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Hematological malignancy is a disease arisen by complicate reasons that seriously

endangers human health. The research on its pathogenesis and therapies depends

on the usage of animal models. Conventional animal model cannot faithfully mirror

some characteristics of human features due to the evolutionary divergence, whereas

the mouse models hosting human hematological malignancy are more and more

applied in basic as well as translational investigations in recent years. According to

the construction methods, they can be divided into different types (e.g. cell-derived

xenograft (CDX) and patient-derived xenograftmodel (PDX)model) that have diverse

characteristics and application values. In addition, a variety of strategies have been

developed to improve human hematological malignant cell engraftment and

differentiation in vivo. Moreover, the humanized mouse model with both

functional human immune system and autologous human hematological

malignancy provides a unique tool for the evaluation of the efficacy of novel

immunotherapeutic drugs/approaches. Herein, we first review the evolution of the

mouse model of human hematological malignancy; Then, we analyze the

characteristics of different types of models and summarize the ways to improve

the models; Finally, the way and value of humanized mouse model of human

immune system in the immunotherapy of human hematological malignancy

are discussed.

KEYWORDS

humanized mice, PDX model, hematological malignancy, immune therapy,
immune system
1 Introduction

Hematopoietic system is formed by a complex differentiation process (e.g. from

hematopoietic stem cells (HSCs) to different lineages of blood/immune subsets) and
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plays an important role in maintaining oxygen exchange and

immune monitoring. Hematopoietic system is controlled by

external and internal factors, such as the hematopoietic

microenvironment, transcription factors, signal transduction

pathways and chromatin modifiers (1). Abnormal changes in any

factor may cause serious hematological diseases (2, 3) and endanger

human health. Among these diseases, hematological malignancies

have the most serious impact on human health.

Hematological malignancy refers to a group of heterogeneous

and life-threatening serious diseases mainly caused by abnormal

HSCs, which lead to impairment in different stages of the

differentiation process, including differentiation block, apoptosis

disorder and malignant proliferation (4). According to the

American Cancer Society, hematological malignancies account for

approximately 6%-10% of all malignancies, and the mortality rate is

5.8% of all malignancies (5). Therefore, research on the

pathogenesis, drug development and therapeutic approaches is of

great significance to reduce the incidence and mortality rates of

hematological malignancies.

According to the fifth edition of the World Health Organization

(WHO) classification of hematolymphoid tumors in 2022 (6),

hematological malignancies mainly include leukemia, lymphoma,

myelodysplastic tumors (MDS) and multiple myeloma (MM).

Treatment methods for hematological malignancies include

chemotherapy, radiotherapy, molecular targeted drug therapy,

HSC transplantation, and immunotherapy. Although some types

of human hematological malignancies (such as acute promyelocytic

leukemia, chronic myelogenous leukemia (CML) and chronic

lymphocytic leukemia (CLL)) (7) have been basically eradicated,

most types of hematological malignancies still have problems such

as low long-term cure rate and high recurrence rate. Moreover, the

current treatment methods still require further improvement

because of some associated serious side effects (8).

Animal models are an important tool for the study of

pathogenesis and drug/therapy of hematological malignancy, and

mouse models are most widely used. However, a large amount of

evidence shows that the conclusions obtained from conventional

mice or drugs/therapies developed for mice cannot be applied to

humans. The main reason for this is that there are huge

evolutionary differences between rodents and humans (9). To
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mouse models with human hematological malignancies and applied

them to basic research and drug research, which promote the

development of this field (10). Recently, immunotherapy has

become an important therapy for the treatment of hematological

malignancies; The humanized mouse model, which can reproduce

the process of human immunotherapy, also plays an increasingly

important ro le in the s tudy of immunotherapy for

hematological malignancies.

This review first describes the development of mouse models of

human hematological malignancies and their application in

preclinical research, summarizes the construction methods and

technical characteristics with a comparison of their advantages

and disadvantages, and finally discusses future development trends.
2 Generation of immunodeficient
mouse strains for human
hematological malignancy
investigation

Robust xenogeneic immune reaction is the first obstacle

impeding the development of mouse model with human

hematological malignant cell repopulation. In this process, both

innate and adaptive immune systems play an important role (11).

