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PANoptosis-based
molecular subtyping and
HPAN-index predicts therapeutic
response and survival in
hepatocellular carcinoma

Fei Song1†, Cheng-Gui Wang1†, Jia-Zhen Mao1†,
Tian-Lun Wang1, Xiao-Liang Liang1, Chen-Wei Hu1, Yu Zhang1,
Lu Han2 and Zhong Chen1*

1Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Medical School of
Nantong University, Nantong, China, 2Jiangsu Vocational College of Medicine, Yancheng, China
Background: Hepatocellular carcinoma (HCC) is a highly prevalent and fatal cancer.

The role of PANoptosis, a novel form of programmed cell death, in HCC is yet to be

fully understood. This study focuses on identifying and analyzing PANoptosis-

associated differentially expressed genes in HCC (HPAN_DEGs), aiming to

enhance our understanding of HCCpathogenesis and potential treatment strategies.

Methods: We analyzed HCC differentially expressed genes from TCGA and IGCG

databases and mapped them to the PANoptosis gene set, identifying 69

HPAN_DEGs. These genes underwent enrichment analyses, and consensus

clustering analysis was used to determine three distinct HCC subgroups based on

their expression profiles. The immune characteristics and mutation landscape of

these subgroupswere evaluated, and drug sensitivity was predicted using theHPAN-

index and relevant databases.

Results: The HPAN_DEGs were mainly enriched in pathways associated with the

cell cycle, DNA damage, Drug metabolism, Cytokines, and Immune receptors. We

identified three HCC subtypes (Cluster_1, SFN+PDK4-; Cluster_2, SFN-PDK4+;

Cluster_3, SFN/PDK4 intermediate expression) based on the expression profiles of

the 69 HPAN_DEGs. These subtypes exhibited distinct clinical outcomes, immune

characteristics, and mutation landscapes. The HPAN-index, generated by machine

learning using the expression levels of 69 HPAN_DEGs, was identified as an

independent prognostic factor for HCC. Moreover, the high HPAN-index group

exhibited a high response to immunotherapy, while the low HPAN-index group

showed sensitivity to small molecule targeted drugs. Notably, we observed that the

YWHAB gene plays a significant role in Sorafenib resistance.

Conclusion: This study identified 69 HPAN_DEGs crucial to tumor growth,

immune infiltration, and drug resistance in HCC. Additionally, we discovered

three distinct HCC subtypes and constructed an HPAN-index to predict

immunotherapeutic response and drug sensitivity. Our findings underscore the

role of YWHAB in Sorafenib resistance, presenting valuable insights for

personalized therapeutic strategy development in HCC.

KEYWORDS

hepatocellular carcinoma (HCC), PANoptosis, immune characteristics, drug sensitivity,
YWHAB, prognostic index
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GRAPHICAL ABSTRACT

Graphical abstract of the study.
Abbreviations: HCC, Hepatocellular carcinoma; HPAN_DEGs, PANoptosis-

associated differentially expressed genes for HCC; SFN, Stratifin; PDK4, Pyruvate

Dehydrogenase Kinase 4; YWHAB, Tyrosine 3-Monooxygenase/Tryptophan 5-

Monooxygenase Activation Protein Beta; ICBs, Immune checkpoint blockers; PCD,

Programmed cell death; TCGA, The Cancer Genome Atlas; ICGC, International

Cancer Genome Consortium; GEO, Gene Expression Omnibus; GO, Gene Ontology;

KEGG, Kyoto Encyclopedia of Genes and Genomes; IRAK1, Interleukin 1 Receptor

Associated Kinase 1; PSMD11, Proteasome 26S Subunit, Non-ATPase 11; CHMP2A,

Charged Multivesicular Body Protein 2A; PTRH2, Peptidyl-TRNA Hydrolase 2;

PSMD3, Proteasome 26S Subunit, Non-ATPase 3; TP53BP2, Tumor Protein P53

Binding Protein 2; PSMA4, Proteasome 20S Subunit Alpha 4; HPAN-index,

PANoptosis risk index for hepatocellular carcinoma.
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Introduction

Hepatocellular carcinoma (HCC), the world’s third most common

solid malignant tumor, is currently facing a critical situation (1, 2). In

2020, HCC was responsible for the second-highest cancer-related

deaths worldwide, following only lung cancer (3, 4). Unfortunately,

this proportion has steadily increased yearly, ranked third in 2017 and

fourth in 2015 (5). The specific heterogeneity of liver cancer patients,

coupled with the limited number of tests and treatments available, is a

significant factor contributing to this situation (6, 7). Although surgery

remains the primary treatment for primary liver cancer, it is only

accessible to a small percentage of patients.
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Moreover, even after successful surgical treatment, some

patients remain at risk of recurrence and metastasis for several

years thereafter (8). Despite remarkable advancements in the

treatment of various cancers, such as lung cancer and melanoma,

the effectiveness of immunotherapy in treating hepatocellular

carcinoma (HCC) has been unsatisfactory. Specifically, the

objective response rate (ORR) of PD-1 immune checkpoint

blockers (ICBs) for advanced HCC hovers around 15%, which is

not sufficient (9, 10). Similarly, sorafenib, a small representative

molecule targeted drug, has limited survival benefits for patients

with advanced liver cancer due to tumor resistance (11, 12). As

such, there is an urgent need to accurately and effectively screen

patients suitable for ICBs or targeted drug sensitivity, enabling them

to receive the most suitable treatment.

