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Identification and validation of a
novel mitochondrion-related
gene signature for diagnosis and
immune infiltration in sepsis

Shuai Hao1†, Miao Huang2†, Xiaofan Xu1, Xulin Wang1,
Yuqing Song1, Wendi Jiang1, Liqun Huo1 and Jun Gu1*

1Department of General Surgery, Jinling Hospital, Medical School of Nanjing University,
Nanjing, China, 2Nursing School, Chongqing Medical University, Chongqing, China
Background: Owing to the complex pathophysiological features and

heterogeneity of sepsis, current diagnostic methods are not sufficiently precise

or timely, causing a delay in treatment. It has been suggested that mitochondrial

dysfunction plays a critical role in sepsis. However, the role and mechanism of

mitochondria-related genes in the diagnostic and immune microenvironment of

sepsis have not been sufficiently investigated.

Methods: Mitochondria-related differentially expressed genes (DEGs) were

identified between human sepsis and normal samples from GSE65682 dataset.

Least absolute shrinkage and selection operator (LASSO) regression and the

Support Vector Machine (SVM) analyses were carried out to locate potential

diagnostic biomarkers. Gene ontology and gene set enrichment analyses were

conducted to identify the key signaling pathways associated with these

biomarker genes. Furthermore, correlation of these genes with the proportion

of infiltrating immune cells was estimated using CIBERSORT. The expression and

diagnostic value of the diagnostic genes were evaluated using GSE9960 and

GSE134347 datasets and septic patients. Furthermore, we established an in vitro

sepsis model using lipopolysaccharide (1 µg/mL)-stimulated CP-M191 cells.

Mitochondrial morphology and function were evaluated in PBMCs from septic

patients and CP-M191 cells, respectively.

Results: In this study, 647 mitochondrion-related DEGs were obtained. Machine

learning confirmed six critical mitochondrion-related DEGs, including PID1, CS,

CYP1B1, FLVCR1, IFIT2, and MAPK14. We then developed a diagnostic model

using the six genes, and receiver operating characteristic (ROC) curves indicated

that the novel diagnostic model based on the above six critical genes screened

sepsis samples from normal samples with area under the curve (AUC) = 1.000,

which was further demonstrated in the GSE9960 and GSE134347 datasets and

our cohort. Importantly, we also found that the expression of these genes was

associated with different kinds of immune cells. In addition, mitochondrial

dysfunction was mainly manifested by the promotion of mitochondrial

fragmentation (p<0.05), impaired mitochondrial respiration (p<0.05), decreased

mitochondrial membrane potential (p<0.05), and increased reactive oxygen

species (ROS) generation (p<0.05) in human sepsis and LPS-simulated in vitro

sepsis models.
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Conclusion: We constructed a novel diagnostic model containing six MRGs,

which has the potential to be an innovative tool for the early diagnosis of sepsis.
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1 Introduction

Sepsis is defined as organ dysfunction syndrome caused by an

uncontrolled inflammatory response to infection (1, 2). It is one of

the leading causes of death and is responsible for 30% of all fatal

cases that occur in hospitalized patients (3, 4). The septic response is

an extremely complicated chain of events that includes humoral

and cellular reactions, inflammatory and anti-inflammatory

processes, and circulatory abnormalities (5). Even though

mortality and morbidity rates are high, no sepsis-specific

treatments are currently available for clinical use (6). The highly

variable nature of the signs and symptoms of sepsis makes it difficult

to diagnose and determine its severity when it has already

developed. Given this, making an early diagnosis and categorizing

the severity of sepsis is critical because timely implementation of

targeted interventions improves outcomes (7).

Over the past few decades, researchers have studied the different

phases of the inflammatory response during sepsis and septic shock.

Dysregulated host response or immune dysfunction is related to

defective natural killer (NK) cell activity, defective antigen

presentation, neutrophil abnormalities, decreased immunoglobulin

levels, complement consumption, hypercytokinemia, and defective

bacterial removal (8, 9). A multitude of related biomarkers has been

proposed to aid the diagnosis of sepsis, such as procalcitonin, C-

reactive protein, and lactate (10, 11). However, these biomarkers are

limited by their sensitivity and specificity and do not accurately assess

the development of sepsis. Therefore, it is crucial to explore the

pathogenesis of sepsis in depth and screen for new targets.

Recent studies have shown that cell death is relatively

uncommon in sepsis, which suggests that processes other than

cell death are responsible for mortality (12, 13). Moreover,

accumulating evidence supports the hypothesis that the inability

of the cell to use oxygen as a fuel source may play a significant role

in the pathogenesis of sepsis (14, 15). Because mitochondrial O2

consumption accounts for 90% of the body’s total O2 consumption,

impaired O2 utilization and dysfunctional mitochondria may be

responsible for the distinctive features of sepsis (16, 17). In addition,

septic patients produce an abnormally high amount of oxidants.