Immunodeficient mice can be prepared by modifying key genes that

regulate the development, survival and function of immune cells,

which lays the foundation for replicating human hematological

malignancy in mice. Therefore, immunodeficient mouse strains

play an important role in promoting the development of human

hematological malignancy mouse models (Figure 1).
2.1 Foxn1-/- nude mice

Foxn1-/- nude mice were the first immunodeficient mice used in

the study of human malignancies. Foxn1-/- nude mice are knocked

out of the forkhead box N1 (Foxn1, formerly known as Why or

Hfh11) gene, with congenital absence of thymus and T cells, which
FIGURE 1

Development of mouse models of human hematological malignancy.
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can alleviate T-cell-mediated host versus gradient reaction

xenograft rejection. Rygaard and Povlsen successfully used nude

mice for xenotransplantation of human colon adenocarcinoma for

the first time in 1969 and expanded its use to other solid tumors

(12). At the end of 1970s, Franks et al. first tried to establish a

subcutaneous implantation model of human acute myeloid

leukemia (AML), which was the first time that nude mice were

used in the study of human hematological malignancies. However,

AML cells began to regress after 6 days in mice (13). The complete

innate immune system and B cell humoral immune system of nude

mice limit the transplantation rate of tumor cells, especially human

hematological malignant cells (14). In general, Foxn1-/- nude mice

are not suitable to support human hematological malignant cell

engraftment because of the residual mouse versus human

immunological responses mediated by mouse B cell, natural killer

(NK) cell and macrophages.
2.2 C.B17-SCID and Rag1/2 deficient mice

In 1988, C.B17-SCID (C.B17-Prkdcscid, protein kinase DNA

activated catalytic polypeptide) mice were generated. The prkdc

mutation carried by C.B17-SCID mice prevented the development

of T and B cells in the adaptive immune system, resulting in a lack

of T and B cells (15). Compared with nude mice, this strain has a

higher transplantation rate of human solid tumor cells (16) and was

the first immunodeficient mouse that can be used to transplant

human HSCs (17) and human lymphoma (18)/acute lymphoblastic

leukemia (ALL) cells (19). However, with the increase of age, 2%-

23% of functional T and B cells gradually develop in 3-9 months old

C.B17-SCID mice. This immune leakiness (20) could inhibit human

malignant cell engraftment (20). In addition, the prkdc mutation of

C.B17-SCID mice can also lead to DNA repair defects, resulting in

radiosensitivity (21, 22).

Similar to C.B17-SCID mice, in 1992, Mombaerts (23) and

Shinkai (24) produced C57BL/6 background mice with deletion of

the recombination-activating gene 1/2 (RAG1/2)- coding region.

This defect prevented the recombination of antigen receptor genes

and thus made RAG1/2 deficient mice lacking mature T and B

lymphocytes. RAG1/2 deficient mice did not exhibit the leakiness

and radiosensitivity of C.B17-SCID mice.

However, the intrinsic immune system activity (including high

level of NK cell activity) of C.B17-SCID and Rag1/2-deficient mice

reduced the implantation rate of human HSCs and tumor cells; NK

cells from C.B17-SCID and Rag1/2-deficient mice show cytotoxicity

toward human HSCs and tumor-initiating cells (25),further limiting

their application in tumor models.
2.3 NOD-SCID mice

In 1995, NOD-SCID mice based on NOD background were

generated. The NOD-SCID mice with NOD background have

inherent immune defects, including decreased NK cell activity

and lack of complement C5. The Signal regulatory protein a
(SIRPA) gene is expressed in myeloid cells and encodes the
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suppressive immunoglobulin superfamily transmembrane protein

CD172a. When combined with CD47, gene acts as a homologous

ligand of “don’t eat me” signal to inhibit autoimmune recognition.

SIRPA of NOD background mice can cross-react with human CD47

(26), resulting in better tolerance of macrophages to human cells.

Compared with C.B17-SCID mice, NOD-SCID mice have a higher

implantation efficiency of human HSCs and tumor cells of

approximately five times. They could implant hematological

malignant cells with lower transplantation rate in the past,

including cell lines and primary tumor cells such as lymphoma

(22) and leukemia (including AML (26),ALL (27)) cells.
2.4 Il2rg-/- mice

Interleukin-2 receptor g chain (Il2rg) is responsible for the high

affinity binding of IL2, IL4, IL7, IL9, IL15, and IL21 (28). Mice with

IL2rg gene knockout (29), due to the complete lack of NK cells (11),

further improved the rate of human tumor cell transplantation.

In 2002-2005,NSG (NOD/LtSz SCID,IL2rg-/-)/NOG(NOD/Shi

SCID, IL2rg-/-) (30)mice were generated, which are NOD-SCID

mice with IL2rg-/-,not only lacking T,B and NK cells but also

complement C5,and showing severe immune deficiency. In

addition, the NOD background of NSG/NOG can tolerate

macrophage phagocytosis caused by incompatibility of CD47-

SIRPA, which has advantages in modeling hematological

malignancies and solid tumors (31). Except for NSG/NOG, there

are other similar immunodeficient mouse models that can be

applied to the study of human hematological malignancy in vivo,

such as NOJ (NOD-SCID/Jak3null) (32),BRG(Balb/c Rag2-/-

IL2rg-/-) (33),SRG(Transgene(Tg)(human SIRPA)Rag2-/-IL2rg-/-)

(34),NRG(NOD-Rag2-/-IL2rg-/-,with radiation resistance (35)),

NRGS(cross NRG with NSG-SGM3) (36). Considering their

significant advantages, NSG and NOG mice are now widely used

to study human hematological malignancy in vivo in recent years.

