune infiltration into non-lymphoid

organs (20). Administration of CTLA-4-Ig to CTLA-4-deficient

mice prevented the T cell expansion. When CTLA-4 was deleted in

adulthood using a conditional knockout approach, these mice still

developed lymphoproliferation and immune infiltration in various

organs, including pancreatic b-islets, lungs, and stomach (21).

Deletion of CTLA-4 in these adult mice resulted in expansion of

Treg in the blood, spleen, and lymph nodes, although the levels of

Treg decreased rapidly in the blood but not in the organs. CTLA-4

deletion also led to activation of T conventional cells (Tconv, non-

Treg cells). In the collagen-induced arthritis (CIA) model, loss of

CTLA-4 promoted a stark exacerbation of the disease with extended

damage to the joints (21).

Specific deletion of CTLA-4 from Treg also led to systemic

lymphoproliferation and death of the mice, albeit with slower

kinetics (22). These mice developed immune infiltration of the

myocardium and destruction of myocytes, which the authors

speculated it caused heart failure due to myocarditis. When

adoptively transferred into T cell-deficient mice, CTLA-4-/- Treg

could provide tumor protection, in contrast to CTLA-4+/+

Treg, indicating that CTLA4-deficient Treg did not have

suppressor function but rather acted as T effector cells. Similarly,

in an autoimmune model for diabetes, adoptively transferred

CTLA-4-deficient Treg were unable to prevent the destruction of

the pancreas and the induction of diabetes (23). In contrast to

previous reports which described the development of autoimmunity

and exacerbation of autoimmune diseases by CTLA-4 deficiency,

subsequent studies showed that CTLA-4 ablation in adult mice

resulted in complete or transient resistance to experimental

autoimmune encephalomyelitis (EAE), which was interpreted as a

consequence of increased expansion of thymic Treg as a result of

CTLA-4 deletion (24, 25).

B cells also showed an increased activation profile in CTLA-4-/-

mice with upregulation of CD86, Fas, and CD5 but not CD80 (19).

This correlated with a striking increase of all Ig subtypes in the

serum of CTLA-4-deficient mice (19). In this model, CD4+ T cell

depletion or administration of CTLA-4-Ig prevented the activation

and expansion of B cells (20). CTLA-4 is expressed solely in B-1a B

cells which are generated during fetal development (26). Deletion of

CTLA-4 from B-1a B cells in CTLA-4f/fCD19Cre/+ mice led to

activation and differentiation of these cells into antigen-

presenting cells, and spontaneous germinal center formation in

the spleens (26). These mice developed autoantibodies and late

autoimmune characteristics which shared features with some

human autoimmune diseases. Thus, abrogating CTLA-4 function

induces autoimmunity by several mechanisms and by targeting

several lymphocyte subsets.

The role of CTLA-4 in maintaining tolerance and preventing

development of autoimmunity has also been documented in studies

where treatment of mice with anti-CTLA-4 monoclonal antibody
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(mAb) exacerbated autoimmune diseases. When CTLA-4 was

blocked in the mouse model of EAE, there was a marked increase

in the proinflammatory cytokines TNF-a, IFN-g, and IL-2, and

symptoms were exacerbated (27, 28). Administration of anti-

CTLA-4 blocking mAb also resulted in increased inflammatory

foci in the brain and spinal cord, and increased demyelinating

lesions (28). Similar results of disease exacerbation were observed

using the nonobese diabetic (NOD) mouse model, in which

administration of anti-CTLA-4 mAb induced rapid disease onset

of about 15 days compared to the usual 5-6 months (29). CD4+ T

cells from mAb-treated mice displayed a chronically activated

phenotypic profile with increased expression levels of CD44 but

low levels of CD62L, with a few T cells expressing early activation

markers like CD69 and CD25 (29). Deletion of CTLA-4 on Treg led

to spontaneous germinal center formation in the spleen and lymph

nodes (30).

The CTLA4 locus has been involved in the regulation of several

autoimmune diseases in humans (31). Polymorphisms on CTLA4

gene have been implicated in diabetes and thyroid disease (32, 33),

rheumatoid arthritis (34), primary biliary cholangitis (35), and

spontaneous abortion (36). Furthermore, a soluble form of

CTLA-4 is present in patients with various autoimmune diseases,

such as autoimmune thyroid diseases (37, 38), myasthenia gravis

(39), and systemic lupus erythematosus (SLE) (40).
PD-1

Deletion of PD-1 in mice did not induce an immediate extreme

phenotype, such as CTLA-4 deletion, however, in later stages of

their lives, PD-1-deficient mice developed autoimmune symptoms.

C57BL/6 PD-1-/- mice showed signs of mild splenomegaly early on

but appeared to be healthy (41). The number of B cells and myeloid

cells in the spleen increased, however, the number of T cells

remained stable. An increase of IgA, IgG2b, and IgG3 was

present in the serum. At 6 months of age, a few of these mice

started showing signs of lupus-like glomerulonephritis and arthritis

in the foot joints (42). At 14 months of age, the severity of

glomerulonephritis had increased, whereas wild-type mice showed

only mild symptoms (42). The severity of arthritis also progressed

to an advanced stage in all the PD-1 KO mice.