In recent years, scholars have defined a novel cell death pathway,

PANoptosis (‘P’ for Pyroptosis; ‘A’ for Apoptosis; ‘N’ for

Necroptosis), which has been defined by scholars (13–15). This

pathway involves the activation of a cytoplasmic multiprotein

complex called PANoptosome, which can trigger multiple forms of

programmed cell death, including pyroptosis, apoptosis, and

necroptosis (16–18). The dysregulation of PANoptosis has

been associated with various human diseases, including

autoinflammatory diseases, cancer, and infectious and metabolic

disorders. Some biomarkers associated with PANoptosis, including

NLRP3, caspase-1 for pyroptosis, ZBP1, IRF1, caspase-8 for

apoptosis, and RIPK3/RIPK1 for necroptosis, have shown

considerable benefits in suppressing cancer (19–21). For instance,

IRF1 functions in both myeloid and epithelial cells to counteract

AOM/DSS-induced colorectal tumorigenesis, while RIPK3 activation

in colon cancer cells leads to increased cytokine expression in the

tumor microenvironment, contributing to robust cytotoxic anti-

tumor immunity (19, 22). It is widely recognized that cell death

resistance is a hallmark feature of hepatocellular carcinoma, and

tumor cells have developed various strategies, such as the loss of TP53

tumor suppressor function, to limit apoptosis, which also plays a

pivotal role in the failure of traditional cancer treatment (23, 24).

Cancer immunotherapy is a promisingmodality that stimulates the

immune system to eliminate cancer cells with minimal side effects by

modulating inherent immunosurveillance (25). Although some

immune checkpoint blockade (ICB) therapies, particularly anti-PD-

L1/PD-1, have shown clinical efficacy for patients with advanced stages

of cancer, the objective response rate and survival benefits remain

limitation (26, 27). One important reason for this is the inability of

ICBs to induce programmed cell death (PCD) is essential for

organismal development, host defense against pathogens, and

maintaining homeostasis (28). However, resistance to PCD has been

shown to promote tumor development, highlighting the need for novel

PCD-based cancer therapies (29, 30). As a pivotal inflammatory PCD

pathway, PANoptosis possesses critical features of pyroptosis,

apoptosis, and necroptosis, which cannot be accounted for by any of

these three PCD pathways alone (31). PANoptosis triggers systematic

inflammation by releasing pro-inflammatory intracellular contents,

making it a promising avenue for solid tumor immunotherapy (32).

Thus, a deeper understanding of the mechanisms underlying

PANoptosis can offer new opportunities to develop effective

strategies for hepatocellular carcinoma immunotherapy.
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There is a gap in current research on the role of PANoptosis in

HCC. In the present study, we conducted a Consensus-Cluster-Plus

analysis to identify three subgroups based on differentially

expressed genes associated with PANoptosis and HCC

(HPAN_DEGs). We then investigated these subgroups’ immune

profiles and mutational landscape and constructed a PANoptosis

risk score model (HPAN-index) for HCC. The HPAN-index can be

used to grade the prognostic risk of HCC and to predict response to

immunotherapy and chemotherapy drugs. Furthermore, we

developed an integrated scoring nomogram to improve

prognostic stratification and predictive accuracy for individual

patients. Finally, we validated the drug response in different

HPAN-index groups using public databases and in vitro trials,

highlighting the enormous clinical potential of our findings in

improving personalized decision-making for immunotherapy in

HCC (Graphical abstract of the study).
Methods

Data acquisition and preprocessing

Data were obtained from the Cancer Genome Atlas (TCGA) in

the training set, whereas the validation set sample data was sourced

from the International Cancer Genome Consortium (ICGC)

database. The test set sample data (GSE14520) was acquired from

the Gene Expression Omnibus (GEO) database (33–36).

Additionally, the GSE109211 cohort was used as a dataset for

Sorafenib resistance validation, and the GSE100797 and

GSE93157 cohorts were used as datasets for immunotherapy

sensitivity evaluation (37–39). Please refer to Supplementary

Table 1 for detailed information on the data.

To generate the PANoptosis gene list, we merged the gene lists

of pyroptosis, apoptosis, and necroptosis while eliminating any

redundant genes. Specifically, the pyroptosis gene list was retrieved

from the Reactome pathway database, while the apoptosis gene list

was integrated from three separate gene lists obtained from the

AmiGO2, Reactome, and KEGG pathway databases, respectively

(40, 41). Furthermore, the necroptosis gene list was sourced from

the AmiGO2 database. After compiling the individual gene lists, a

total of 277 non-redundant genes were identified and included in

subsequent analyses (Supplementary Figure 1).
Identification of differentially
expressed genes associated with
HCC and PANoptosis

In our study, differential analysis was performed using the

“limma” package (version 3.40.6) to identify genes differentially

expressed between normal and cancer groups based on the data

obtained from the TCGA and ICGC databases. To this end, we

obtained the expression spectrum dataset and utilized the “lmFit”

function to perform multiple linear regression. Next, the “eBays”

function was utilized to calculate moderated t-statistics, F-statistics,

and log-odds of differential expression via empirical Bayes
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moderation of standard errors directed toward an anticipated value.

Subsequently, we identified the significance of variations for each

gene (42). The selection criteria for identifying differentially expressed

genes (DEGs) were P<0.05 and |log2FC|>1.5.
Unsupervised clustering of HCC-
PANoptosis-related model genes

We performed consensus clustering analysis to identify

unknown hepatocellular carcinoma (HCC) subtypes using the

“Consensus-Cluster-Plus” package and model genes (43). The

clustering was executed with a 1-Pearson correlation distance,

and 80% resampling of the sample, and the process was repeated

ten times. Empirical cumulative distribution function plots were

utilized to determine the optimal number of clusters.
Functional enrichment analysis

To carry out GO and KEGG functional enrichment analyses, we

employed the R packages “org.Hs.eg.db” and “clusterProfiler” (version

3.14.3). Initially, genes were annotated with GO terms using

“org.Hs.eg.db” and mapped to a background set. Subsequently, the

“clusterProfiler” package was utilized for GO and KEGG enrichment

analyses, obtaining gene set enrichment results. In both cases, the

minimum and maximum gene set sizes were set at 5 and 5000,

respectively. We acquired the latest KEGG pathway gene annotations

through the KEGG REST API and mapped them to a background set.

Statistical significance was determined by a P value of < 0.05 and a

false discovery rate (FDR) of < 0.25 for both analyses (44).

For Gene Set Enrichment Analysis (GSEA), we obtained subset

collections from the Molecular Signatures Database to evaluate the

relevant pathways and molecular mechanisms based on gene

expression profiles and phenotype grouping (41). We performed

1000 permutations to obtain statistically significant results by P

value of < 0.05 and FDR of < 0.25.
Somatic mutation analysis

To evaluate somatic mutations and assess tumor mutation

burden (TMB), we utilized the “maftools” R package (45, 46).

