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Bone marrow stromal cell antigen-1 (BST-1/CD157) is an immune/inflammatory

regulator that functions as both nicotinamide adenine dinucleotide-

metabolizing ectoenzyme and cell-surface signaling receptor. BST-1/CD157 is

expressed not only in peripheral tissues, but in the central nervous system (CNS).

Although its pathophysiological significance in the CNS is still unclear, clinical

genetic studies over a decade have begun revealing relationships between BST-

1/CD157 and neuropsychiatric diseases including Parkinson’s disease, autism

spectrum disorders, sleep disorders, depressive disorders and restless leg

syndrome. This review summarizes the accumulating evidence for the

involvement of BST-1/CD157 in these disorders.
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Introduction

Bone marrow stromal antigen-1 (BST-1/CD157) is a cell-surface membrane molecule

that promotes pre-B lymphocyte growth (1, 2). BST-1/CD157, along with its paralogue

CD38, constitutes a nicotinamide adenine dinucleotidase (NADase)/ADP-ribosyl cyclase

family (2–10). These two enzymes catalyze the synthesis of cyclic ADP-ribose (cADPR)
Abbreviations: ASD, autism spectrum disorder; BST-1, bone marrow stromal cell antigen-1; CNS, central

nervous system; GWAS, genome-wide association study; iRBD, isolated REM sleep behavior; MDD, major

depressive disorder; NAD, nicotinamide adenine dinucleotide; PD, Parkinson’s disease; RLS; restless leg

syndrome; SNP, single-nucleotide polymorphism.
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from NAD+ and thereby regulate the intracellular Ca2+ homeostasis

(8–10). Also, BST-1/CD157 has a base-exchange activity for

nicotinamide riboside and nicotinic acid riboside (11). In addition

to these enzymatic activities, BST-1/CD157 as well as CD38 serves

as a cell-membrane receptor that transmits signals for cell

polarization, migration, and diapedesis (12).

BST-1/CD157 is expressed by myeloid lineage cells including

neutrophils, eosinophils, basophils and macrophages in the

peripheral blood, and by B-cell and myeloid precursors in the

bone marrow (2, 10, 12–17). Its expression has also been reported

in other tissues, such as peripheral mesothelium (18), vascular

endothelium (19, 20) and Peyer’s patches (21). BST-1/CD157

thus plays diverse roles in humoral immune responses, leukocyte

transmigration, and the maintenance of hematopoietic, intestinal

and vascular endothelial stem cells (2, 12–21).

More importantly, BST-1/CD157 holds much pathogenetic and

clinical significance in various diseases including autoimmune

diseases, hematologic malignancies and solid tumors (10, 17).

Nurse-like cells cloned from bone marrow and synovial tissues of

patients with rheumatoid arthritis promoted survival of peripheral

B cells, which was significantly blocked by anti-BST-1/CD157

antibody; and recombinant soluble BST-1/CD157 showed a

similar survival effect (2, 22). It has been also demonstrated that

BST-1/CD157 is involved in the progression and differentiation of

leukemia (23–25), metastasis of ovarian carcinoma cells (26–28),

malignant mesothelioma (29, 30) and glioma (31), and thus could

be used as diagnostic or prognostic markers. Particularly, BST-1/

CD157 has been regarded as a target for immunotherapy of acute

myeloid leukemia (23–25). Despite the advances in the study of

these diseases, it remains unclear whether BST-1/CD157 is involved

in the pathogenesis of neuropsychiatric disorders in humans.
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In this review, I survey the past studies on the BST-1/CD157

gene and discuss over its implications in neuropsychiatric disorders.
Structure of the human BST-1/CD157
gene and its expression in the
nervous system

The human BST-1/CD157 gene maps to the short arm of

chromosome 4 (4p15.32), where its paralogue CD38 gene is also

located. The major transcript for BST-1/CD157 is encoded by

nine exons that encompass over 35 kb in this chromosomal

region (Figure 1).

Although BST-1/CD157 exists widely in both lymphoid and non-

lymphoid tissues including blood, bone marrow, thymus, spleen,

lymph nodes, lung, liver, gut, uterus, and vascular endothelial cells

(8, 10, 17), little is known about its expression in the nervous system.