Because C57BL/6/PD-1-/- mice showed a lupus-like phenotype,

C57BL/6 PD-1-/- mice were crossed with the B6 lpr/lpr

mouse strain, which is used as a model for SLE (43, 44).

Glomerulonephritis was present much earlier in the C57BL/6-lpr/

lpr-PD-1-/- mice compared to C57BL/6lpr/lpr mice (42).

Depositions of IgG3 and C3 complement were present in the

kidneys and histology showed arthritic lesions in the joints much

earlier than in the control B6 lpr/lpr mice. Lymphadenopathy and

extensive hyperplasia of bone marrow were also detected.

The severity of symptoms in the C57BL/6lpr/lpr-PD-1-/- mice

resembled that of the MRL-FASlpr/lpr mouse, which develops

lupus-like symptoms much earlier than the C57BL/6lpr/lpr. PD-1

deletion in the MRL mouse resulted in the development of

myocarditis and death of the mice by week 10 (45). Extensive

immune infiltration was present in the hearts of the PD-1-deficient
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mice with both populations of CD4+ and CD8+ T cells showing an

activated phenotype. Autoantibodies against cardiac myosin were

also present despite the small number of B cells accumulated in the

heart of the MRL PD-1-deficient mice. Notably, an increased

accumulation of Mac1+Gr1+ cells was also present in the heart.

These cells were able to strongly suppress infiltrating T cells and

were considered similar to myeloid-derived suppressor cells (45).

Deletion of PD-1 in BALB/c mice resulted in a more severe

phenotype than in the B57BL/6 mice, with development of

multisystem autoimmunity. These mice suffered from

splenomegaly, hepatomegaly, cardiomegaly, and immune

infiltration of several organs such as the heart, lungs, liver,

kidney, and developed skin lesions which resembled graft-versus-

host disease (42, 46). Many mice died by the age of 5 weeks (42, 46).

Histologic examination of the hearts revealed extensive damage,

suggesting that the cause of death was heart failure (46). The BALB/

c PD1-/- mice had an increased population of activated CD8+ T cells

in comparison to WT mice. Interestingly, BALB/c-RAG-2-/-PD-1-/-

mice did not die but remained healthy, highlighting the role of T

cells and/or B cells in disease development (46). Indeed, the hearts

of BALB/c PD-1-/- mice had increased depositions of IgG1, IgM,

and C3 complement (46). Furthermore, serum from PD-1-deficient

mice was enriched with autoantibodies against cardiac troponin I

(46, 47).

Deletion of PD-1 from the NOD mouse presented a phenotype

consistent with that observed to the two previous strains, with early
Frontiers in Immunology 04
and robust development of autoimmune activation. NOD-PD-1-/-

mice developed diabetes much earlier than in NOD-PD-1+/+ mice

with early insulitis and increased infiltration of CD4+ and CD8+ T

cells (48). In vitro stimulation of T cells isolated from b-islets of
NOD-PD-1-/- mice showed an increased proclivity for IFN-

g secretion.
These studies highlighted the importance of both CTLA-4 and

PD-1 in immune homeostasis and their indispensable and non-

redundant roles in preventing autoimmunity.
irAEs mediated by ICI therapies

Based on the physiological properties of CTLA-4 and PD-1

revealed by the extensive studies outlined above, it is anticipated

that blockade of these ICs in humans for cancer therapy will

inevitably lead to global immune activation leading to

autoimmune manifestations of various organ systems (Figure 1).

Immune checkpoint inhibitors (ICIs) employed for cancer therapy

include PD-1 (pembrolizumab, nivolumab, cemiplimab,

dostarlimab), PDL-1 (atezolizumab, avelumab, durvalumab),

CTLA-4 (ipilimumab, tremelimumab), and the recently approved

LAG-3 antibodies (relatlimab). These ICIs are used individually, in

combination, or together with chemotherapy (49). ICI therapy

differs from chemotherapy in mechanisms of action and side

effect profile, which are intimately linked. ICIs aim to increase the
FIGURE 1

irAEs categorized by organ system. ICI treatment may result in inflammation of various tissues and organ systems leading to well-described irAEs
(please see main text for details) Design by Brgfx-Freepik.com.
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activity of the immune system against cancer by breaking tolerance

mediated by CTLA-4 and PD-1 in the TME. However, ICI therapy

simultaneously activates non-cancer-specific T cell subsets, B cells

and myeloid cells which are kept in check by ICs, thereby

preventing autoimmunity as outlined in the previous section.

Therefore, irAEs are typical side effects of ICIs. Several irAEs

resemble features of ADs and may occur during or after

discontinuation of ICI treatment. ICI may also trigger the clinical

evolution and presentation of previously pre-clinical and

unidentified ADs. In addition, irAEs may occur as paraneoplastic

syndromes induced by autoantibody production like typical

paraneoplastic syndromes in the context of several cancers.