Somatic mutation data was obtained from the TCGA database

and analyzed to identify non-synonymous somatic mutations. We

then calculated TMB scores by dividing the number of non-

synonymous somatic mutations by the total size of the genome

in megabases.
Immune landscape analysis

The Tumor Immune Dysfunction and Exclusion (TIDE)

framework is a computational tool that evaluates the potential for

tumor immune evasion using gene expression profiles of cancer

samples (47, 48). TIDE scores computed for each tumor sample
Frontiers in Immunology 04
serve as biomarkers to predict the response to immune checkpoint

blockade, including anti-PD1 and anti-CTLA4, across different

cancer types. We employed five algorithms to evaluate immune

cell infiltration in the tumor microenvironment: TIMER, EPIC,

xCELL, CIBERSORT, and MCPcount (49, 50). These algorithms

enable a comprehensive evaluation of the immune cell landscape in

the tumor microenvironment.
Chemotherapy response and small-
molecule drugs

Data from the Genomics of Drug Sensitivity in Cancer (GDSC)

database were analyzed to predict chemotherapy response in HCC

patients (51). The half-maximal inhibitory concentration (IC50)

calculated using the “pRRophetic” R package was used to indicate

response to chemotherapy drugs (52). To identify potential new

targets for HCC treatment, the gene expression profiles of high-risk

and low-risk patient groups were compared using the Connectivity

Map (CMap) reference dataset (53). Specifically, differentially

expressed genes were identified and ranked based on their

enrichment in the CMap dataset. A drug was considered a

potential target if the enrichment score was between -1 and 0 and

the adjusted p-value was less than 0.05.
Survival analysis and machine learning

We established a Lasso regression model using the “glmnet”

package and utilized 10-fold cross-validation to select the optimal

Lambda value, enhancing the interpretability and predictive

accuracy of the model. The Lambda value of 0.0024 was optimal

for minimizing the cross-validation error. We determined the

coefficients of each gene using multivariate Cox analysis and

generated the final regression model with the selected Lambda

value. At the Lambda value of 0.0024, IRAK1, PSMD11, CHMP2A,

PTRH2, SFN, YWHAB, PSMD3, TP53BP2, and PSMA4 were

identified as the most important genes for predicting STATUS,

with a calculated scoring formula of:.

HPANi =o9
i=1bi ∗ Ei

We initially divided patients into two groups based on the risk

coefficient value using the percentile (50%) and classified them as either

the high HPAN-index or low HPAN-index groups. Subsequently, we

used the “survfit” function in the R software package “survival” to

analyze the prognostic differences between the two groups. The log-

rank test method was employed to evaluate the significance of the

prognostic differences between the samples in different groups.
Cell proliferation, western blot, and
invasion assays

The inhibitory effect of sorafenib on cell growth was assessed

using the Cell Counting Kit-8 (CCK-8, Dojindo Kumamoto, Japan).

Cells were plated at a density of 5,000 cells per well in 96-well plates.
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Following an initial 8-hour incubation period, the cells were treated

with sorafenib at the prescribed doses or left untreated for 48 hours.

Specific monitoring steps can be referred to in the instructions

provided by the CCK-8 kit. Western blotting was carried out in the

manner previously mentioned (54).

For the Matrigel invasion experiment, 1:8 diluted Matrigel

matrix gel coating from Corning (ME) was applied to the

chamber. DMEM plates without FBS were utilized to inject 2 ×

106 cells per group. DMEM supplemented with 20% fetal bovine

serum was added to the lower chamber, while mitomycin C

was administered to the upper chamber to prevent cell

proliferation. After a 48-hour incubation, the submembrane

surface-invading tumor cells were fixed with 4% methanol and

stained with 0.1% crystal violet. Each sample was counted across ×

100 microscopic fields. All assays were performed in triplicate to

ensure reliability.
Construction of sorafenib-resistant cell
lines and RNA interference

The resis-PLC cells were generated from PLC cells using a

protocol involving continuous exposure to increasing

concentrations of sorafenib, followed by stepwise selection (55).

The cells were collected every 3-4 days, passaged, and cultured in

DMEM media containing progressively higher concentrations of

sorafenib until they could grow steadily in its presence.

Small interfering RNA (siRNA) oligonucleotides specific to the

target gene were used to knockdown expression. Cells were

transfected with siRNA oligonucleotides using Lipofectamine 3000

(Invitrogen) according to the manufacturer’s protocol. The siRNA

sequences for the YWHAB gene were as follows: si-1 5’-

GCTGAATTGGATACGCTGAAT-3’, si-2 5’-CCAATGCTA

CACAACCAGAAA-3’, and si-NC 5’-UUCUCCGAACGUGUCA

CGUdTdT-3 ’ . The RNA duplexes were synthesized by

Genomeditech (Shanghai, China). Knockdown efficiency was

assessed by western blotting.
Statistical analysis

Statistical evaluations were conducted utilizing R software

(v.4.1.0). Continuous variables were displayed as mean ± standard

deviation (SD), while categorical variables were shown as frequency

(percentage). The Student’s t-test or Wilcoxon test examined

differences between two groups concerning continuous variables

contingent upon data normality assumptions. The chi-square or

Fisher’s exact test was applied to categorical variables based on

anticipated frequency counts. A two-sided P-value below 0.05 was

deemed statistically significant across all tests. The Kaplan-Meier

technique was implemented for survival assessment, and the log-

rank test was adopted to compare group variations. Multivariate

survival analysis utilized Cox proportional hazards regression. All

analyses were conducted by a professional statistician with over 5

years of experience.
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Results

Identification and functional analysis of
PANoptosis-associated differentially
expressed genes for HCC

The PANoptosis gene set consisted of pyroptosis (27 genes),

apoptosis (259 genes), and necroptosis (15 genes) (Figures 1A, B

and Supplementary Figure S1A). The differentially expressed genes

for HCC comprised 5663 differentially expressed genes for

hepatocellular carcinoma screened by the TCGA database and

4587 differentially expressed genes for hepatocellular carcinoma

screened by the IGCG database (Figures 1C, D and Supplementary

Figure S1B). We mapped the three gene sets screened for TCGA,

ICGC, and PANoptosis to obtain 69 genes, defined as PANoptosis-

associated differentially expressed genes for HCC (HPAN_DEGs)

(Figures 1E, F).