RNAblot hybridizationanalysis in earlier studiesdidnot detectBST-1/

CD157 mRNA in human and mouse brains (1, 3). According to the

Human Protein Atlas (32, 33), BST-1/CD157 mRNA is detectable in

the normal human brain at low levels without regional specificity. Our

immunohistochemical staining detected BST-1/CD157-

immuoreactivity in the amygdala and somatosensory cortex of mice

(34, 35). To date, changes in BST-1/CD157 expression in inflamed

CNS have not fully been examined.
Parkinson’s disease

Parkinson’s disease (PD) is a common and complex neurological

disorder that exhibits classical motor dysfunctions, including
FIGURE 1

Structure of the human BST-1/CD157 gene and locations of main single-nucleotide-polymorphisms (SNPs). Depicted is the exon-intron organization
based on GenBank accession numbers NM_004334 and NC_000004. Black and open boxes represent protein-coding regions and untranslated
regions, respectively. The locations of the SNPs on human chromosome 4 (chr4) are indicated in parentheses; numbers after colons represent
genomic positions based on the human genome assembly the UCSC GRCh38/hg38 genome browser (http://www.genome.ucsc.edu/cgi-bin/
hgGateway?db=hg38). SNPs in black, red and blue stand for those reported to be associated with Parkinson’s disease (PD; representative ones),
autism spectrum disorder (ASD) and isolated REM sleep behavior disorder (iRBD), respectively. Single asterisk and double asterisks (in blue) represent
association with major depressive disorder (MDD) and restless leg syndrome (RLS), respectively.
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bradykinesia, resting tremor and gait disturbance, and non-motor

features, such as psychiatric symptoms, sleep disorder and cognitive

impairment (36). Epidemiological studies have revealed that both

genetic and environmental factors are attributable to PD (36–41).

The initial genome-wide association study (GWAS) in a

Japanese population reported rs11931532, rs12645693, rs4698412

and rs4538475 in the BST-1/CD157 gene as risk SNPs for sporadic

late-onset PD (Figure 1; Table 1) (44). Afterwards, studies in various

ethnicities have identified nearly ten PD-associated SNPs (Table 1).

Among them, two SNPs, rs11724635 and rs4698412 (Figure 1;

Table 1), have been examined most repeatedly. The statistically

significant association of rs1573458 has been observed in six

subsequent studies (Figure 1; Table 1) (51–57), but not in Asian

and Caucasian cohorts (45, 47, 58–60).

The association of rs4698412 has been confirmed in eleven

subsequent studies in populations with different ethnic

backgrounds (45, 49, 60–68), but was not in European (50) and

Chinese cohorts (46).

In search of PD-associated SNPs in exons, Wang et al. re-

sequenced all the 9 exons of the BST-1/CD157 gene in a Chinese

cohort. Of 524 PD cases and 527 controls, 6 non-synonymous SNPs

were identified in exons 1, 3, 4, 7, and 9; but their association was

insignificant (72). Thus, all PD-associated SNPs identified so far are

located in introns, making it difficult to define a causal relationship

between these SNPs and the pathogenesis of PD. In addition, all the
Frontiers in Immunology 03
SNPs in this review represent common variation in normal

population, with their minor allele frequency being more than

10%. Hence any of them alone could not be an appropriate

diagnostic or prognostic biomarker for PD. It is worth examining,

however, whether these SNPs could be integrated effectively into

polygenic risk score analysis (73) in combination with SNPs of IL-6,

TNF-a and many other PD-related genes (41).
Autism spectrum disorder and
other diseases

Autism spectrum disorder (ASD) is a neurodevelopmental

disorder characterized by social communication deficits and

restricted repetitive behaviors with a strong genetic inheritability

as well as other environmental causes (74–76). An initial notable

report was on a patient with both autistic symptoms and asthma

(77). In this case, an 84-kb deletion between the BST-1/CD157 and

CD38 genes resulted in an in-frame BST-1/CD157 and CD38 fusion

transcript (77). One hypothetical explanation is that disruption of

the CD38 gene in the vicinity reduced cyclic ADP-ribose formation,

resulting in dysfunctional calcium (Ca2+)-induced Ca2+-release for

the secretion of oxytocin, a neurohypophyseal hormone for social

behavior and recognition (78–80); however, the functional

consequence of this fusion transcript is unknown.
TABLE 1 Parkinson’s disease-associated SNPs tested in the BST-1/CD157 gene.