A cross-sectional study showed that 43.63% of patients with

cancer in the US were eligible for ICI use (50). Hence, the use of ICIs

is becoming increasingly common in various cancers, making the

incidence of irAEs a critical problem, since up to 80% of patients

treated with ICIs develop irAEs (51). Currently, there is no reliable

biomarker predicting or correlating with irAEs, but several ones are

under investigation including serum IL-6, IL-17, soluble CTLA-4

(sCTLA-4), absolute lymphocyte count, and tumor mutation burden

(52–55). Themost frequently reported irAEs include fatigue, pruritus,

nausea, rash, diarrhea/colitis, and endocrinopathies (mainly

hypophysitis and thyroiditis), the most common serious irAEs are

pneumonitis and colitis, whereas myocarditis is the irAE with the

highest fatality rate (Figure 1) (51, 56).

As the use of ICIs is currently increasing, previously

unrecognized rare complications become clinically apparent.

Importantly, there is increasing evidence that ICI immunotherapy

induces cardiovascular complications to a previously unappreciated

level. Myocarditis is a well recognized and extensively studied irAE

occurring with higher incidence and severity among patients treated

with ipilimumab and nivolumab combination compared to those

treated with nivolumab alone (57, 58). Newer studies provide

evidence the PD-1/PD-L1 blockade induces a prothrombotic

environment leading to vein thromboembolism (59), and to the

development or worsening of atherosclerotic cardiovascular disease

(CVD) resulting in atherotic plaque rapture and presentation of

various clinical pathologies of atherosclerotic CVD including

coronary artery disease, myocardial infarction, and ischemic

stroke (60). These findings are consistent with enhanced severity

of atheromatous cardiac disease observed in experimental models of

mice with genetic ablation of ICs or treated with ICIs (61–63).

Importantly, recent studies provided evidence that pre-existing

autoimmune conditions increase the incidence of CVD after ICI

therapy (64). Given the immune-mediated nature of atheromatous

disease (65, 66), these observations indicate that CVD is another

form of ICI-mediated irAE.

irAEs generally improve with the discontinuation of ICIs with

or without administration of immunosuppressive therapy.

However, several case reports raise concerns about the potentially

irreversible morbidity of irAEs, underlying the role of early

diagnosis and proper management of these serious complications.

Chronic irAEs may affect up to 40% of patients, with endocrine and

rheumatologic manifestations being the more frequent forms of

chronic irAEs (67, 68). Guidelines for diagnosis and treatment of

irAEs are available and extensively reviewed elsewhere (69–71).
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Pathogenesis of irAEs

Although the pathogenesis of irAEs is still not fully understood,

several mechanisms have been identified including aberrant T-cell

activation, autoantibody production, inflammatory monocyte

activation, complement-mediated inflammation, inflammatory

cytokines, host-specific factors including microbiome and

genetics, and the type of ICI immunotherapy administered

(Figure 2) (72). Briefly, irAEs can be mechanistically categorized

as follows:
T cell-mediated

ICI therapy directly causes activation of T cells outside of the

TME as it inhibits inhibitory signals that prevent T cell activation

against self antigens, leading to autoimmune manifestations from

different organs. The increase in unique TCR V-beta CDR3

diversity, a marker of TCR richness, was significantly higher in

patients who developed irAE compared to those who did not (73).

Several case reports of severe and even lethal manifestations of

irAEs provided evidence that clonally expanded self-reactive or

virus-reactive T cells are accumulated in the affected tissues, linking

self- and pathogen-recognizing T cell clones to lethal toxicity. For

example, fulminant myocarditis was associated with infiltration of

the myocardium by clonal T cells identical with those infiltrating

the tumor and skeletal muscles (74); fatal ICI-associated

encephalitis correlated with activation of EBV-specific memory

CD4+ T cells, whereas ICI-associated hepatitis correlated with

activation of CMV-specific T cells (75, 76). CD4+ and CD8+ T

cell enrichment in target tissues was observed in irAEs leading to

diabetes, colitis, and thyroiditis (77–79). Subsequent studies

provided evidence that the TCR richness of activated CD4+ T

effector memory cells underlies an overall increase in

pretreatment TCR diversity in patients destined to develop severe

irAEs. In this context, the magnitude of T cell clonal expansion

correlated with the onset time of severe irAEs because patients with

a greater magnitude of TCR clonal expansion developed irAEs

sooner (80). In addition, Th17.1 cells, known for their role in

chronic inflammation, were predominantly increased in

bronchoalveolar lavage fluid of patients with ICI-related

pneumonitis (81, 82). Lastly, a decrease in the number and an

inflammatory reprogramming of Treg are also involved in the

pathogenesis of irAEs (83).
B cell- and antibody-mediated

The presence of autoantibodies in the pathogenesis of ADs is

well known. Although studies have shown that B cells play a role in

response to immunotherapy, their role in the development of irAEs

is still not fully understood (84). Inherited deficiencies in the B

regulatory (Breg) cells, which produce IL-10, have been associated

with the development of severe irAEs (85). An increase in CD21low

B cell subset and plasmablasts has been identified in patients treated

with combination ICIs., whereas circulating B cells were decreased
frontiersin.org
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(86). Patients experiencing organ-specific irAEs had a low baseline

autoantibody level at baseline, which was significantly increased by

6 weeks after initiation of ICI therapy (87). This finding may suggest

that the pathogenesis of irAEs is different from that of classic ADs,

where baseline autoantibody levels positively correlate with

AD development.