Consequently, these oxidants might be the source of the

abnormalities described above, which ultimately results in an

increased mortality rate.

Mitochondria are specialized intracellular structures enclosed by a

double-layer membrane and are the hub for cellular metabolism,

participating in a series of important cellular processes, including

oxidative phosphorylation, the tricarboxylic acid cycle, maintenance
02
of intracellular calcium homeostasis, and production and maintenance

of reactive oxygen species (ROS) (18, 19). During sepsis development,

the mitochondria undergo morphological and functional damage in

many ways. Liang et al. found that the mitochondrial morphology of

cardiomyocytes in an animal model of sepsis was irregular, with

significant swelling and vacuolar degeneration, and evident

mitochondrial crest rupture was noted in the swelling mitochondria

(20). Zhang et al. found similar results. In addition to abnormal

mitochondrial morphology, sepsis impairs mitochondrial function,

resulting in a significant decrease in mitochondrial membrane

potential (21). However, the specific mechanisms still require further

investigation. Gene expression profiles obtained from septic patients

provide a wealth of information that could mitigate the effects of

selection bias and illustrate a wide variety of biological responses (22,

23). The understanding of sepsis is supported by genes and pathways

that are up- or downregulated in relation to the condition. Thus, we

were curious whether mitochondrion-related genes could be utilized as

novel diagnostic factors for sepsis.

In recent years, an increasing number of studies have used

machine-learning algorithms to screen prospective diagnostic genes

in a variety of disorders based on high-throughput sequencing (24–26).

Using machine learning techniques, the primary objective of this study

was to locate important diagnostic mitochondrion-related genes. In

addition, we further investigated their relationship to immunological

infiltration. Furthermore, using Transmission electron microscopy

(TEM) analysis, mitochondrial respiration measurements,

mitochondrial membrane potential, and mitochondrial ROS

production analyses, we observed mitochondrial morphology and

function changes in peripheral blood mononuclear cells (PBMCs)

derived from septic patients as well as in CP-M191 cells.
2 Materials and methods

2.1 Data collection and preprocessing

Public gene expression matrices (GSE65682, GSE9960,

GSE134347) were obtained from the Gene Expression Omnibus

(GEO) database (https://www.ncbi.nlm.nih.gov/geo/). The

GSE65682 dataset included 802 samples, which comprised 40

healthy controls and 760 septic patients (Table S1). Gene

expression profiles of PBMC using array technology were

included in the GSE9960 dataset. These profiles were obtained

from 54 adult septic patients and 16 healthy controls. The primary

data accession number for the HTA2.0 microarray data acquired
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from GEO was GSE134347. This dataset included 82 healthy

individuals and 156 septic patients. The lumi package in R was

used to process the raw data included within these three datasets.

The 1513 mitochondrion-related genes were searched from the

Gene Set Enrichment Analysis (GSEA), Gene Cards, and UniProt

databases (27) and are shown in Table S2.
2.2 Differential expression analysis

We accessed the GSE65682 database and collected the

expression data of all 1513 mitochondria-related genes (MRGs)

from normal samples as well as samples from septic patients.

Following that, the Wilcoxon Rank-Sum Test was carried out in

R in order to identify the genes associated with mitochondria that

exhibited distinct levels of expression in the two distinct samples.

Genes that had a p-value of less than 0.05 were regarded

as significant.
2.3 Function enrichment analysis of
differentially expressed genes

Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway enrichment analyses were carried

out using clusterProfiler (28) software to determine the potential

functions and pathways of differentially expressed MRGs

(DEMRGs). The visualization module found in clusterProfiler was

used to display the results of the analysis. The cutoff value was set at

P < 0.05. The “clusterProfiler” and DOSE packages in R were

utilized in order to conduct disease ontology (DO) enrichment

analyses on DEMRGs. GSEA is a computational method used to

determine whether a predefined set of genes exhibits significant

differences between two biological states and is commonly used to

estimate changes in pathway and biological process activity in

samples from expression datasets.