SNPa Positionb Region Associationc Countries/Ethnicity References

rs3213710 15715698 Intron 4 Yes Canada, France, USA, Israel (42)

rs16892263 15715877 Intron 4 Yes Korean (43)

rs11931532 15724143 Intron 7 Yes Japan
Asian

(44)
(45)

No Chinese
Japan

(46)
(47)

rs12502586 15724941 Intron 8 Yes Netherlands
Ashkenazi Jewish

(48)
(49)

No European origin (50)

rs12645693 15727911 Intron 8 Yes Japan
Ashkenazi Jewish

(44)
(49)

No Japan (47)

rs9790670 15731374 Intron 8 Yes Korean (43)

rs11724635 15735478 Intron 8 Yes Meta-analysis (USA, Germany, UK and France)
Caucasian
Asian, Caucasian
China
Combined (USA, Irish and Polish)
European origin
USA, Canada

(51)
(52)
(53)
(54)d

(55)
(56)
(57)

No Japan
Taiwanese
Chinese
meta-analysis (Asian, Caucasian)
Asian

(47)
(58)
(59)
(60)
(45)

(Continued)
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We subsequently reported association between 3 SNPs

(rs4301112, rs28532698, and rs10001565) located in the BST-1/

CD157 gene with ASD (Figure 1; Table 2) (81). This case-control

study in a Japanese population tested genetic association between 93

SNPs in the BST-1/CD157 gene and ASD, and found out these

possible risk SNPs. These SNPs are located separately from

Parkinson’s disease-associated ones. As they are in high linkage

disequilibrium (81), it is likely that the results represent single

underlying pathogenetic process.

Bioinformatic analysis of the BST-1/CD157 gene using the

HaploReg program (88, 89) predicts that genetic variations at

these three SNPs may be associated with altered binding of neural

development-related transcription factors: histone deacetylase C2

(HDAC2) (90), POU class 6 homeobox 1 (POU6F1) (91), and hes-

related family bHLH transcription factor with YRPW motif 1

(HEY1s) (92), respectively. In addition, in the UCSC (GRCh37/

hg19) track “Transcription Factor ChIP-seq (161 factors) from

ENCODE (93) with Factorbook Motifs”, the region between

rs4301112 and rs10001565 [chr4:15717226–15722573

(corresponding to chr4:15715603–15720950 in GRCh38/hg38)]
Frontiers in Immunology 04
includes potential binding sites for c-Jun, STAT3 (signal

transducer and activator of transcription 3), FOXP2 (forkhead box

protein P2) (Figure 1), PolR2a (PolkRNApolymerase II polypeptide

A), Elf-1 (E74-like factor 1), HNF4G (hepatocyte nuclear factor 4

gamma), HNF4A (hepatocyte nuclear factor 4 alpha), JunD, and C/

EBPb (CCAAT/enhancer binding protein beta). These potential

regulatory sites are overlapped with a peak of H3K27Ac Mark

track, where acetylation of lysine 27 of the H3 histone protein is

assumed to regulate brain development at the level of transcription

(94, 95). In particular, FOXP2 seems important because its genetic

abnormalities have been implicated in speech and language

disorders (96, 97). A chromosomal translocation disrupting the

FOXP2 gene and an amino-acid substitution in its forkhead

domain have been demonstrated in patients with severe

developmental disorders of speech and language (96). FOXP2

mRNA is expressed in the developing human brain, in good

concordance with anomalous sites identified by brain imaging in

adult speech and language disorders (97). It is thus tempting to

postulate that BST-1/CD157 expression is mediated by FOXP2

during the early brain development.
TABLE 1 Continued

SNPa Positionb Region Associationc Countries/Ethnicity References

rs4698412 15735725 Intron 8 Yes Japan
USA (European origin)
China
Ashkenazi Jewish
European
UK
White, non-Hispanic
Chinese
meta-analysis (Asian, Caucasian)
Asian
China
China