The role of disease-specific autoantibodies in the development

of irAEs remains controversial. Sakakida et al. reported that positive

anti-nuclear antibody (ANA) titers are associated with a higher risk

of ICI-mediated colitis but not classic ANA-associated autoimmune

diseases like SLE and scleroderma (88). However, other

investigators reported a correlation between the occurrence of

organ-specific irAEs and disease-specific autoantibody levels.

Osorio et al. found that thyroid dysfunction is associated with

anti-thyroid antibodies, whereas Suzuki et al. showed that ICI-

related myasthenia gravis is associated with anti-acetylcholine

receptor (AChR) antibodies (89, 90). In a retrospective study of

patients with non-small cell lung cancer (NSCLC) treated with anti-

PD-1, pre-existing ANA, rheumatoid factor (RF), anti-

thyroiglobulin and anti-thyroid peroxidase antibodies positivity

correlated with the development of irAEs but also with clinical

benefit from ICI immunotherapy (91). Notably, these findings were

confirmed by a smaller prospective study which determined that the

levels of anti-thyroiglobulin and anti-thyroid peroxidase antibodies

at baseline were higher in patients who developed thyroiditis after

anti-PD-1 blocking immunotherapy (92). Other studies reported

that pre-existing AChR antibodies are commonly found in patients

who develop irAE-associated myositis and myasthenia gravis

(93, 94).
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Complement-mediated

Since ICIs are monoclonal antibodies, they can bind to off-

target tissues and cause inflammation through classical complement

cascade activation. This mechanism is thought to play a role in the

pathogenesis of anti-CTLA4-mediated hypophysitis by binding

abundantly expressed CTLA4 antigen in the pituitary, activating

complement, and causing development of complement-dependent

antibody-mediated cytotoxicity (CDC) against cells secreting

thyrotropin, follicle-stimulating hormone or corticotropin. These

cells became the site of deposition of C3d and C4d components and

activation of an inflammatory cascade mimicking type II

hypersensitivity (95). Autopsy results of patients who developed

hypophysitis after treatment with ipilimumab showed that type II

hypersensitivity was involved in the early stages of pathogenesis,

whereas type IV hypersensitivity caused by infiltration of

autoreactive T lymphocytes played a role in the later stages (96).
Cytokine-mediated

Since cytokines are mediators of inflammation, they can be used

to assess the direction of the systemic immune response. ICI

treatment causes a shift of cytokine balance toward an

inflammatory profile. For example, elevated circulating IL-17,

which is secreted especially by Th17 cells suppressing Treg

activity, and IL-2 which enhances activity of cytotoxic CD8+ T

cells, are associated with the development of irAEs (97, 98). Lim

et al. defined a toxicity score (CYTOX) by integrating expression of
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FIGURE 2

Potential mechanisms driving irAEs. (A) Activation of cytotoxic self-reactive T cells causes damage in off-target healthy tissues by extensive production of
pro-inflammatory cytokines and/or direct attack. Activated autoreactive B cells may produce de novo auto-antibodies or increase the amount of pre-
existing auto-antibodies. Antibodies bind to healthy tissues and cause inflammation and damage. (B) Clonal proliferation of virus-specific T cells may
lead to excessive inflammation and destruction in the relevant organ and may be fatal. (C) Expansion of the T cell repertoire may cause T cells to attack
off-target healthy tissues. (D) ICI treatment can lead to decreased number of FoxP3-expressing Treg cells and reprogramming of Treg cells, resulting in
pro-inflammatory behavior. (E) Organ-specific expression of ICI targets can induce direct ICI binding followed by complement activation and antibody-
mediated inflammation (type II hypersensitivity). (F) Genetic polymorphisms such as some HLA allele types, mutations of IC receptors and miRNAs are
associated with the development of irAEs. (G) Microbiome composition (bacteria, metabolites, etc.) may cause aberrant activation of the immune system
and increased production of inflammatory cytokines under ICI treatment.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1197364
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ibis et al. 10.3389/fimmu.2023.1197364
11 circulating pro-inflammatory cytokines (G-CSF, GM-CSF,

Fractalkine, FGF-2, IFNa2, IL-12p70, IL-1a, IL-1b, IL-1RA, IL-2,
IL-13) (98). CYTOX score were significantly higher in patients

developed irAEs (98). Certain cytokines have been shown to be

involved in the development of specific irAEs. For example,

psoriasiform dermatitis has been correlated with increased IL-6

levels, pneumonitis with increased IL-1b, and colitis with increased

IL-17 (99–101). In addition, chemokine ligands such as CXCL9,

may also potentially contribute to the pathogenesis of irAEs (102).
Inflammatory monocyte-mediated