We performed GO, KEGG, and GSEA enrichment analyses to

investigate the biological functions and related signaling pathways

of HPAN_DEGs. Bioprocess (BP) analysis revealed that

HPAN_DEGs are mainly enriched in signal transduction, cell

communication, interleukin-1-mediated signaling pathway, and

regulation of RNA stability (FDR<0.1, p value<0.05, Figure 2A).

Molecular functional (MF) analysis revealed that HPAN_DEGs

were mainly enriched in protein binding, enzyme binding,

enzyme regulator activity, and transcription factor binding

(FDR<0.1, p-value<0.05, Figure 2B). Cell composition (CC)

analysis showed that HPAN_DEGs were mainly enriched in

proteasome complex, endopeptidase complex, peptidase complex,

and cytosol (FDR<0.1, p-value<0.05, Figure 2C). KEGG enrichment

analysis suggested that HPAN_DEGs were mainly enriched in

Proteasome, Apoptosis, Cell cycle, Necroptosis, p53 signaling

pathway, Platinum drug resistance, and other signaling pathways

(FDR<0.1, p value<0.05, Figure 2D).

To further clarify the biological functions undertaken by

HPAN_DEGs, we conducted a GSEA analysis of HPAN_DEGs

utilizing the KEGG, Hallmark, and Reactome datasets, respectively.

The results showed that HPAN_DEGs were mainly enriched in the

P53 signaling pathway (Hallmark and KEGG), Reactive oxygen

species pathway (Hallmark), Cell cycle (Reactome and KEGG),

DNA repair (Hallmark and Reactome) (NES>1, p-value <0. 05 and

FDR<0.25, Figures 2E–G). Overall, our study identified 69

PANoptosis-associated differentially expressed genes for HCC

(HPAN_DEGs) and revealed their enrichment in various biological

functions and signaling pathways, such as the P53 signaling pathway,

DNA repair, and cell cycle, indicating their potential involvement in

tumor growth, metastasis, and drug resistance.
HPAN_DEG expression profiling
identifies three HCC subtypes
with distinct prognoses

We applied consistent clustering analysis to group the HCC

cohort of TCGA based on information from the expression profiles
frontiersin.org
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of 69 HPAN_DEGs. When the value of K was taken as 3, the

average consistency within the group was higher while ensuring that

the area under the CDF curve line was as large as possible

(Figures 3A, B and Supplementary Figure S1C). We named

cohorts Cluster_1 (n = 131), Cluster_2 (n = 160), and Cluster_3

(n = 74) (Figure 3C). We then compared the expression levels of
Frontiers in Immunology 06
PAN apoptotic genes between the three Clusters and found that the

PDK4 gene was up-regulated in Cluster_2 compared to Cluster_1

and Cluster_3, while SFN expression was down-regulated in the

other two groups relative to Cluster_1 (Figure 3D and

Supplementary Figure S1D). Additionally, survival analysis

demonstrated that these three subtypes of HPAN_DEGs exhibit
A B

D

E F

C

FIGURE 1

Identification of PANoptosis-associated differential genes for HCC. (A) Concept drawing of PANoptosis (Fig-draw website, ID: YPOYA779c7); (B) The
PANoptosis gene list; (C, D) Heatmap of the top 50 up- and down-regulated DEGs between HCC and normal tissue in the TCGA and ICGC databases;
(E) The Vene diagram is composed of the differential genes of TCGA and ICGC respectively and the PANoptosis related dataset; (F) Protein–protein
interactions among the PANoptosis-associated differential genes for HCC (HPAN_DEGs).
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distinct clinical prognostic outcomes, with Cluster_1 having the

poorest overall survival rate, Cluster_2 having the best, and

Cluster_3 falling in between the two (Figure 3E). In summary,

this study applied clustering analysis to identify three distinct

subtypes of HCC based on the expression profiles of 69

HPAN_DEGs, which exhibited differential expression of PAN

apoptotic genes and distinct clinical prognostic outcomes.
Frontiers in Immunology 07
Distinct immunological profiles
and mutational landscapes in
HPAN_DEGs subgroups

Previous studies suggest that PANoptosis may influence tumor

mutation and immune infiltration. To assess the immunological

profile among subgroups of HPAN_DEGs, we performed an
Hallmark Reactome KEGG

Biological process

Cell component

Molecular function
A B

D

E F G

C

FIGURE 2

GO/KEGG/GSEA enrichment analysis of the HPAN_DEGs. (A–C) GO enrichment analyses based on the HPAN_DEGs; (D) KEGG enrichment analyses
based on the HPAN_DEGs; (E–G) GSEA analysis based on Hallmark, Reactome and KEGG datasets respectively.
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immunological landscape analysis of each of the three subgroups

using several immunological algorithms, including CIBERSORT,

ESTIMATE, and xCELL. The waterfall diagram of Figure 4A

illustrates the distribution of the 22 immune cells in the TCGA

training set. Then, we evaluated the Immune-Score, Stromal-Score,

and Microenvironment-Score for HPAN_DEGs subgroups

(Figures 4B, C). Our study indicates that Cluster_2 is significantly

different from the other two groups in the term of Immune-Score

and Stromal-Score (Cluster_2 vs. Cluster_1, 0.04 ± 0.05 vs. 0.06 ±

0.07, P = 0.03; Cluster_2 vs. Cluster_3, 0.04 ± 0.05 vs. 0.10 ± 0.15,

P = 0.0025, Immune-Score) (Cluster_2 vs. Cluster_1, 0.12 ± 0.06 vs.
Frontiers in Immunology 08
0.06 ± 0.04, P = 7.9E-19; Cluster_2 vs. Cluster_3, 0.12 ± 0.06 vs. 0.07