For the reference gene set, we used the “c2.cp.kegg.v7.0.

symbols.gmt” file from the Molecular Signatures Database

(MSigDB) (29). If the value of P < 0.05, and the false discovery

rate < 0.025, then a gene collection was considered to be

significantly enriched.
2.4 Construction of the LASSO model and
the SVM-RFE feature selection process

Diagnostic MRGs of sepsis were categorized using least absolute

shrinkage and selection operator (LASSO) regression and the

Support Vector Machine (SVM) algorithm. The LASSO algorithm

was performed using the “glmnet (4.1.7)” package. The response

type was configured to be binomial, and the alpha was set to 1. In

addition, SVM is a surveillant machine learning approach to

support vectors. It discovers the best variables by eliminating the

feature vectors generated by the SVM. The SVM classifier found in

the R package e1071 (1.7.13) was used to classify the chosen

biomarkers in the sepsis diagnosis process. The k-fold cross
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validation was set to a value of five, and the parameter of halving

above was determined to be 100.
2.5 ceRNA

Competing endogenous RNA (ceRNA) is a role element that

can compete to bind to RNA. A ceRNA regulatory network refers to

the entire regulatory network involving ceRNAs, which usually

consists of mRNA, miRNAs, and lncRNAs. We constructed the

mRNA–miRNA–lncRNA regulatory network using the starBase

and miRanda databases, which was subsequently visualized

using Cytoscape.
2.6 Immune cell infiltration

A bioinformatics tool known as CIBERSORT (https://

cibersortx.stanford.edu/) was utilized to compute immune cell

infiltration in sepsis. This was performed to quantify the relative

proportions of infiltrating immune cells based on the gene

expression profiles observed in sepsis. A reference set consisting

of 22 distinct immune cell subtypes (LM22) and 1000 different

permutations was utilized to estimate the potential number of

immune cells. The “corrplot” R package was used to do

correlation analysis as well as visualization of 22 different types of

immune cells. To visualize the variations in immune cell infiltration

between the sepsis and control samples, violin plots were generated

using the “vioplot” R package. Correlation analyses were performed

to analyze the relationships between the expression of MRGs and

immune cells.
2.7 Patients and samples

A total of 15 septic patients and 15 healthy volunteers at The

Second Affiliated Hospital of Chongqing Medical University

between September 2021 and July 2022 were included in the

present study, and their blood samples were provided. The

participants or their legal representatives were asked to provide

written informed permission for the study. The study was approved

by the Medical Ethics Committee of The Second Affiliated Hospital

of Chongqing Medical University (ID:2022-190). The Third

International Consensus Definitions for Sepsis and Septic Shock

(Sepsis-3) were used to diagnose sepsis (30).

Blood samples were collected by venipuncture, and PBMCs

were separated using Ficoll-Paque density gradient centrifugation as

per the manufacturer’s instructions (31). PBMC (1 × 105 cells/well)

were cultured in complete RPMI-1640 media as usual and prepared

for subsequent experiments.
2.8 Model preparation

CP-M191 cells were cultured in Dulbecco’s modified eagle

medium (DMEM) supplemented with 10% fetal bovine serum,
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maintained at 37°C, and cultured in a humidified environment of

5% CO2/95% air. When the cells reached a confluence of over 70%

in the culture medium, they were randomly treated with DMEM

(CON group) or 1 µg/mL LPS (LPS group) for 24 h. After treatment,

the cells were collected for relevant experiments.
2.9 Quantitative RT-PCR

Total RNA was extracted from each sample using TRIzol

reagent (Invitrogen, Carlsbad, CA, USA). Using a PrimeScript™

RT kit (Takara, Japan), RNA was reverse transcribed into cDNA to

detect relative mRNA levels using qPCR (Bio-Rad). Relative gene

expression levels were calculated using the 2-DDct method. GAPDH

was used as an internal control. Primers used in these experiments

are listed in Table S3. All experiments were repeated three times.
2.10 Transmission electron microscopy

PBMCs were fixed in 2.5% (w/v) glutaraldehyde for 24 h,

washed with PBS three times, stained with 1% osmium tetroxide,

and then dehydrated in a graded series of ethanol (65%, 70%, 75%,

80%, and 95% for 10 min each). Subsequently, the samples were

incubated with tert-butoxide for 10 min and then dried with CO2

(carbon dioxide), stained with uranyl acetate, and coated with gold

(Au) using an ion sputter coater. Finally, the samples were viewed

and imaged using a transmission electron microscope (H-7500,

Hitachi Company, Japan) (32).
2.11 Mitochondrial morphology

PBMCs were seeded on confocal culture plates at a density of

1 × 105 cells/well and cultured for approximately 2 days for confocal

imaging. Mitochondrial morphology was observed as previously

described (33). MitoTracker (Deep Red, 100 nM) was added, and

the cells were incubated for 30 min. Subsequently, the mitochondria

were observed using an inverted confocal microscope (Leica TCS

SP5; Leica Microsystems) with a 60 × 1:3 NA oil immersion

objective. Red fluorescence was excited using a 633 nm laser, and

the emission spectra were obtained at 655–670 nm. Image-Pro Plus

software was used to measure and compute the mitochondrial

length and aspect ratios.
2.12 Measurement of intracellular ROS

Intracellular ROS levels were measured as previously described

(34). The ROS assay working solution was added to the cells, which

were then incubated for 30 min. The cells were imaged using a Leica

TCS SP5. Green fluorescence was excited with a 488 nm laser, and

emission spectra were obtained at 501–563 nm. Images were

analyzed using Image-Pro Plus software.
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2.13 Mitochondrial membrane potential
(△Ym) assay