The inflammatory milieu generated by the production of effector

cytokines by immune cells which are disinhibited by blockade of ICs

during ICI immunotherapy, promotes the differentiation of M1-like

monocytes which produce proinflammatory cytokines, such as TNF-

a and IL-1b, and convert into macrophages in target tissues. Such

inflammatory monocytes can also be generated by direct inhibition of

PD-1 mediated signaling during differentiation of myeloid

progenitors in response to hematopoietic growth factors produced

by cancer and activated T cells (14, 15). Such inflammatory

monocytes infiltrate target organs of irAEs such as the lung where

they cause severe pneumonitis with granulomatosis (103) and the

myocardium, causing life threatening myocarditis (104).
Host-specific factors

Factors that regulate immune responses by complex tissue-

specific and systemic mechanisms, such as microbiota and gene

polymorphisms, have been shown to play important roles in the

development of irAEs (105–107). Polymorphism of microRNA146,

which is associated with autoimmune diseases and is known to

promote a proinflammatory Treg behavior, was shown to correlate

with the development of severe irAEs (106, 107). Similarly to

conventional ADs, several HLA types have been implicated in the

pathogenesis of irAEs. Associations have been identified between

HLA DRB1*04: 05 and ICI-induced inflammatory arthritis, HLA-

DRB1*11:01 and pruritus, HLA-DQB1*03:01 and colitis (108, 109).

However, a recent study reported no association between HLA type

and irAE development (110). Thus, further work is required toward

this direction.

The gut microbiome has been extensively studied regarding its

tentative role in the therapeutic efficacy and toxicity of ICI therapy.

Clostridiales, Ruminococcaceae or Faecalibacterium abundance and

high diversity in the microbiota are associated with higher numbers

of circulating T cells and responses to anti PD-1 immunotherapy in

melanoma patients (111). In a recent prospective study of patients

with advanced melanoma who were treated with a combination of

anti-PD-1 and anti-CTLA-4 ICIs, the profiling of gut microbiota

demonstrated a significantly higher pre-treatment fecal abundance

of Bacteroides intestinalis in patients with any ≥ grade 3 toxicities,

which correlated with upregulation of mucosal IL-1b in biopsy

samples and a more diverse peripheral T cell repertoire (105). These

findings contrasted with a previous report which had found that
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pre-treatment faucal abundance of Bacteroidetes phylum correlated

with resistance to the development of colitis following ICI

monotherapy with CTLA-4 blockade (112). It is evident that

further work is required to understand the biological relevance

and the potential exploitation of the microbiome to enhance the

efficacy and limit the toxicity of ICI cancer immunotherapy (113).
Type of ICI immunotherapy

A systematic review of 35 randomized clinical trials consisting of

16,485 patients showed that the profile of irAEs depends on the type

of immunotherapy. Colitis and hypophysitis were seen more often

with CTLA-4 inhibitors, while hypothyroidism, hyperthyroidism,

and pneumonitis were more common in PD-1 inhibitors (114).

Furthermore, anti-CTLA-4-induced irAEs generally tend to be

more frequent and severe (115). Although the differences in irAEs

between ICI therapies have not been fully identified, the distinct

prevalence of organ-specific irAEs might be related to the unique

properties of the targeted receptors. CTLA-4 suppresses T cell

responses in the early steps of the activation cascade in lymphoid

organs, whereas PD-1 acts in the late stages of the immune response

in both lymphoid organs and peripheral tissues (72). CTLA-4 is

expressed by T cells and binds to its ligands CD80 or CD86, which are

present on professional antigen-presenting cells, while PD-1 is

expressed by T cells and many other immune cell types, and its

ligand PD-L1 is present on several types of immune cells but also

somatic cells and cancer (116–118). Due to the differential expression

of CTLA-4 and PD-1, the combined use of PD-1 and CTLA-4

antibodies is associated with an increased risk of irAEs (119, 120),

but also prolonged progression-free survival (121, 122).
irAEs and therapeutic response
to ICI immunotherapy

Although the occurrence of irAEs indicates that the immune

system has been successfully activated by ICI therapy suggesting

that treatment has achieved its goal, there are conflicting data

regarding the correlation between irAEs and therapeutic response.