AML, acute myeloid leukemia;PDX, patient derived xenograft;

SCID, severe combined immunodeficiency;HSC, hematopoietic

stem cell;ALL, acute lymphoblastic leukemia;Rag, recombination-

activating gene; NOD, non-obese diabetic; NK, natural killer;

SIRPA, Signal regulatory proteina;NSG,NOD/LtSz SCID,IL2rg-/-;

NOG,NOD/Shi SCID,IL2rg-/-;NOJ, NOD-SCID/Jak3null ;BRG,

Balb/c Rag2-/-IL2rg-/-;SRG, Transgene(Tg) (human SIRPA)

Rag2-/-IL2rg/-;NRG,NOD-Rag2-/-IL2rg-/-;NRGS, cross NRG with

NSG-SGM3; IL2rg, interleukin-2 receptor g-chain;

3 Development of mouse models with
human hematological malignancy
development

In terms of the manners to achieve human cell engraftment,

human hematological malignancy mouse models mainly include

human malignant cell xenotransplantation models (cell-derived

xenograft (CDX)) model, patient-derived xenograft model

(PDX)), virus-induced models, induced pluripotent stem cell

(iPSC)-induced models and spontaneous malignancy models
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(Figure 2). These models have promoted the development of

research on the pathogenesis of hematological malignancies and

on anti-tumor drugs/therapies.

The xenotransplantation model is defined as the model of

transplanting patient cells (PDX) or cell lines (CDX) to

immunodeficient mice.
3.1 CDX model

In 1990, the National Cancer Institute (NCI-60) tumor cell line

became popular in tumor research. This cell line can be cultured in

vitro with a fast growth rate and easy operation (37). To deeply study

the physiology of the human blood-lymphatic system and their

respective diseases in vivo, the human tumor CDX model was used,

which can study the disease mechanism and guide treatment. Since

the genotype and phenotype of tumor cell lines are homogeneous and

immortal, the CDX model is convenient to study the carcinogenic

mechanism, as well as diagnosis and treatment options (38). NOD-

SCID or NSG or NOG mice are the strains frequently used to

construct human hematological malignancy CDX model. Most

CDX models can be constructed by intravenous injection of human

cancer cells which may spread over the body as they act in human

beings. Whereas MM CDX model requires intra-bone injection to

improve cancer cell engraftment rate (39). Compared with PDX

model, CDX model is easier to constructed and the stability and

successful rate are markedly higher.

However, after transplantation into mice, the tumor cell line lost

its original characteristics (40) and could not represent the
Frontiers in Immunology 04
heterogeneity of clinically complex hematological malignancies

(gene expression, growth and invasion characteristics), and the

value of predicting clinical prognosis was limited (41, 42).
3.2 PDX model

The PDX model of hematological malignancy was established

by transplantation of a patient’s primary hematological malignant

cells into immunodeficient mice. Unlike the CDX model, the PDX

model preserves the original characteristics, tumor heterogeneity,

and growth migration and can well represent the disease

progression and treatment response of patients (43). Engraftment

rates of PDX models may predict the disease outcome in patients.

Since PDX models may retain the features of original tumor, harbor

close genetic profiles (44), they can be used to identify the chemo-

resistant tumor cell population (45, 46).

NSG and NOG mice are frequently used to construct human

hematological malignancy PDXmodels. Human leukemia cells tend

to engraft in mouse bone marrow first and then spread over mouse

whole body (47). The organ engraftment tendency of other types of

human hematological malignant cell may depend on their original

characteristics in patients (48–51). According to disease

classification, PDX models of hematological malignancies are

divided into the following categories:

3.2.1 Lymphoma
Lymphoma is a common malignant proliferative disease of

hematopoietic system, which can affect the whole-body organs
FIGURE 2

Classification of mouse models of human hematological malignancy.
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(52). Traditionally, lymphoma is divided into Hodgkin’s lymphoma

(HL) and non-Hodgkin’s lymphoma (NHL), accounting for

approximately 10% and 90% of all lymphomas, respectively (53).