± 0.05, P = 0.00000000073, Stroma-Score). In the assessment of the

Microenvironment-Score, we found that Cluster_2 and Cluster_3

were not statistically different, while Cluster_1 was significantly

different from the other two groups (Cluster_1 vs. Cluster_2, 0.12 ±

0.085 vs. 0.16 ± 0.09, P = 0.0000017; Cluster_1 vs. Cluster_3, 0.12 ±

0.08 vs. 0.17 ± 0.16, P = 0.03, Figure 4F). We also evaluated the gene

expression of immune checkpoints among HPAN_DEGs

subgroups, namely PD-1 (PDCD1), PD-L1 (CD274), PD-L2

(PDCD1LG2), CTLA4, LAG3, TIGIT, HAVCR2, and found that

the expression of these immune checkpoints was up-regulated in
C1
C2
C 3

0

Number at risk
24.1 41.4 81.4

0 30

Time_Months

60 90 120

131
160 58 28 5 1
74 23 5 2 1

28 9 3 1

0.3

S
u
rv

iv
a
l 

p
ro

b
a
b
il

it
y

p=9.3e-3

pvalue Cluster
1.3e-6

0.02 C3
0.1

C1

C2

0.5

0.8

1.0

A B

D

E

C

FIGURE 3

HPAN_DEG expression profiling identifies three HCC subtypes with distinct prognoses. (A, B) Assessment of average consistency within clusters and
assessment of area under the CDF curve line when k = 2 to 10; (C) The training cohort was divided into three HCC subtypes by consensus
clustering. (D) A heatmap displayed the expression of HPAN_DEGs in different HCC subtypes; (E) Kaplan-Meier survival analysis between three
subtypes of HPAN_DEGs.
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Cluster_1 and Cluster_3, and downregulated in Cluster_2 (all P <

0.05, Figure 4H).

Subsequently, we demonstrated the somatic mutational

landscape among the HPAN_DEGs subgroups. The top 15

mutated genes in the three subgroups were TP53/CTNNB1/TTN/

MUC16/ALB/PCLO/MUC4/RYR2/ABCA13/APOB/CSMD3/

LRP1B/FLG/OBSCN/AXIN1. The gene with the highest mutation

rate was TP53, which varied among the three clusters, with

Cluster_1 (44.79%) having a higher mutation rate than Cluster_2

(23.96%) and Cluster_3 (29.17%), respectively (Figure 4D). Tumor

mutational load (TMB) is an essential indicator of the number of

mutations in cancer and a novel marker for evaluating the efficacy
Frontiers in Immunology 09
of PD-1 antibody therapy. We compared the tumor mutational

burden (TMB) of the three subgroups and found that the TMB of

Cluster_2 was lower than that of Cluster_1 and Cluster_3,

respectively (Cluster_2 vs. Cluster_1, 1.84 ± 1.34 vs. 2.85 ± 3.99,

P = 0.0042; Cluster_2 vs. Cluster_3, 1.84 ± 1.34 vs. 2.50 ± 2.08, P =

0.00034, Figure 4E). We then applied a ternary diagram showing the

distribution of mutant genes among different subgroups of

HPAN_DEGs (Figure 4G). In summary, our findings

demonstrated substantial discrepancies in the expression of

immune checkpoints and the mutational landscape among the

three clusters, which could potentially have crucial ramifications

in cancer immunotherapy.
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FIGURE 4

Distinct immunological profiles and mutational landscapes in HPAN_DEGs subgroups. (A) Waterfall diagram of the distribution of the 24 immune
cells in the training set; (B, C) Immuno-score and Stromal-score for 3 subgroups of HPAN_DEGs. (D) Waterfall maps of the somatic mutations in
different HPAN_DEGs subtypes; (E) Tumor mutation burden in different HPAN_DEGs subtypes; (F) Microenvironment score -score for 3 subgroups
of HPAN_DEGs; (G) Characteristics of gene mutation in different HPAN_DEGs subtypes; (H) Expression of immune checkpoints in different
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Construction of a HPAN_DEGs-based
PANoptosis risk score model for
prognostic assessment in HCC

To further evaluate the impact of HPAN_DEGs on survival

prognosis, we used LASSO, univariate and multivariate regression to

screen nine gene signatures with strong prognostic associations, and

finallyconstructedaPANoptosis risk index forhepatocellular carcinoma

(HPAN-index, Figures 5A–D). HPAN-index = 0.4142* IRAK1 +

0.78337*PSMD11 - 0.33085*CHMP2A + 0.66389*PTRH2 +

0.11779*SFN + 0.82753*YWHAB - 0.95811*PSMD3 - 0.25778 *TP5

3BP2 - 0.72582*PSMA4. We classified 365 patients with complete

survival information in training set into high and low HPAN-index

groups utilizing the HPAN-index score (high 183 vs. low 182). Kaplan-

Meier analysis demonstrated a significantly better prognosis for the low-

risk group (Median Survival Time, MST = 83.8 months) than the high-

riskgroup(MST=29.9months) in the training set (P<0.001,Figure5E).

We investigated the relationship between patient prognosis, gene

expression, and HPAN-index and observed a significant decrease in

survival as theHPAN-index increased.As expected,CHMP2A/PSMA4/

PSMD3/TP53BP2 were protective factors, whose expression was

downregulated with increasing HPAN-index, while IRAK1/PSMD11/

PTRH2/SFN/YWHAB were risk factors (Figure 5F).