Recent studies showed that the development of irAEs in patients

with various cancers receiving anti-PD-1 antibody is associated

with a significantly higher response rate and increased progression-

free survival rate (123, 124). These were consistent with earlier

studies on patients treated with CTLA-4 inhibitors, which also

showed that the development of irAEs correlated with a

high response rate (125, 126). Subsequently, other reports

indicated that the occurrence of irAEs in the early stages of

treatment was associated with better outcomes, whereas other

investigators found no correlation between irAEs and treatment

outcome (70). Recently, it was noted that specific irAEs might

be selectively associated with therapeutic response and might

serve as biomarkers to predict clinical benefit. For example,

thyroid, cutaneous and low-grade irAEs, as well as AD flares,

are positively correlated with therapeutic outcome, whereas

pneumonitis is associated with poor outcomes (127–130).
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Diagnosis of iRAEs and
therapeutic intervention

Early diagnosis and determination of the severity of irAEs are

crucial to prevent morbidity and mortality. The grading system of

irAEs is based on Common Terminology Criteria for Adverse

Events (CTCAE) and grades are categorized from 1 to 5

according to the severity. Clinical criteria for diagnosis, grading,

and treatment of irAEs have been reviewed extensively elsewhere

(69, 70, 131).

Briefly, ICI discontinuation is not necessary in grade 1 irAEs

when close monitoring is feasible, whereas holding ICIs should be

considered for most grade 2 toxicities. In severe irAEs (grade 3-4),

ICI should be discontinued, and steroid should be initiated. If

symptoms worsen, steroid-sparing biologic immunosuppressants

such as tumor necrosis factor-alpha (TNF-a) inhibitors or IL-6

antagonists should be considered (71). Corticosteroids are the first-

line treatment modality and should be administered with dose

adjustment according to the severity of symptoms for ≥ 2 grade

irAEs (71). If symptoms do not improve with high-dose steroids,

TNFa inhibitors can be an option (71). The management of

endocrine and rheumatologic irAEs, which often cause chronic

morbidity, may differ from therapy for other irAEs. A national

multicenter study showed among 117 patients who developed

rheumatologic irAEs, 44 patients required disease-modifying anti-

rheumatic drugs (DMARD) (132). Hormone replacement is

essential in the management of endocrine irAEs. Unlike other

systemic irAEs, high-dose steroids are not required because it is

unlikely to improve endocrine irAEs caused by damage to

endocrine cells.

Cutaneous toxicities have been reported for 30% to 50% of all

side effects of ICI therapies (133) and are classified separately. The

ASCO committee divided dermatological irAEs into rash/

inflammatory dermatitis, bullous dermatoses, and severe

cutaneous adverse effects (SCARs) including Stevens-Johnson

Syndrome (SJS), toxic epidermal necrolysis (TEN) and drug rash

with eosinophilia and systemic symptoms (DRESS). Treatments for

these skin manifestations depend on grading. Inflammatory

reaction that affects the quality of life or is grade ≥ 2 should be

considered as an indication to hold the ICI and monitor patients

weekly for improvement. Blistering lesions that extend more than

10-30% of body surface area (BSA) or grade ≥ 2 should mandate

withdrawing the ICI therapy and urge dermatological work up.

Development of blistering lesions covering ≥ 30% of BSA mandates

permanent discontinuation of ICI. SCARs, including SJS, TEN,

acute generalized exanthematous pustulosis (AGEP), and DRESS/

drug-induced hypersensitivity syndrome (DiHS) should mandate

immediate discontinuation of ICI therapy, regardless of the grade,

and close follow-up. Dermatology consultation is critical for

appraising the risks and benefits of withdrawing or rechallenging

with ICI immunotherapy. Systemic steroids are used in grade 3 of

rash and inflammatory lesions. Blistering that affects the quality of

life and meets the criteria for grade 2 toxicity with 10-30% BSA

involvement should be managed with high potency topical steroid

and consideration for systemic steroids therapy. For SCARs,
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prednisolone or equivalent agent should be initiated in grade 2,

which is a morbilliform exanthem at 10-30% BSA together with a

systemic symptom or lymphadenopathy.

A pigmented lesion which is a vitiligo-like depigmentation

(VLD) has been reported exclusively in melanoma patients. To

study the cumulative incidence of VLD, 137 studies conducted in

patients with stage III or IV melanoma were recruited and showed

an overall cumulative incidence of VLD at 3.4% (95% CI, 2.5% to

4.5%). The development of VLD significantly correlated with

response to ICI therapy. Patients who developed VLD during ICI

treatment for melanoma had a 2-fold lower risk of disease

progression and a 4-fold lower risk of death, progression-free

survival (hazard ratio [HR], 0.51; 95% CI, 0.32 to 0.82; p<0.005)

and overall survival (HR, 0.25; 95% CI, 0.10 to 0.61; p<0.003) (134).

Similarly, in a retrospective analysis of 148 patients who received

nivolumab plus peptide vaccine or nivolumab alone, a significantly

higher overall survival was observed in patients who developed rash

(hazard ratio [HR], 0.423; 95% CI, 0.243 to 0.735; p=0.001) and

VLD (HR, 0.184; 95% CI, 0.036 to 0.94; p=0.012 (31). VLD

occurring after ICI therapy in melanoma illustrates that

melanoma-specific T cells activated after ICI also recognize

shared antigens of normal melanocytes and their presence might

imply a better response to immunotherapy and a favorable

prognosis (135).