The first PDX lymphoma model was developed in 1993 (54). In this

model, human HL cells were transplanted into unirradiated

CB17.SCID mice kidney/liver. The main advantage of the

lymphoma PDX model is that it retains the characteristics of

primary lymphoma (55), which summarizes the refractory nature

of human lymphoma and non-response to treatment (44), to

develop new drug targets and personalized drug treatment (56,

57). In terms of inoculation methods, in addition to intravenous

injection, implantation into the renal capsule or intraperitoneal

cavity has a higher success rate (48). However, it is necessary to pay

attention to complications such as bleeding caused by kidney

injury (58).

3.2.2 Leukemia
Leukemia is a malignant clonal disease of HSCs (59). Because of

uncontrolled proliferation, impaired differentiation, and blocked

apoptosis, clonal leukemia cells proliferate and accumulate in

hematopoietic tissues, infiltrate other non-hematopoietic tissues

and organs, and inhibit hematopoietic function. Similar to the

PDX model of lymphoma, the PDX model of leukemia retains its

immunophenotype, chromosome aberration, transcriptome and

MRD marker expression (60, 61);The onset time of leukemia cells

in mice is inversely proportional to the recurrence rate in humans;

Moreover, the transplantation of leukemia stem cells (LSCs) can

represent the development of leukemia (62, 63), and its efficiency

reflects the prognosis of clinical patients (64). Using the LSC PDX

model, researchers found genes or subclones related to drug

resistance and relapse in patients with cytogenetic remission (65,

66), such as CML (67) and pediatric T cell acute lymphoblastic

leukemia (T-ALL) (45). In terms of inoculation method,

intravenous implantation can form a leukemia model with

systemic spread, which is consistent with the clinical progress of

leukemia (68); direct injection into the marrow cavity bypasses the

homing process of cells and provides a bone marrow

microenvironment suitable for the growth of leukemia cells, with

a higher implantation rate (69).

3.2.3 MM
MM is a monoclonal malignant blood tumor characterized by

abnormal proliferation of plasma cells in the blood, accompanied by

anemia, hypercalcemia, renal failure and osteolytic injury. Owing to

its frequent recurrence and drug resistance, the cure rate is

extremely low. The MM PDX model can well represent the

development process of disease and develop new treatment

methods. In the past, mobilized blood mononuclear cells or

CD34+-enriched cells from advanced MM patients could develop

into myeloma in irradiated NOD-SCID mice by intracardiac

injection, which allows injected cells to bypass lung and flow

directly into bone marrow (70). At present, MM PDX is mainly
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or intra-osseously (39). Intravenous models are easy to operate and

can represent the characteristics of “diffused MM syndrome”; while

intratibial models are often limited in MC growth and may not

model diffused diseases. In addition, MM PDX model constructed

by subcutaneous injection manner is utilized to study refractory and

recurrent human MM which may own extramedullary effusion

feature (71, 72). However, patient-derived MCs in the MM PDX

model can grow and colonize in the bone marrow of mice but often

do not have bone disease (73). Research on the efficacy of drugs in

treating MM-induced bone disease is extremely limited. At this

time, the MM CDX model that leads to osteolytic injury is often

selected to better study the anti-MM bone disease therapy.

3.2.4 MDS
MDS are a group of heterogeneous diseases of HSCs,

characterized by repeated genetic abnormalities (74) resulting in

the reduction of the number of hematopoietic cells and

morphological dysplasia, which are divided into high-risk MDS

and low-risk MDS according to the degree of malignancy. Contrary

to AML, research on MDS is hindered by the lack of a preclinical

model that replicates the complexity and heterogeneity of the

disease (75). The MDS CDX model that summarizes the MDS

bone marrow failure status is rare and has limited genetic diversity

(76). The MDS PDX model is constructed from MDS stem cells

from patients (77), which reproduces human myeloid

differentiation rather than lymphoid differentiation (78). By

implanting high-risk MDS cells into the PDX model (79),

researchers can study whether there are other abnormalities in

model-derived bone marrow stem cells (80). However, the success

rate of implanting low-risk MDS in NSG mice is still low, which

needs to be further resolved (81).

In summary, the PDX model, as a pre-clinical bridge for

potential clinical application, is used to guide treatment (82, 83);

PDX can simultaneously transplant patient effector cells to evaluate

individual efficiency (84) and maintain important characteristics of

the original tumor, including histology, genome pattern, cell

heterogeneity and drug responsive (85), cell-cell interaction (86,

87), and clonal diversity (88). In addition, through the PDX model

constructed by transplanting drug-resistant primary human

hematological malignant cells, researchers can determine the drug

resistance mechanism or molecular target (43, 89).
3.3 iPSC-induced PDX model

The above PDX/CDX models have difficulties in building some

hematological malignancy models with low invasion (such as

CML), lack of cell lines (such as MDS) or insufficient donor

samples. The iPSC-induced PDX model can differentiate patients’

iPSCs into HSPC that regain the ability to cause hematological

malignancies in vivo (90). IPSC drug testing system (82) can be used
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to test the potential treatment methods to reproduce the disease