In addition, we evaluated the area under the curve (AUC) of the

HPAN-index as a predictive model, and the results suggested that

the HPAN-index was highly accurate in predicting survival at 1, 3,

and 5 years (Figure 5G). We applied Sankey diagrams to visualize

the relationship between the risk groups of the HPAN-index and

the individual clinical characteristics, suggesting that Cluster_1

mainly converges in the high HPAN-index group. In contrast,

Cluster_2 mainly converges in the low HPAN-index group

(Figure 5H). Interestingly, Stage I/II in TNM staging mainly

converged in the low HPAN-index group, while Stage III/IV

mainly converged in the high HPAN-index group. We

constructed a nomograph based on the Cox regression analysis

results and found that the HPAN-index was an independent risk

factor (Figure 5I and Supplementary Figure S1E). In conclusion, the

HPAN_DEGs-based PANoptosis risk score model (HPAN-index)

constructed by LASSO regression, univariate and multivariate

regression analysis, can accurately predict the survival prognosis

of hepatocellular carcinoma patients and could be a potential

independent risk factor for clinical decision-making.
Validation of HPAN-index as a prognostic
predictor in HCC patients across
multiple cohorts

To examine the repeatability of the model HPAN-index as a

predictive model, we validated the model in the ICGC_HCC cohort

(Validation set) and the GSE14520 cohort (Testing set). Applying the

Kaplan-Meier analysis, we can observe a significant decrease in

patient survival as the HPAN-index increases (Figures 6A, C). In

the Validation set, the prognosis was significantly better in the low-

HPAN-index group (MST = 66.7 months) than in the high-HPAN-

index group (MST = 47.3 months, P < 0.001, Figure 6B), with similar
Frontiers in Immunology 10
results in the Testing set (P = 0.01, Figure 6D). In conclusion, the

HPAN-index model demonstrated significant predictive value for

patient survival in both the Validation and Testing sets, with higher

HPAN-index scores indicating poorer prognosis.
Immune cell landscape and molecular
pathways associated with HPAN-index in
HCC patients

To further investigate the immune characteristics of different

HPAN-index groups, we employed five distinct immune algorithms,

including CIBERSORT, ESTIMATE, TIDE, TIMER, and xCell, to

assess the relationship between HPAN-index and the immune

microenvironment. The outcomes obtained from Figures 6E, F

demonstrated a significant correlation between the HPAN-index

and the expression of diverse immune cells, including B cells naive,

B cells memory, T cells CD8, T cells CD4 memory activated, T cells

follicular helper, T cells regulatory, T cells gamma delta, NK cells

resting, NK cells activated, Monocytes, Macrophages M0, Mast

cells resting, and Neutrophils, with all P values less than 0.05.

Moreover, the high HPAN-index group exhibited significantly

higher Stromal-Score, Immune-Score, and ESTIMATE-Score

compared to the low HPAN-index group (all P<0.05, Figure 6G).

Notably, the Microsatellite Instability (MSI)-score, an essential

indicator reflecting tumor genome stability, significantly correlated

with immune checkpoint efficacy (56). Based on our analysis, we

observed that the high HPAN-index group has a significantly higher

MSI-score compared to the low HPAN-index group, with similar

results for other scores such as TIDE-score, IFNG-score, Merck18-

score, Dysfunction-score, Exclusion-score, MDSC-score, and TAM

M2-score (all P < 0.05, Figures 7A–F). Compared to the low HPAN-

index group, the high HPAN-index group exhibited a significant up-

regulation in the expression levels of immune checkpoints, including

CD274, CTLA4, LAG3, TIGIT, HAVCR2, PDCD1, and PDCD1LG2

(all P < 0.05, Figure 7H). This observation suggests that the high

HPAN-index group may be more likely to benefit from

immunotherapy than the low HPAN-index group.

To further elucidate the molecular mechanisms underlying the

different HPAN-index groups, we performed GSVA enrichment

analysis. The results revealed that the high HPAN-index group was

significantly enriched in signaling pathways such as the T cell

receptor pathway, chemokine pathway, B cell receptor pathway,

DNA replication, and cell cycle. In contrast, the low HPAN-index

group showed significant enrichment in signaling pathways related to

fatty acid metabolism, drug metabolism, glycine serine, threonine

metabolism, PPAR signaling pathway, and tryptophan metabolism

(Figure 7G). We further evaluated drug sensitivity in different

HPAN-index groups and found that small molecule inhibitors

(JAK1_8709/KRAS_G12C/Linsitinib/Nilotinib/Oxaliplatin/

Niraparib/Picolinic-acid/Selumetinib/Sorafenib) showed significantly

higher sensitivity in the low HPAN-index group compared to the

high HPAN-index group (all P < 0.05, Supplementary Figures S2A–

I). In summary, patients with high HPAN-index may be more

responsive to immune checkpoint therapy, while those with low

HPAN-index may be better suited for a targeted drug.
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FIGURE 5

Construction of a HPAN_DEGs-based PANoptosis risk score model for prognostic assessment in HCC (HPAN-index). (A, B) Lasso regression analysis
with 10-fold cross-validation resulted in 20 genes associated with survival (Lambda = 0.0239703477847909); (C, D) Univariate and multivariate Cox
analyses further screened for nine PANoptosis-associated genes associated with survival; (E) Kaplan–Meier analyses demonstrate the prognostic
significance of the HPAN-index model in the training set; (F) HPAN-index distribution, survival status of each patient, and heatmaps of prognostic 9-
gene signature in the training set; (G) Receiver operator characteristic (ROC) analysis of the HPAN-index model in the training set; (H) Sankey
diagrams shows the interrelationship between HPAN_DEGs subtypes, the risk groups of the HPAN-index and the individual clinical characteristics;
(I) A nomogram was established to predict the prognostic of HCC patients.
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FIGURE 6

Validation of HPAN-index as a prognostic predictor in HCC patients across multiple cohorts. (A) HPAN-index distribution, survival status of each
patient, and heatmaps of prognostic 9-gene signature in the validation set (ICGC, n = 243); (B) Kaplan–Meier analyses demonstrate the prognostic
significance of the HPAN-index model in the validation set (ICGC, n = 243); (C) HPAN-index distribution, survival status of each patient, and
heatmaps of prognostic 9-gene signature in the testing set (GSE14520, n = 242); (D) Kaplan–Meier analyses demonstrate the prognostic significance
of the HPAN-index model in the validation set (GSE14520, n = 242); (E) Box plot visualizes significantly different immune cells between different
HPAN-index groups; (F) Correlation of HPAN-index with immune cell infiltration evaluated using CIBERSORT in the HCC; (G) Immuno-score,
Stromal-score, and ESTIMATE-score between different HPAN-index groups. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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Validation of HPAN-index and
identification of key molecule YWHAB
in sorafenib resistance