The impact of high-dose steroid therapy on ICI efficacy and

clinical outcome remains controversial. Some studies showed that

high-dose corticosteroids are associated with poor outcomes (123,

136, 137) warning for cautious consideration of all parameters when

the use of high-dose steroids is a tentative choice. Notably, a recent

study revealed that only 47% of irAEs were managed according to

guidelines, whereas 38.8% of irAEs had no documented

management (138).
The role of ICIs in patients with
cancer and pre-existing ADs

In the modern era of increasing incidence of cancer and ADs,

up to a quarter of patients have both diseases at the same time (139).

Thus, there are many cancer patients with pre-existing ADs who

might be benefit from the use of ICI. Treatment of patients with

pre-existing AD raises concerns for potential flair-ups due to their

pre-activated immune system. As a result, clinical trials preclude

enrollment of these patients. However, this raises important

questions regarding the efficacy of ICI treatment in these patients

and the potential complications such as flares or de novo irAEs post-

ICI treatment if patients were administered immunosuppression for

their AD. As currently there is increasing interest regarding

eligibility of patients with pre-existing AD for ICI therapies,

several retrospective studies and meta-analyses have begun

assessing outcomes and toxicities in this cohort of patients (140–

155). Key studies are summarized in Table 1.

Psoriasis and psoriatic arthritis patients have the highest risk of

developing flare or de novo irAEs after ICI treatment (147, 156).

Patients with rheumatoid arthritis (RA) experience flares of their
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1197364
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ibis et al. 10.3389/fimmu.2023.1197364
disease at approximately 60% (147, 157). A retrospective study

showed that there is no association between the presence of pre-

existing AD and the development of irAEs, the number of irAEs,

and their severity (154). In a study on melanoma and NSCLC

patients, there was no association between overall survival and the

presence of AD, however, a later study showed that patients with

pre-existing AD had an increased overall survival compared to

patients without AD (157). Other studies have shown that the

development of irAEs is more prevalent in patients with a pre-

existing AD (157, 158). Gulati et al. showed that melanoma patients

with pre-existing AD had an increased progression-free survival

and development of irAEs when treated with ICI (155). Patients

with pre-existing AD who received ICI and survived for more than
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1 year developed new-onset chronic kidney disease and experienced

a rapid drop in glomerular filtration rate, which is used as a marker

for kidney function (159).

Development of de novo irAEs is more common in patients with

pre-existing AD after administration of ICI. Patients with RA have a

higher frequency of all-grade irAEs and severe irAEs (157). A

separate study found that only 14.7% of patients had an AD flare

while 25.3% developed a new irAEs (140). Most of the patients in

this study had quiescent AD and 9.6% were receiving steroid

treatment at the time ICI therapy was initiated. Patients with

gastrointestinal and rheumatologic AD had the most frequent

flare-ups after ICI therapy, whereas patients with Hashimoto

thyroiditis and neurologic AD developed mostly new irAEs.
TABLE 1 Summary of key studies using ICI in patients with cancer and pre-existing autoimmune diseases.

Main pre-existing AD ICI used Number
of

patients

Flare of pre-
existing AD
after ICIs

New irAEs Management Reference

Psoriasis, MS, RA, SLE,
IBD, sarcoidosis,
thyroiditis

Anti-CTLA-4 30 27% 33% Steroid, SSA (infliximab) (141)

PMR, SLE, RA, psoriasis,
IBD, SS

Anti-PD-1 52 38% 29% Steroid, SSA, IVIG, ICI
discontinuation 11%

(142)

RA, vitiligo, thyroiditis, SS Anti-PD-1 45 24% 44% Steroid, ICI discontinuation 25% (143)

Psoriasis, RA, PMR, IBD,
thyroiditis

Anti-PD-1 or anti-
PD-L1

56 23% 38% Steroid, ICI discontinuation 14% (144)

RA, psoriasis, IBD,
thyroiditis

Anti-CTLA-4 41 29% 29% Steroid, SSA (infliximab,
hydroxychloroquine, sulfasalazine)

(145)

RA, thyroiditis, psoriasis,
IBD, PMR, SLE

Anti-PD-1 85 47% 66% ICI discontinuation 7% (146)

RA, psoriasis, IBD, SLE,
PMR

All ICIs (anti-CTLA-
4, anti-PD-1, anti-
PD-L1)

112 47% 42% Steroid, SSA (azathioprine,
methotrexate, TNF inhibitor), IVIG,
ICI discontinuation 21%

(147)

RA All 22 55% 32% Steroid, ICI discontinuation 23% (148)

RA, PMR, SLE, psoriasis,
sarcoidosis, IBD,
thyroiditis

All 106 36% 38% Steroid, SSA (methotrexate,
rituximab, infliximab), ICI
discontinuation 20%

(149)

RA, thyroiditis, psoriasis Anti-PD-L1 35 11% 46% Steroid, ICI discontinuation 9% (150)

RA, type 1 DM, atrophic
gastritis

All 106 N/A 58% N/A (151)