Mitochondrial membrane potential was measured as previously

described (35). JC-1 staining working solution was added to the cells,

which were then incubated for 30 min. The cells were imaged using a

Leica TCS SP5. The monomer was excited with a 488-nm laser, and

emission spectra were obtained at 501–563 nm. Aggregate fluorescence

was excited using a 633-nm laser, and emission spectra were obtained at

558–617 nm. Images were analyzed using Image-Pro Plus software.
2.14 Mitochondrial oxygen
consumption rate

The oxygen consumption rate (OCR) was measured using a 24-

well XFe plate (Seahorse, Agilent Cell Analysis Technology, USA).

When cells reached 70% confluence (3-4 × 104/well), cells were

treated with LPS for 12 h. Before detection, the basic assay medium

contained 2.5 mM glucose and 2 mM glutamine was used to culture

cells for 50 min, after which 2 mM oligomycin, 1 mM FCCP, and 0.5

mM rotenone/antimycin A were sequentially added. The OCR was

measured using an extracellular flux analyzer under mitochondrial

stress test conditions.
2.15 Statistical analysis

Statistical analyses were performed using R software (https://

www.r-project.org/, v4.0.1). For between-group comparisons of

continuous variables, an independent t-test was used to compare

normally distributed variables, and a Wilcoxon rank-sum test was

used to compare non-normally distributed variables. A receiver

operating characteristic (ROC) curve was plotted to predict binary

categorical variables using the pROC package. All p-values were

two-sided, and statistical significance was set at p < 0.05.
3 Results

3.1 Identification of DEGs in sepsis

In this study, retrospective data analysis was conducted on 760

sepsis samples and 42 control samples obtained from the GSE65682

datasets. A total of 647 DEGs were discovered that were associated

with mitochondria. Among them, 294 genes were significantly

upregulated, while 353 genes were significantly downregulated

(Figure 1). Workflow of the study was shown in Figure S1.
3.2 Functional enrichment analysis of DEGs

Enrichment analyses of GO and KEGG were performed with

the help of the ClusterProfiler software package to investigate the
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potential biological function of mitochondria-related DEGs. The

results of GO analyses indicated that the DEGs were mainly

associated with mitochondrial transport, energy derivation by

oxidation of organic compounds, cellular respiration,
Frontiers in Immunology 05
mitochondrial gene expression, mitochondrial matrix,

mitochondrial inner membrane, electron transfer activity, and

structural constituents of the ribosome (Figures 2A, B, Table S4).

We then performed KEGG assays and found that the DEGs were

mainly enriched in pathways of neurodegeneration-multiple

diseases, amyotrophic lateral sclerosis, Parkinson’s disease,

Huntington ’s disease, Alzheimer ’s disease, and diabetic

cardiomyopathy (Figure 2C, Table S5). Finally, DO assays

indicated that the DEGs were mainly related to autonomic

nervous system neoplasm, neuroblastoma, peripheral nervous

system neoplasm, muscular disease, tauopathy, myopathy, and

muscle tissue disease (Figure 2D, Table S6).
3.3 Identification and construction of a
diagnostic model for sepsis

To identify mitochondrion-related biomarkers of sepsis, two

distinct machine-learning algorithms were applied. Using the

LASSO algorithm, 29 variables were identified as diagnostic

biomarkers for sepsis (Figures 3A, B). In addition, the SVM-RFE

algorithm was used to narrow down the features of mitochondria-
A B

DC

FIGURE 2

Functional enrichment analysis of DEGs in sepsis samples. (A, B) The most significantly enriched GO terms of DEGs. (C) KEGG pathway enrichment
analysis of DEGs. (D) Disease ontology enrichment analysis of DEGs.
FIGURE 1

Mitochondria-related DEGs between sepsis samples and normal
samples from GSE65682 datasets.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1196306
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Hao et al. 10.3389/fimmu.2023.1196306
related DEGs to a subset of seven variables (Figures 3C, D). The final

choice was made based on the six shared genes of these two

algorithms: CS, CYP1B1, FLVCR1, IFIT2, MAPK14, and PID1

(Figure 3E). We created a logistic regression model using the R

package glm based on the aforementioned six marker genes, and

ROC assays showed that the six gene-based logistic regression model

distinguished normal and sepsis samples with an area under the curve

(AUC) value of 1.000 (Figure 3F). In addition, ROC curves were

constructed for the six marker genes in order to shed light on the

individual genes’ capabilities in terms of identifying sepsis from

normal samples. The AUC was higher than 0.8 for every gene, as

shown in Figure 3G. Based on the information shown above, it

appears that the novel diagnostic model provided a higher level of

accuracy and specificity than the individual marker genes in

distinguishing sepsis samples from normal samples.
Frontiers in Immunology 06
3.4 Functional assays of the six diagnostic
genes using GSEA pathway analysis