(44)
(61)
(62)
(49)
(63)
(64)
(65)
(66)
(60)
(45)
(67)
(68)
(45)

No European origin
Chinese

(50)
(46)

rs4273468 15736240 Intron 8 Yes Chinese
Chinese

(69)
(70)

rs4538475 15736314 Intron 8 Yes Japan
Ashkenazi Jewish
Asian

(44)
(49)
(52)

No Chinese (71)

rs2302468 15703251 Exon 1, p.G36A No

Chinese (72)

rs78449217 15707565 Exon 3, p.R124C No

rs2302465 15707569 Exon 3, p.R124H No

rs2302464 15707629 Exon 3, p.145Q No

rs2302463 15711823 Exon 4, p.S156S No

rs1058212 15731831 Exon 9, p.R315R No

rs4698120 15743332 Downstream Yes Korean (43)
aIDs are from dbSNP of the National Center for Biotechnology Information.
bPosition on the chromosome is based on the GRCh38 (GCF_000001405.26).
cAssociation represents statistical significance in a case-control study.
dSignificant association was observed only in minor allele frequency.
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In other genes, these factors as well as FOXP2 are known to

repress transcription through binding to cis-regulatory elements

(90–92, 94, 95, 97). Currently, however, there is no data for their

binding to cis-regulatory elements in the BST-1/CD157 gene. Also, it

remains unknown whether genetic variation(s) in the BST-1/CD157

gene can change their repressive effect. I would hypothesize that

nucleotide substitution(s) reduce binding affinities, weaker

repressive effects on transcription and thereby dysregulate

(possibly upregulate) expression of BST-1/CD157. As in the

increase in CD38 and decrease in NAD+ (98–100), disruption of

the NAD+ homeostasis would result in sustained immune/

inflammatory reactions (Figure 2).

It is now well known that sustained immune/inflammatory

activation is observed in the brain of the patients with

developmental disorders and neurodegenerative diseases (101).

Vargas et al. reported activation of microglia and astrocytes in

autistic patients (102). Thus, it would be worth examining whether

BST-1/CD157 is involved in such pathological state.

Interestingly, the ASD-associated SNP rs28532698 also showed

association with major depressive disorder (MDD) in a Taiwan

population (Figure 1; Table 2) (85). Huang et al. found that

rs4273468 increased the risk of idiopathic restless leg syndrome

(RLS)/Willis-Ekbom disease (WED) patients in a southeastern

Chinese population (86). Although rs4273468 is also associated

with PD (Figure 1; Table 2), relationship between this common

sleep related movement disorder and PD remains unknown (103).

Also, Mufti et al. reported that rare coding SNPs in the BST-1/
Frontiers in Immunology 05
CD157 gene, together with rare noncoding variants in the LAMP3

(lysosomal associated membrane protein 3) gene, was associated

with isolated REM sleep behavior disorder (iRBD; Table 2) (84). All

these non-synonymous variants (p.V85M, p.I101V, and p.V272M)

seem to be loss-of-function variants with a potential effect on the

protein structure and stability.
Shared genetic architecture and
phenotypic traits

As above, SNPs in the BST-1/CD157 gene have been reported to

be associated with at least five different neuropsychiatric diseases:

Parkinson’s disease, ASD, iBRD, MDD and RLS. This multiple

association could be regarded as genetic pleiotropy in which one

genetic variant has influence on more than one phenotype (104,

105). Although both common and rare genetic variants are known

to show genetic pleiotropy, this phenomenon is more frequently

demonstrated in common variants than in rare variants (105). In

consistent, with the exception of the exonic SNPs in iBRD, most risk

alleles are common ones with frequencies > 1% in general

human populations.