To further validate the accuracy of HPAN-index in predicting

drug resistance and explore the key molecules, we combined the

correlation analysis results of gene expression data from TCGA and

protein-protein interaction (PPI) topological network analysis
Frontiers in Immunology 13
results to identify YWHAB with higher weight in HPAN-index

(Figures 8A, B). Subsequently, we utilized the DepMap database to

select PLCPRF5 cells with the highest YWHAB expression levels to

construct sorafenib-resistant cells (resis-PLC) (Figures 8C, D). We

were thrilled to discover that knocking down YWHAB in resis-PLC

not only restored sensitivity to sorafenib but actually resulted in

even greater sensitivity than the non-resistant control (IC50,

NC_PLC 7.265 mM, resis-PLC 11.01 mM, siYWHAB 4.288 mM,
e
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Immune cell landscape and molecular pathways associated with HPAN-index in HCC patients. (A–F) TIDE, immune dysfunction, immune exclusion,
CD274, Merck18, CD8, and IFNg scores in low and high HPAN-index groups; (G) Top enriched pathways for genes with specific expression in the
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Figures 8E, F). As shown in Figures 8G, H the knockdown of

YWHAB restored the ability of sorafenib to inhibit the invasion of

resis-PLC. Furthermore, we further validated HPAN-index in

public databases, and the results showed that the Low HPAN-
Frontiers in Immunology 14
index group was more sensitive to sorafenib and less responsive to

immunotherapy than the High HPAN-index group (Figures 8I–L).

In summary, the HPAN-index exhibits considerable advantages in

predicting the response to immunotherapy and the sensitivity to
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targeted drugs, with YWHAB potentially playing a crucial role in

the HPAN-index’s functionality.
Discussion

As the clinical use of immunotherapeutic agents and

molecularly targeted inhibitors continues to expand, liver cancer

patients experience limited benefits compared to other malignancies

such as melanoma, lung cancer, and kidney cancer (57–59). It is

primarily due to the unique characteristics of the liver, which has a

remarkable regenerative capacity and serves a vital role in

detoxification. Furthermore, malignant tumors originating from

the liver are more heterogeneous than other tumors (60).

Therefore, it is of utmost importance for scholars to address the

urgent question of enabling liver cancer patients to select the most

appropriate clinical drugs and achieve personalized and precise

treatment for liver cancer.

In recent years, scholars have proposed the concept of

PANoptosis, which highlights the complex interplay between

different cell death pathways in regulating tumor development

(13). It is now widely acknowledged that a single death pathway

does not solely govern tumor progression but involves intricate

crosstalk between various pathways (14, 19). This integration of

functions often has significant implications for tumor resistance

and the immune microenvironment. In this study, we developed

exclusive models for hepatocellular carcinoma related to

PANoptosis (HPAN-index). We further validated the predictive

performance of these models in terms of prognosis, minor molecule

drug sensitivity, and immunotherapy in both the validation and test

sets. These findings highlight the crucial role of PANoptosis in the

context of hepatocellular carcinoma and offer valuable insights for

developing personalized and precise therapeutic strategies.

The team of Prof. Gao Q. identified three distinct subtypes of

hepatocellular carcinoma (HCC): the Metabolic subtype, the

Proliferative subtype, and the Tumor Microenvironment

Dysregulation subtype (60). Our study conducted a consistency

clustering analysis of 69 HPAN_DEGs in the training set and

identified three subgroups that exhibit distinct characteristics

regarding overall survival prognosis, mutational landscape, and

immune infiltration. Cluster_1, which demonstrated the highest

tumor mutational load, had the worst overall survival rate. However,

Cluster_1 showed an advantage in immunotherapy with higher

expression of its major immune checkpoints CD274/CTLA4/LAG3/

TIGHT/HAVCR2/PDCD1/PDCD1LG2 compared to the other

groups. On the other hand, Cluster_2 presented an opposite

phenotype in terms of overall survival prognosis, mutational

landscape, and immunomolecular profile compared to Cluster_1. We

observed that Cluster_1 presented SFN+PDK4-, whereas Cluster_2

presented SFN-PDK4+. Our molecular characterization of these three

subgroups revealed essential insights into the complex interplay

between tumor mutational load, immune checkpoint expression, and

prognosis, providing valuable information for developing personalized

therapeutic strategies for hepatocellular carcinoma.

Previous studies have demonstrated that SFN is an oncogene,

accelerating tumorigenesis and progression across various cancer
Frontiers in Immunology 15
types (61, 62). Prof. Masayuki Noguchi’s team identified that SFN

specifically binds to ubiquitinated protease 8 (USP8) in lung

adenocarcinoma cells, enhancing the stabilization of receptor

tyrosine kinases (RTKs), including EGFR and MET, through

abnormal regulation of USP8. These findings suggest that SFN

may be a promising therapeutic target for lung adenocarcinoma. In

line with this, our study also found that positive expression of

SFN in Cluster_1 could indicate the potential for tumor

proliferation in these patients. Pyruvate dehydrogenase kinase

4 (PDK4) encodes an enzyme that regulates cellular metabolism

by inhibiting the phosphorylation of a key regulatory enzyme

of glucose oxidation, pyruvate dehydrogenase complex (PDC)

(63). High expression of PDK4 has been associated with altered

metabolic pathways in tumor cells, including lactic acidification

and malignant transformation (64–66). In our study, the positive

expression of PDK4 in Cluster_2 may suggest that the tumor

type in these patients is associated with aberrant tumor cell

metabolism. Overall, our study identified three subgroups based

on HPAN_DEGs with distinct characteristics in terms of prognosis,

mutational landscape, and immune infiltration. Furthermore, these

subgroups exhibited differential expression of SFN and PDK4 genes.

Our findings contribute to a better understanding of the biology of

these tumor types and may provide a new basis for subgroup

screening in hepatocellular carcinoma.