DNA methylation/gene expression pattern and drug resistance (91,

92). In theory, iPSC-induced HSPC can be repeatedly used to build

unlimited mouse models based on limited original samples and

solve the different copy number changes of PDX models and

patients (93, 94). Human CD34+ cells were isolated from primary

patient bone marrow mononuclear cells cultured in cytokines, and

reprogramming factors were transduced to obtain stable iPSC

clones. Then, iPSC could be differentiated into HSCs in vitro (95)

and transplanted into immunodeficient mice to construct the PDX

model. Alternatively, iPSCs can be co-injected with OP9 stromal

cells into immunodeficient mice where human iPSCs develop into

HSCs; and those HSCs can be used for secondary transplantation

for PDX model generation (91). At present, patient-derived chronic

myelomonocytic leukemia iPSCs, juvenile myelomonocytic

leukemia iPSCs (96), AML iPSCs and MDS iPSCs have

successfully differentiated into HSCs and PDX models in NSG

mice have been built. iPSCs derived from AML patients with MLL

rearrangement (97) and MDS-iPSC differentiated HSCs (98) can be

used to build PDX models in NSG mice and allow the study of

characteristics, drug sensitivity, and prediction of relapse of

different subclones. However, CML iPSCs with BCR-ABL gene

(99) and acute B lymphoblastic leukemia (B-ALL) with MLL

rearrangement (100) failed to differentiate into specific HSC,

which needs further study. Some teams further glycoengineered

HSCs derived from MDS iPSCs and transplanted these cells into

NSG mice, obtaining strong progenitor cell activity, bone marrow

transport, and exosmosis, but not long-term implantation (101).
3.4 Virus induced model

Virus infection often induces hematological malignancies, such

as Epstein-Barr virus (EBV)-induced lymphoma, Human T-

lymphotropic virus (HTLV) -1-induced ATL (adult T cell

leukemia), EBV-induced aggressive NK-cell leukemia. Nearly 50%

of HL is induced by EBV (102). The mouse model with human

immune system can represent human hematological malignancy

induced by a virus interference genome or non-specific activation.

Injection of patient HTLV-1 virus infected human PBMCs into

NSG mice resulted in T cell clonal proliferation and development of

ATL (103); BLT (bone marrow-liver-thymus) humanized mice can

also be used to study HTLV-1-induced-ATL (104);The humanized

mouse model of lymphoma can be made by infection of EBV in

human CD34+ HSCs transplanted newly born immunodeficient

mice (C.B-17-SCID (105), NOD-SCID (106), NOG (107), NSG

(108)). These models reshape the pathogenesis and mechanism of

human lymphoma in vivo, and replicate the potential infection, T-

cell-mediated immune response and humoral immune response in

vivo (109, 110). Different conditions (e.g. mouse strain/age, donor

cells, viral dosage and so on) may induce lymphoma into different

phenotypes. When infected with EBV, the humanized mice with

high numbers of human B cells trend to generate, while HL mainly
Frontiers in Immunology 06
occur in the humanized mice reconstituted with high levels of

human T-cells (111). However, the humanized mouse model of

lymphoma induced by EBV has differences in the mode of virus

transmission. Oral transmission of humanized mice is not feasible

because the oropharyngeal epithelial cells of humanized mice are

derived from mice. Whereas human lymphoma is mainly

transmitted through oral infection, which leads to the

heterogeneous immune response of human and mouse. The

humanized mouse model of lymphoma made by co-infection of

EBV/Kaposi’s sarcoma-associated herpesvirus (KSHV) virus (112)

resulted in long term viral infection in humanized NSG mice that

representing lymphoma (113) of PEL (primary effusion lymphoma)

type. The main manifestations were viral infection in the spleen and

abdominal cavity, and the lymphoma showed plasma cell

differentiation signs.
3.5 Spontaneous malignancy model

In addition to the models mentioned above, the mouse model

with human hematological malignancy natural development can be

made by genetic engineering modification of the target genes

causing hematological malignancy in human HSCs before

transplantation into immunodeficient mice. This spontaneous

human malignancy mouse model shows similar performance and

immune phenotype to patients with the same gene rearrangement,

providing a better understanding of the molecular etiology of

specific subtypes (Table 1). Based on its specific genetic

abnormality, it provides the direction for potential treatment.

There are many methods of HSC gene editing, including

retroviral transduction, lentivirus transduction, and Clustered

Regularly Interspaced Short Palindromic Repeats/Cas9 (CRISPR/

Cas9) engineering transduction, which have their own

characteristics in inducing hematological malignancy (Table 1).