In the current conception, many common variants, each of

which has a small effect size, in sum could be genetic risk of

psychiatric neuropsychiatric disorders; in contrast, rare variants

possess a large effect size, and one or small number of such variants

are sufficient to cause disorders (104, 106). In most case-control
TABLE 2 BST-1/CD157 gene SNPs tested in other neuropsychiatric disorders.

SNPa Positionb Region Associationc Countries/Ethnicity References

Autism spectrum disorder

rs4301112 15715603 Intron 4 Yes Japan (81)

No Chinese (82)

rs28532698 15719996 Intron 6 Yes Japan
meta-analysis

(81)
(83)

No Chinese (82)

rs10001565 15720950 Intron 7 Yes Japan (81)

REM sleep behavior disorder

rs377310254 15705579 Exon 2, p.V85M Yes

European (84)rs6840615 15707250 Exon 2, p.I101V Yes

rs144197373 15736240 Exon 8, p.V272M Yes

Major depressive disorder

rs28532698 15719996 Intron 6 Yes Taiwan (85)

Restless leg syndrome/Willis-Ekborn disease

rs4273468 15736240 Intron 8 Yes Chinese (86)

Alzheimer’s disease (sporadic, late-onset)

rs11724635 15735478 Intron 8 No Chinese (87)
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studies of BST-1/CD157 SNPs, odds ratios have been estimated less

than 2, suggesting that the BST-1/CD157 variations identified so far

have a small effect size in the pathogenesis of common polygenic

neuropsychiatry disorders.

The most common phenotypic trait among the five disorders is

anxiety. In mice deficient in the BST-1/CD157 gene, Lopatina et al.

reported anxiety-related and depression-like behaviors without

apparent motor dysfunction, along with communication impairment

(34, 35, 107, 108). These behaviors were alleviated by the treatment

with anxiolytic agents, such as benzodiazepines (109), monoamine

oxidase B inhibitors (109) and oxytocin (34, 107, 110). CD157 was

weakly expressed in the amygdala and c-Fos-immunoreactivity, an

indirect marker of neuronal excitability, which was less evident in BST-

1/CD157-knockout (BST-1/CD157 -/-) mice than in wild-type mice

(34). These observations in mice suggest that altered BST-1/CD157

expression in a certain brain region might affect mental state.
Conclusion and perspectives

In the past decade, an increasing number of genetic studies have

suggested that the BST-1/CD157 gene could be a risk locus for

several different neuropsychiatric disorders including PD and ASD.

Future studies should define the nature of shared influences of BST-

1/CD157 between psychiatric disorders and other diseases and

phenotypic traits, especially immune/inflammatory dysfunction.

The existing data, however, indicate nothing more than

correlation between genetic variation and diagnoses. While the

role of BST-1/CD157 variation in the genetic architecture of

neuropsychiatric diseases has become clearer, the underlying

molecular mechanisms remain elusive. At the same time, the

physiological functions of BST-1/CD157 in the brain are still

unclear. It is necessary to analyze BST-1/CD157 expression and
Frontiers in Immunology 06
their regulatory processes in the both developing and inflamed

brain in detail.

Moreover, influences of BST-1/CD157 in the periphery on the

CNS should be explored more extensively. A flurry of recent reports

hasdocumentedmicrobiome-gut-brainaxis (111, 112).Changes ingut

microbiota has been shown tomodulate anxiety (113, 114), depression

(113, 114) and core symptoms of ASD (115, 116). Given its regulatory

roles in the immune/inflammatory reactions (2, 12, 13, 117) and in the

renewalof intestinal stemcells (21), it is conceivable that alteredBST-1/

CD157 activity may dysregulate conditions of the gut and enteric

nervous system and thus result in mental disorders.
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FIGURE 2

Hypothetical scheme for Bst-1/CD157-mediated inflammatory/immune regulation in the CNS. Nucleotide substitution(s) may lower binding affinities
of transcription factors (closed circles) to in cis-regulatory regions (open boxes), decrease repressive effects on transcription and thereby upregulate
the expression of the BST-1/CD157 gene, presumably in myeloid cells migrated from the periphery and/or microglia. This would disrupt the NAD+

homeostasis in the CNS, resulting in sustained immune/inflammatory reaction.
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