Using LASSO regression and univariate and multifactorial

analyses, we screened nine genes strongly associated with prognosis

and constructed the HPAN-index. With this model, we divide the

cohort into High-index and Low-index groups, where the High-index

group is mainly from Cluster_1, and the Low-index group is mainly

from Cluster_2. We note that the High-index group showed a

significant immune activation status. In contrast, the Low-index

group showed a significant advantage in sensitivity to small

molecule targeted drugs, which is consistent with Yutian Zou et al.

(67).We found that the High-index group is mainly enriched in T cell

receptor pathways, B cell receptor pathways, Chemokine pathways,

DNA replication, and Cell cycle pathways. Professor Peter P. Lee’s

research has shown that T/B receptor pathways are closely related to

T cell activation and affect PD-1 expression on T cells (68). Combined

with the higher expression of PANoptosis-related genes in the High-

index group, we suggest that this immune activation state in the

High-index group may be related to PANoptosis. Also of note, the

Low-index group demonstrated significant sensitivity to some small

molecule-targeted drugs, such as sorafenib, a first-line agent for the

treatment of advanced primary liver cancer (69). It may be because

the Low-index group is mainly enriched in Fatty acid metabolism,

Drugmetabolism, PPAR signaling pathway, Tryptophanmetabolism,

and other pathways closely related to tumor growth, metabolism, and

drug resistance (70, 71). Overall, the HPAN-index may serve as an

independent risk factor for predicting the prognosis of patients with

hepatocellular carcinoma and as a strategy for selecting patients for

immunotherapy and targeted therapeutic agents.

Apoptosis is one of the crucial mechanisms underlying tumor cell

drug resistance (72). YWHAB is a gene in the human genome that

encodes the 14-3-3 protein beta/alpha. The 14-3-3 protein family is a

highly conserved group of molecular chaperones that participate in

various cellular signaling and regulatory processes, such as
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metabolism, protein transport, signal transduction, apoptosis, and

cell cycle (73). Silencing of YWHAB can increase the translocation of

B-cell lymphoma 2 (BCL-2)-associated death promoter (BAD) from

the cytoplasm to the mitochondria, thereby inducing cell

apoptosis (74). The BCL-2 family is a critical group of molecules in

the field of tumor drug resistance, and its mechanism of inducing

drug resistance is mainly achieved by inhibiting the apoptotic

pathway of tumor cells. Studies have shown that the ratio of BCL-

2/Bax is higher in drug-resistant cells than in sensitive cells (75).

YWHAB, as an anti-apoptotic protein, can also cause insulin

resistance in cells by affecting mitochondrial polarization (76). Our

research suggests that YWHAB may play an essential role

in affecting cell drug sensitivity, providing insights to further

study the mechanisms of drug resistance and develop new

therapeutic strategies.

There are limitations to our study that should be acknowledged.

We lack the necessary single-cell level sequencing data and spatial

transcriptome data to comprehensively support our analysis of the

immune landscape of hepatocellular carcinoma. As the immune

microenvironment is a complex microscopic system, the

information on the differences and interactions between cells is

inevitably lost through macroscopic bulk-RNA-seq data analysis in

isolation. Moreover, a large sample size of immunotherapy-related

data for hepatocellular carcinoma is needed to validate the model.

Therefore, we will seek to obtain such data to validate the model

further. We take this opportunity to call on the scientific community

to share data related to immunotherapy for liver cancer, thereby

advancing the scientific understanding of this complex disease.
Conclusions

In conclusion, we screened for PANoptosis-associated

differentially expressed genes (HPAN_DEGs) in hepatocellular

carcinoma, which allowed us to identify three subgroups that

exhibit distinct characteristics in terms of prognosis, mutational

landscape, and immune infiltration. These subgroups also exhibited

differential expression of SFN and PDK4, which may contribute to a

better understanding of the biology underlying hepatocellular

carcinoma. Additionally, we developed the HPAN-index, which

is highly correlated with survival prognosis, sensitivity to

small molecule-targeted drugs, and response to immunotherapy.

We hope that applying this model will enable the identification

of individuals more suitable for either immunotherapy or

targeted therapy. This study provides a new strategy for the

personalized and precise treatment of HCC and may shed light

on future investigations into the mechanisms of PANoptosis in

this disease.
Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and accession

number(s) can be found within the article/Supplementary Material.
Frontiers in Immunology 16
Author contributions

FS performed the research and wrote the paper. FS, C-GW, and

X-LL performed the data collection and normalization. C-GW and

J-ZM carried out the in vitro validation. C-WH and T-LW

participated in the coordination of the research. FS, YZ, and LH

performed the statistical analysis. FS and ZC participated in the

study design. ZC edited the manuscript. All authors read and

approved the final manuscript.
Funding

This study was supported by the National Natural Science

Foundation of China grants (81871927, 81070360), 2021 Changchun

University of Chinese Medicine School-level Clinical Practice Teaching

Reform Special Research Project (XJLCSJ202146), and the Nantong

Hepatobiliary and Pancreatic Surgery Disease Research Center

Construction Project (HS2015001).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online at:

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1197152/

full#supplementary-material

SUPPLEMENTARY FIGURE 1

(A). Venn diagram illustrating the overlap between gene sets related to
pyroptosis, apoptosis, and necroptosis; (B). Volcano plot displaying

differentially expressed genes in hepatocellular carcinoma (HCC) derived

from TCGA and ICGC databases; (C). Heatmap demonstrating sample
clustering consistency; (D). Graphical representation of the proportion of

SFN+ PDK4- and SFN-PDK4+ in three HPAN_DEGs subgroups; (E). A
prognostic nomogram based on HPAN-index gene signatures was

developed to predict the outcomes of HCC patients.

SUPPLEMENTARY FIGURE 2

Efficacy of HPAN-index in predicting drug sensitivity (A-I) Box plots illustrating
the comparison of IC50 values for various drugs between the high-HPAN-

index group (depicted in red) and the low-HPAN-index group (depicted in
green). P-values are presented in scientific notation for each comparison.
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