The solid tumor model requires at least three different

carcinogenic genes to transform primary human cells (124, 125),

and the progress is slow. Unlike the solid tumor spontaneous

model, the hematological malignancy spontaneous model can

quickly obtain the required additional genetic or epigenetic

events, and only one or two genes are needed; For example, Lin-

(lineage negative) and CD34+ human UCB (umbilical cord blood)

cells transfected by MLL-AF9, MLL-ENL in NOD-SCID (b2M-/-)

show pre-B-ALL and AML and mixed pedigree (114, 115);

Transfection of CD34+ human HSCs with the retroviral vector

containing ZYM2-FGFR1 promotes the development of MPD to

AML (120) and activates the STAT signal pathway in NSG mice

after transplantation, which is consistent with the development of

human primary diseases. Human UCB-Lin- cells transfected with

TEL-JAK2 engrafted into NOD-SCID mice showed that the graft

tilted toward the myeloid and erythroid lineages and induced bone

marrow fibrosis (123). Some co-expression methods further

promote model construction and guide treatment, such as MLL-
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AF9 and NRAS co-transfection of human UCB-CD34+ cells

induced faster AML progression in NSG mice (121); BCR-ABL

and BMI1 co-transfected with human UCB-CD34+ cells induced B-

ALL in NOD-SCID mice confirmed that BMI1 was a potential

therapeutic target for CML (118);Human CD34+ cells transfected
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by DEK-NUP214 induced AML in NSG mice, demonstrating that

the HOX family and the primary human t (6; 9) AML were highly

up-regulated and became a potential target for treatment (119);

Unlike conventional Notch mutation induced T-ALL mouse model

(126), overexpression of Notch1 in human HSCs only resulted in
TABLE 1 Mouse models with spontaneous human hematological malignancy development.

Disease Gene
editing
subtype

Method Reference Characteristics
of forming disease

Leukemia B-
ALL

MLL-AF9 Retroviral
transduction

(114, 115) MLL-AF9 induced pre-B-ALL;
MLL-ENL induced B-ALL;
High penetrance and short latency with a median of 7 weeks and lineage switching similar to MLL-
rearranged patients at relapse.MLL-ENL Retroviral

transduction
(115)

CLL Cancer
associated-
POT1
mutation

Crispr-Cas9
engineered

(116) Resolution of the complexities of how changes in telomere length impact cancer progression in the
proper genetic context and ideally in vivo that recapitulates the telomere length and proliferation
dynamics of CLL.

CML BCR-
ABL1

Retroviral
transduction

(117) A block at the pre-B-cell stage similar to CML patients.

BMI1 +
BCR-ABL

Retroviral
transduction

(118) With transformation biased toward a lymphoid blast crisis.

AML DEK-
NUP214

Retroviral
transduction

(119) Recapitulation of primary human t(6;9) AML within an average of 6 months.

ZMYM2-
FGFR1

Retroviral
transduction

(120) Development of myeloproliferative disease that progresses to AML with a long (> 12 months)
latency period;
Successively transplanted through three generations.

MLL-AF9
+ NRAS;

Retroviral
transduction

(121) Significant and reproducible decrease in the latency of disease and quick development of AML.

AML1-
ETO
+CBFb-
MYH11

Retroviral
transduction

(121)

T- and B-cell
lymphomas

CNTRL-
FGFR1

Retroviral
transduction

(122) Transdifferentiated into lymphoma during serial transplantation.
Gene expression similar to CNTRL-FGFR1+ patients.

Myelofibrosis TEL-JAK2 Lentiviral
transduction

(123) High levels of human engraftment at 3 weeks posttransplant; With decreased B lymphoid cells and
increased myeloid cells; With rapidly progressive bone marrow fibrosis and anemia arising in the
absence of concomitant splenomegaly with cell nonautonomous effects on the murine
megakaryocytic lineage. With an increase in the level of STAT5 phosphorylation.
FIGURE 3

A schematic figure about the construction of mouse model with spontaneous human hematological malignancy development.
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alteration of human T cell differentiation tendency in NOG mice,

while only 1/26 transplanted mice were found with T-ALL

development (127) (Table 1, Figure 3).
4 Optimization of human
hematological malignancy
mouse models

Other than immunological factors, non-immunological factors

may also constrain the recapitulation of humanmalignancy in mice.

Many efforts were input to optimize human hematological

malignancy mouse models from this aspect in the last two

decades (128). The microenvironment of hematological

malignancies is composed of the bone marrow, blood vessels, and

peripheral lymphoid organs providing nutrition and survival

factors, which can affect the survival and growth of tumor cells.