We ran a single-gene version of GSEA-KEGG to investigate the

potential function of marker genes. Figures 4A–F showed the top six

pathways that were enriched for each marker gene. For CS, the top three

pathways that were enriched in ASTHMA, DNA_REPLICATION,

INTESTINAL_IMMUNE_NETWORK_FOR_IGA_PRODUCTION.

CYP1B1 were enriched in CELL_ADHESION_MOLECULES_CAMS,

NEUROACTIVE_LIGAND_RECEPTOR_INTERACTION,

OLFACTORY_TRANSDUCTION. FLVCR1 were enriched in ALLO

GRAFT_REJECTION, ANTIGEN_PROCESSING_AND_

PRESENTATION, GRAFT_VERSUS_HOST_DISEASE. IFIT2 were

enriched in KEGG_ALLOGRAFT_REJECTION, ANTIGEN_

PROCESSING_AND_PRESENTATION, GRAFT_VERSUS_
B

C D

E F G

A

FIGURE 3

Gene signature of six mitochondrion-related genes was identified as a diagnostic model for sepsis. (A, B) LASSO methods. (C, D) SVM-RFE algorithm
to identify the optimal combination of feature genes. (E) Critical genes from the LASSO and SVM-RFE methods. (F) AUC of sepsis using ROC assays.
(G) ROC assays for the six critical genes.
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HOST_DISEASE. MAPK14 were enriched in ALLOGRAFT_

REJECTION, ANTIGEN_PROCESSING_AND_PRESENTATION,

AUTOIMMUNE_THYROID_DISEASE. PID1 were enriched in

ALLOGRAFT_REJECTION, AUTOIMMUNE_THYROID_DISEASE,

CELL_CYCLE. After a comprehensive analysis, we found that these

genes were enriched in pathways related to immune function and

mitochondrial function.
3.5 ceRNA networks based on the six
diagnostic genes

To explore the possible mechanisms involved in the

dysregulation of diagnostic genes, we constructed a ceRNA

network based on six marker genes using the starBase and

miRanda databases. The network included 371 nodes (6 marker

genes, 201 miRNAs, and 164 lncRNAs) (Table S7), and the specific

network is shown in Figure 5A. Furthermore, 30 primary miRNAs

simultaneously controlled multiple diagnostic genes. Among them,

three miRNAs were able to control more than two mRNA,

including hsa-miR-630 (controlling CS, FLVCR1, and PID1), hsa-

miR-548x-3p (controlling CS, CYP1B1, and PID1), and hsa-miR-

590-3p (controlling CS, CYP1B1, and FLVCR1) (Figure 5B).
3.6 Correlation of six diagnostic genes with
the proportion of infiltrating immune cells

The proportion of infiltrating immune subsets was assessed

using the CIBERSORT method, and 22 different immune cell

profiles in sepsis samples were created to further demonstrate the
Frontiers in Immunology 07
association between the six diagnostic genes and the immunological

microenvironment. Using the CIBERSORT approach, we

investigated the pattern of immune cells. Figures 6A, B,

respectively, show its makeup in sepsis samples as well as the

relationships among immune cells. Figure 6C demonstrates that a

significant number of immune cells were aberrantly regulated when

comparing sepsis samples to normal samples. In addition, Pearson’s

correlation analysis revealed that PID1 expression was negatively

associated with numerous types of immune cells, such as B cell

memory cells, eosinophils, and M0 and M1 macrophages. In

addition, PID1 expression was positively associated with resting

monocytes and CD4 memory resting T cells (Figure 6D).

Importantly, we also found that the expression of CS, CYP1B1,

FLVCR1, IFIT2, and MAPK14 was associated with many different

kinds of immune cells (Figure 6D). These data suggest that

alterations in the immunological microenvironment of septic

patients could be connected to PID1, CS, CYP1B1, FLVCR1,

IFIT2, and MAPK14.
3.7 Expression and diagnostic value of the
diagnostic genes in the external dataset
and the cohort dataset

We next analyzed the expression of PID1, CS, CYP1B1,

FLVCR1, IFIT2, and MAPK14 in GSE65682 and GSE134347

datasets. As shown in Figures 7A, B, we found that the

expression of MAPK14 and CYP1B1 was distinctly increased in

sepsis samples compared with normal samples, while the

expression of PID1, CS, FLVCR1, and IFIT2 was distinctly

decreased in sepsis samples compared with normal samples.
A B

D E F

C

FIGURE 4

Single-gene GSEA-KEGG pathway analysis for (A) CS, (B) CYP1B1, (C) FLVCR1, (D) IFIT2, (E) MAPK14, and (F) PID1.
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Moreover, we analyzed the GSE134347 and GSE9960 datasets

using the six-gene diagnostic model, which showed a strong

diagnostic value in the GSE134347 dataset with an AUC of 0.998

(Figures 7C, D) and in the GSE9960 dataset with an AUC of 0.795

(Figure 7E, F).