RA, SLE, SSc, IBD,
sarcoidosis, hyperthyroid-
ism, hypothyroid-ism

All 415 N/A Comb. 44%, anti-
CTLA-4 30%, anti-
PD-1 17%

Steroid, SSA (TNF inhibitor), ICI
discontinuation 17%

(152)

SLE, RA, psoriasis, IBD,
sarcoidosis

Anti-PD-1 47 26% N/A Steroid, ICI discontinuation 11% (153)

RA, hypothyroidism,
psoriasis

Anti-PD-1, anti-PD-
L1 or combination

63 31% 62% Steroid, SSA (154)

RA, PMR, SLE, IBD,
psoriasis, scleroderma,
sarcoidosis

Anti-CTLA-4, anti-
PD-1 or combination

74 N/A 50% mild, 37%
severe

N/A (140)

IBD, RA, MS,
hypothyroidism,
microscopic colitis

Anti-CTLA-4, anti-
PD-1, anti-PD-L1 or
combination

197 14.7% 25.3% Steroid, infiximab and vedolizumab (155)
f

IBD, inflammatory bowel disease; ICI, immune-checkpoint inhibitor; IVIG, intravenous immunoglobulins; MS, multiple sclerosis; N/A, not applicable; PMR, polymyalgia rheumatica; SS:
Sjögren’s syndrome; RA, rheumatoid arthritis; SLE, systemic lupus erythematosus; SSA, steroid-sparing agent.
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Studies with over 100 patients with pre-existing AD who received

ICI treatment showed that 25-50% developed flares of their disease,

whereas about 40% developed de novo irAEs (160). Abdel-Wahad

et al. reported that no differences were observed in the presentation

of irAEs between active and inactive AD, however, Wu et al. showed

that patients with inactive AD presented high-grade irAEs more

frequently compared to patients with active AD (156, 161).

Moreover, patients on immunosuppression at the initiation of ICI

showed lower rates for irAEs, especially high-grade, compared to

those who were not on immunosuppression (156, 161).

Disease flares were increased in patients receiving anti-PD-1/PD-

L1 treatment, whereas de novo irAEs were observed more often when

patients received anti-CTLA-4 therapy (156). In a small study where

anti-PD-L1 and anti-PD-1 treatment was administered to cancer

patients with systemic sclerosis, 24% of patients experienced flares

and almost 60% developed irAEs, with only 6% developing grade 3-4

irAEs (162). Patients with AD who received anti-PD-1 treatment

developed irAEs of any grade at an increased level compared to those

with no pre-existing AD (163). In a multicenter study, 33% of

patients with advanced melanoma with AD which received a

combination of anti-CTLA-4 and anti-PD-1 treatment developed a

flare, most commonly rheumatic or gastrointestinal irAEs (164).

Interestingly, patients without immunosuppression before the

administration of ICI had an increased overall survival compared

to those who were on immunosuppression. Furthermore, patients on

immunosuppression had an increased risk of developing flares.

A novel retrospective study showed that patients who received

ICI and had a pre-existing AD (most common being RA, psoriasis,

and polymyalgia rheumatica) developed cardiovascular irAEs more

often than patients without AD (64) indicating that such patients

should be actively monitored for cardiovascular toxicities. However,

more than two-thirds of patients receiving immunosuppression for

their AD before ICI administration developed other non-

cardiovascular-related adverse effects.

Patients without pre-existing AD had increased association of

developing rheumatic-irAEs if they were positive for rheumatoid

factor before getting administered ICI (165). Interestingly, other

studies reported that the presence of rheumatic-irAEs and ICI-

arthritis resulted in increased overall survival and only 35% of

patients with pre-exisiting AD developed flare-ups. ICI-induced

thyroiditis has been shown to be associated with improved overall

survival and progression-free survival compared to patients who did

not develop thyroiditis (166, 167). The association between overall

survival and thyroiditis varied between different tumors, however, it

was related strongly with lung cancer.
Conclusions and perspectives

There is a substantial number of patients with AD and cancer.

Because such patients were excluded from clinical trials, only

limited data are available regarding the efficacy and safety of ICIs

in this large patient population. The limited number of studies

available have shown that using immunotherapy in patients with
Frontiers in Immunology 10
ADs causes an increased risk of irAEs and AD flares, but irAEs are

mostly transient and manageable and rarely mandate treatment

discontinuation and life-threatening complications. The use of ICIs

in patients with AD is often equally safe as in patients without AD.

Hence, pre-existent AD is not an absolute contraindication for the

use of ICIs. The lack of a validated predictive biomarker requires a

careful evaluation for early recognition of irAEs.

The less frequent and milder adverse effect profile of PD-1

inhibitors compared to CTLA-4 inhibitors suggests that PD-1

inhibitors might be considered as the immunotherapy of choice

for cancer patients with pre-existing ADs. In cases that develop

irAEs with or without pre-existing ADs a multidisciplinary

approach and close monitoring are mandatory. Since the

pathogenesis of organ-specific irAEs is unique, approaches of

personalized therapy will be required to avoid non-specific

immunosuppression and preserve the therapeutic benefit of

ICI immunotherapy.
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