The Bone marrow microenvironment includes HSC and non-

hematopoietic cells, and the latter includes endothelial cells,

fibroblasts, osteoblasts, macrophages, mast cells and mesenchymal

stem cells (MSCs). Because mouse bone marrow microenvironment

is different from the human counterpart, it may not support the

development of some less-invasive human hematological

malignancies. The application of human cytokines and

reconstruction of the bone marrow microenvironment further

optimized the mouse model to reproduce the human

microenvironment and address the limitations caused by

differences between human and mouse microenvironments.
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4.1 Application of human cytokine
transgenic mice

The differences in amino acid sequence of cytokines/ligands

between species lead to the difference in cross-reaction between

humans and mice, which may affect the survival and development

of human hematopoietic cells in mice. Human cytokine transgenic

mice can promote hematopoietic differentiation of human myeloid

cells and other cells in mice, improve the development of human

hematopoietic immune system in mouse models, and increase the

implantation rate of human hematological malignant cells (Table 2).

NSG-SGM3: AML and other myelopoietic hematological

malignancies are difficult to transplant into mice, which may be

due to the lack of hematopoietic microenvironment and cytokines

supporting homing, expansion and stromal cell growth of

myelopoietic hematological malignant cells in mice. NSG-SGM3

transgenic mice with human stem cell factor(SCF), granulocyte-

macrophage colony stimulating factor(GM‐CSF), and interleukin

(IL)‐3 (121) promote the research of human myelopoietic

hematological malignancy mouse models by increasing the

production of mature myeloid cells (139) and enhancing the

implantation rate of AML (129),MDS (140), and CLL (141). In

terms of AML, some with difficulty in migration include those with

AML1-ETO and CBFb-MYH11 AML-LSC cells that can be

successfully implanted in NSG-SGM3 mice. After implantation,

the level of human CD45+/CD33+myeloid cells were significantly

higher than that of NSG, and the transplanted cells expand with

time, providing research opportunities for diseases that are difficult

to model in mice.
TABLE 2 Human cytokine transgenic mice for human hematological malignancy investigation.

Human
cytokine

Method Mouse
strain

Efficacy Indication

SCF, GM-
CSF and IL-3

Knock in NSG-SGM3,
conducted
on NSG

Improvement in the expansion of normal mature human myeloid cells;
increased production of myeloid cells and T-reg

Benefit engraftment of AML, MDS, CLL
(129, 130);

SCF Transgene Conducted
on NSG

Improvement in irradiated NSG HSC engraftment and elimination of
radiation-related complications (131)

SCF/KIT
ligand

Transgene Conducted
on NSG

Improved human granulocyte lineage and development of human myeloid
lineage (132)

IL-15 Knock in Conducted
on Rag2-/-
IL2rg-/-

Increased proportion and functional maturation of human NK and CD8+ T
cells and improved antibody-dependent cell-mediated cytotoxicity (ADCC) of
anti-CD20 antibody (133)

Benefit engraftment of Burkitt
lymphoma, enable NK cell-targeted
immunotherapy of tumor xenografts

IL-6 Knock in Conducted
on NOG

Facilitation on studies of myeloid-derived suppressor cells in MM (134) Benefit engraftment of MM

M-CSF, IL-3,
GM-CSF,
TPO

Knock in MISTRG
conducted
on Rag2-/-
IL2rg-/-

Support of human bone marrow monocyte development and strong human
innate immunity to infection, as well as the development of NK cells and
CD163+ tumor-infiltrating macrophages (135)

Benefit engraftment of MM

M-CSF, IL-3,
GM-CSF,
TPO, IL-6

Knock in MISTRG6
conducted
on Rag2-/-
IL2rg-/-

Improvement in engraftment of human malignant plasma cells with
nonmalignant cells (136)

Benefit engraftment of MM

TPO Knock in conducted
on Rag2-/-
IL2rg-/-

Increase in myelomonocytic cells, CD66+ granulocytes in the bone marrow Benefit engraftment for those with
specific subtypes of leukemia such as
t (8;21)-ETO AML (137, 138)
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MISTRG: Rongvaux et al (142) knocked in human cytokines

macrophage colony stimulating factor (M-CSF), IL-3, granulocyte-

macrophage colony stimulating factor (GM-CSF), and

thrombopoietin (TPO) into RAG-/-IL2rg-/- mice, replacing the

corresponding cytokine epitopes of mice, and human SIRPA

genes were knocked in at the same time to produce MISTRG

mice. The lack of corresponding cytokines in mice reduces the

affinity of the niche in the bone marrow to mouse HSPCs, which

reasonably provides additional benefits for human hematopoiesis.