To further demonstrate the expression pattern of the diagnostic

genes, we collected 15 sepsis samples and 15 normal samples. The

results of RT-PCR indicated thatMAPK14 and CYP1B1 were highly
Frontiers in Immunology 08
expressed in sepsis samples. In addition, CS, FLVCR1, and IFIT2

exhibited lower expression in sepsis samples, which was consistent

with the above results (Figure 8A). Finally, the new diagnostic

model showed good diagnostic value with an AUC of 1.000

(Figure 8B). ROC curves were constructed for each of the six

genes. As shown in Figure 8C, the AUC for CS, CYP1B1,

FLVCR1, IFIT2, and MAPK14 was greater than 0.7. Thus, the

diagnostic model was further confirmed in our cohort.
A B

FIGURE 5

Construction of ceRNA network based on six marker genes. (A) ceRNA network based on six marker genes. (B) UpSet plot was utilized to present
the interaction network of marker genes and miRNAs.
A

B

D

C

FIGURE 6

Immune infiltration analysis in septic patients. (A) Bar plot illustrating the percentage of 22 different immune cell types found in sepsis samples and
normal samples. (B) Heatmap displaying the association between 22 different types of immune cells. (C) Violin plot showing the ratio differentiation
of 22 types of immune cells between normal samples and sepsis samples. (D) Heatmap showing the correlation of immune cells with the expression
of the six critical genes.
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3.8 Mitochondrial dysfunction in PBMCs
from septic patients and LPS-induced
CP-M191 cells

The above results confirm the value of abnormal

mitochondrion-related gene expression in the early diagnosis of

sepsis, and we further verified the changes in mitochondrial

function in sepsis. We first evaluated mitochondrial morphology.

The TEM results showed that the mitochondria in blood PBMCs of

the healthy population had good morphology and dense internal

cristae structure, while the mitochondria in blood PBMCs of septic

patients were severely swollen and showed more vacuolation

(Figure 9A). Using the Seahorse mitochondrial metabolism
Frontiers in Immunology 09
analyzer to detect mitochondrial metabolism in blood PBMCs in

each patient group, OCR analysis revealed that the maximum

respiratory capacity and basal respiratory capacity of

mitochondria in blood PBMCs of septic patients were

significantly lower (p<0.05) than those of the healthy population

(Figures 9B, C), suggesting that blood PBMCs of septic patients had

severe disorders of mitochondrial metabolism.

We further observed LPS-stimulated CP-M191 cells in a cellular

model wherein we also observed significant changes in

mitochondrial morphology (Figure 10A), which mainly

manifested as mitochondrial fragmentation and excessive

mitochondrial division (p<0.05) (Figure 10B). The mitochondrial

function assay revealed that LPS-stimulated CP-M191 cells had
A B

D E FC

FIGURE 7

Expression and diagnostic value of the six mitochondrion-related gene signature in the external dataset. Expression of PID1, CS, CYP1B1, FLVCR1,
IFIT2, and MAPK14 in (A) GSE65682 and (B) GSE134347 datasets. Diagnostic value of the six mitochondrion-related gene signature was examined in
(C, D) GSE134347 and (E, F) GSE9960 datasets.
A B

C

FIGURE 8

Expression and diagnostic value of the six mitochondrion-related gene signature in the cohort dataset. (A) qRT-PCR results for the expression of
PID1, CS, CYP1B1, FLVCR1, IFIT2, and MAPK14 in our cohort. (B) AUC of sepsis samples using ROC analysis. (C) ROC analysis for the six critical genes.
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severe ROS accumulation compared with the control group

(p<0.05) (Figure 10C), which was mainly related to the massive

production of mitochondrial ROS (p< 0.05) (Figures 10D, E). In

addition, confocal microscopy results further revealed that the

mitochondrial membrane potential was higher in normal CP-

M191 cells, whereas it was significantly reduced after LPS

stimulation (p<0.05) (Figures 10F, G).

The above results confirm the occurrence of mitochondrial

dysfunction in PBMCs of sepsis at both the overall and cellular

levels. Therefore, the use of these screened mitochondrion-related

biomarkers for sepsis diagnosis is feasible.
4 Discussion

The tissue perfusion index, indicators of organ function,

inflammatory variables, and hemodynamic indices are among the

biomarkers associated with sepsis (36, 37). However, neither the

specificity nor the sensitivity of these indicators is sufficient.

Therefore, a more accurate diagnosis of sepsis requires the use of

biomarkers that have a greater level of both specificity and

sensitivity, which are essential for timely and effective treatment

and improved prognosis.

Excessive inflammation has been identified as a core

determinant of the development of sepsis-related organ injury

(38), in addition, recent research has revealed that development
Frontiers in Immunology 10
of sepsis is associated with alterations in mitochondrial structure

and function (39, 40). Sepsis organ dysfunction, such as septic

cardiomyopathy, is closely associated with mitochondrial

dysfunction (41, 42). Previously, few studies have focused on the

value of mitochondria-related genes in the early diagnosis of sepsis.

Therefore, the objectives of this study were to search for potential

diagnostic biomarkers of sepsis and examine their impact on

immune cell infiltration in sepsis.

Through bioinformatics analysis, GEO datasets (GSE65682)

was downloaded and 647 mitochondria-related DEGs were

identified between septic patients and healthy control.

Furthermore, GO and KEGG analyses indicated that these DEGs

were mainly associated with mitochondrial transport, energy

derivation by oxidation of organic compounds, cellular

respiration, mitochondrial gene expression, mitochondrial matrix,

mitochondrial inner membrane, electron transfer activity and

structural constituent of ribosome. Our findings suggested that

mitochondria-related DEGs play an important role in sepsis.

To screen for critical diagnostic MRGs, we performed a LASSO

regression algorithm and SVM-RFE methods using 647

mitochondria-related DEGs. Importantly, we identified six critical

genes, including CS, CYP1B1, FLVCR1, IFIT2, MAPK14, and PID1,

which showed favorable diagnostic value in screening sepsis

samples from normal samples. We further developed a diagnostic

model based on CS, CYP1B1, FLVCR1, IFIT2, MAPK14, and PID1,

and the ROC analysis confirmed the diagnostic value of the novel
B C

A

FIGURE 9

Mitochondrial dysfunction in PBMCs of septic patients. (A) TEM analysis of PBMC ultrastructure in healthy controls and septic patients.
(B, C) Determination of mitochondrial OCR in PBMCs isolated from septic patients and control patients. Baseline OCR and maximal respiratory
capacity were recorded.
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model with an AUC of 1.000. These results were further confirmed

using the GSE9960 and GSE134347 datasets. Finally, we collected

15 sepsis samples and 15 normal samples and performed RT-PCR

to examine the expression of CS, CYP1B1, FLVCR1, IFIT2,

MAPK14, and PID1 in our cohort, which further confirmed our

previous findings. Our findings highlight the potential of these 6

MRGs as a novel diagnostic model for sepsis.

Currently, some studies have been conducted to explore the role

of the above-mentioned MRGs in the pathophysiology of sepsis.

MAPK14 is a member of the MAP kinase family and is involved in a

wide variety of cellular processes such as proliferation,
Frontiers in Immunology 11
differentiation, and transcription regulation, which can be

activated by exposure to many types of cellular stress, among

which, they were strongly respond to endotoxin, proinflammatory

cytokines, TNF-a, and is a good predictor for sepsis (43). Li et al.

found thatMAPK14 is of considerable value in the early diagnosis of

sepsis in children (44). Besides, Lu et al. reported that MAPK14 is

up-regulated in sepsis and is closely correlated with responses to

hydrocortisone and immunosuppression status and might facilitate

personalized therapy (45). Similarly, we found that MAPK14 is

highly expressed in our septic patient cohort and is able to affect

immune cell components. Citrate synthase (CS) is a key rate-
B

C D E

F G

A

FIGURE 10

LPS-induced mitochondrial dysfunction in CP-M191 cells. CP-M191 cells were treated in vitro with 10 mg/ml LPS for 24 h. (A, B) Representative
confocal images of CP-M191 cells mitochondrial morphology in each group (bar = 15 mm) and analysis of mitochondrial skeletons using Image J
software. (C) Representative confocal images of ROS fluorescence intensity in CP-M191 cells (bar = 20 mm). (D) Representative images of CP-M191
cells loaded with the mitochondrial superoxide indicator MitoSOX Red to analyze mitochondrial ROS production (bar = 20 mm). (E) Statistical analysis
of ROS in CP-M191 cells (n = 5). (F) Representative confocal images of mitochondrial membrane potential (DYm) of CP-M191 cells, which were
labeled with JC-1 monomer (green fluorescent probe) and JC-1 aggregate (red fluorescent probe) (bar = 20 mm). (G) Statistical analysis of DYm in
CP-M191 cells (n = 5). Data are presented as mean ± standard deviation.
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limiting enzyme in many intracellular metabolic pathways and

plays a critical role in the tricarboxylic acid cycle by catalyzing

oxaloacetate and acetyl coenzyme A. Citrate synthase activity and

content depend on the number of mitochondria (46). Moreover,

Weiss et al. found that CS could be assayed by blood PBMC in

response to mitochondrial number/density (47). We found that the

CS expression of PBMC in septic patients was significantly reduced

compared to healthy control, and correspondingly, by in vitro

experiments, promotion of mitochondrial fragmentation (p<0.05),

impaired mitochondrial respiration (p<0.05), decreased

mitochondrial membrane potential (p<0.05) and increased ROS

generation (p<0.05) were observed in septic patients PBMCs and

LPS-stimulated CP-M191 cells. Weiss et al. conducted a study

similar to our findings, in which they demonstrated that

mitochondrial dysfunction occurs in sepsis, as evidenced by

reduced mitochondrial respiratory function and inhibition of CS

activity (48). Our study confirms that these mitochondria-related

gene transcription are altered in sepsis, accompanied by

abnormalities in mitochondrial morphology and function.

Sepsis is a severe disorder characterized by an aberrant host

response to pathogenic microorganisms and consists of an

overwhelming inflammatory response and consequent failure of

many organs (49, 50). Although epidemiological data suggest that

fatality rates linked with sepsis appear to have decreased, the

prevalence of sepsis continues to rise, and the condition is

currently considered a substantial burden on health care systems

(51). Immunosuppression initiated by sepsis promotes bacterial

growth and leads to increased production of immunosuppressive

soluble mediators owing to increased apoptosis and immune

exhaustion. Sepsis immunosuppression not only prolongs the

primary microbial illness, but it also makes the patient more

susceptible to opportunistic infections and organ dysfunction,

both of which have unfavorable prognoses (52, 53). Numerous

protein biomarkers have been tested to differentiate sepsis from

normal conditions. Moreover, it has been demonstrated that

immune cell infiltration plays a significant role in the progression

of sepsis. In this study, Pearson’s correlation analysis revealed that

PID1 expression was negatively associated with many kinds of

immune cells, such as B cell memory cells, eosinophils, and M0

and M1 macrophages. In addition, PID1 expression was positively

associated with resting monocytes and CD4 memory resting T cells.

This is consistent with previous studies in which PID1 was able to

serve as a biomarker for the assessment of immune status in sepsis

and could serve as stratification tools prior to immunostimulatory

treatment and to monitor drug efficacy (54). Besides, we found that

the sepsis group had higher levels of macrophages M1, T cells

gamma delta, etc. compared to the control group, predicting a state

of inflammatory activation, consistently, MAPK14 is highly

expressed in sepsis and is positively associated with these immune

cells, suggesting that MAPK14 may be involved in the development

of sepsis through excessive inflammatory activation. Similarly, The

expression of CS, CYP1B1, FLVCR1, and IFIT2 were associated

with a wide variety of immune cells, which is an important finding.

These data suggest that alterations in the immunological
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microenvironment of septic patients could be connected to PID1,

CS, CYP1B1, FLVCR1, IFIT2, and MAPK14.

Our research has certain restrictions. Firstly, although we have

analyzed the expression of six MRGs using both clinical samples

and datasets, and confirmed the changes in mitochondrial function

through in vitro sepsis models, additional investigations are

required to substantiate the roles of PID1, CS, CYP1B1, FLVCR1,

IFIT2, or MAPK14 in the course of sepsis. Secondly, further studies

are necessary to elucidate the specific pathways through which these

genes influence immune responses in sepsis. As a result, to validate

our findings in the future, it is imperative to perform additional

experiments both in vitro and in vivo, along with clinical trials.
5 Conclusion

Using bioinformatics techniques, we identified PID1, CS,

CYP1B1, FLVCR1, IFIT2, and MAPK14 as six MRGs that are

essential in the course of sepsis. We developed a diagnostic model

based on machine learning that is capable of diagnosing patients as

having sepsis by analyzing the expression of a number of genes in

the patient’s blood. In addition, these six genes are linked to a

variety of immunological components, suggesting that they may

play a significant role in the immune microenvironment.

Furthermore, by TEM analysis, mitochondrial respiration

measurements, mitochondrial potential and mitochondrial ROS

product ion analyses , we observed the occurrence of

mitochondrial dysfunction at both the overall and cellular levels,

respectively. Additional studies are required to validate the

diagnostic potential of this model for sepsis before it can be used

in clinical settings.
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