MISTRG mice support the development of human bone marrow

mononuclear cells, NK cells and CD163+ tumor infiltrating

macrophages. MDS stem cells cannot produce colony forming

units in vitro, and their proliferation and differentiation abilities

are defective. MISTRG mice can implant hematological malignant

cells of different risk levels, including MDS, and maintain the

genetic complexity of the original samples of hematological

malignancies. MISTRG mice can be transplanted twice and are

superior to NSG mice in terms of implantation rate and

construction percentage of myeloid system (135). For MISTRG

mice, the MDS implantation rate can reach 50%, which is

significantly better than 10% of NSG. They can reproduce

erythrocyte and megakaryocyte dysplasia in MDS, forming

circular fibroblasts and dysplastic megakaryocytes with

reticulin fibrosis.

IL-6-tg: IL-6 is the key growth factor of human MM, and

human and mouse IL-6 lack cross-reactivity. Human IL-6

transgenic mice (136) improved the implantation rate of MM,

provided the niche key factor for MM growth in mice, and

allowed the implantation of precancerous, malignant plasma cells

and non-malignant cells, promoting the study of myoid-derived

suppressor cells in MM immune mechanism.

TPO-tg: TPO has been proven to be a key cytokine supporting

HSC maintenance and self-renewal and can promote the

development of megakaryocytes and platelets. The development

of bone marrow mononuclear cells in immunodeficient mice, such

as NSG, is relatively small, and the implantation level usually begins

to decline 4-6 months after transplantation, which may be due to

the difference of TPO between humans and mice. Human TPO

transgenic mice promoted the development of human bone marrow

mononuclear cells (137) and CD66+ granulocytes, and may

improve the transplantation rate of leukemia with specific

subtypes such as t(8; 21)-ETO AML (138).
4.2 Bone marrow microenvironment
optimization and reconstruction

In addition to human hematopoietic system cytokines, other

complex factors (such as ligands, chemokines, and hormones) in

the bone marrow microenvironment also significantly affect the

occurrence of hematological malignancies. For example, the

exogenous cytokine c-kit ligand can improve the implantation of

normal and leukemia CP-CML (chronic phase of chronic myeloid

leukemia) cells (143); SCF tg improves the implantation of

irradiated NSG HSCs and eliminates radiation-related

complications (131, 132),SCF/KIT ligand tg improves the
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development of human granulocyte lineage and human myeloid

lineage (132). Therefore, remolding the mouse bone marrow

microenvironment or reconstructing artificial bone marrow tissue

is another important way to optimize the mouse model of human

hematological malignancy.
4.3 Combined injection of MSC

MSC creates a favorable environment for human MDS-derived

cells to survive in the mouse microenvironment, possibly through the

physical interaction itself and the production of human cytokines

(144). Co-injection of patient hematological malignant cells with

MSCs can promote the successful construction of PDX mouse model

(66), and successfully build a hematological malignancy model that is

difficult to implant, such as MDS. The majority of MSCs used are

collected from healthy people, while some MSCs were established

from patients’ CD34− cell fraction (66). Injecting genetically modified

MSCs platelet-derived growth factor subunit B, human IL-3 and

TPO, into the tibia can further promote the survival, renewal and

reduction of clone drift of HSCs (145), including the secondary

transplantation (146). However, the presence of non-bone marrow-

derived stromal cells (dermal fibroblasts) or non-stroma cells is not

conducive to the implantation of MDS-derived cells. Also, for

leukemia, co-injection of MSC and AML cells improve engraft rate,

helping to evaluate key factors in the progression of leukemia in bone

marrow niche (147, 148).
4.4 Reconstruction of artificial bone
marrow microenvironment

Humanized bone marrow-like structures, including 3D scaffold,

ossicles, and rabbit bone, can not only create artificial bone marrow

microenvironment to better implant hematological malignant cells

but also be used to screen for drugs, especially those targeting

matrix components.

The “three-dimensional (3D) scaffold” coated with MSCs can be

adjusted to form humanized bone tissue, which can also provide

niche for implantation and homing of human UCB-CD34+ HSCs

and the growth of cells in patients with hematological malignancies

in vivo (149). The scaffold model retains the original clone structure.

The flexible nature of the biocompatible cell carrier helps achieve

the required size by simple cutting. Simultaneously, it also allows

the use of collagenase for effective digestion, facilitating access to

cells for further research. Usually, MSCs expanded in vitro are

inoculated in gelatin sponge and cultured for several days, and then

human hematological malignant cells are injected into the sponge,

and then subcutaneously injected into non-irradiated

immunodeficient mice (149), which is an effective in vivo model

for studying the human hematopoiesis niche (150). In one study,

MDS was only observed in mice co-injected with patient-derived

MSCs and CD34+ cell bone (151), of which the regeneration rate of

the method based on 3D bone was the highest (152);

“ Ossicles “ refers that bone marrow-MSC mixed with matrigel

and subcutaneously injected into immunodeficient mice. After 2-3
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months, they form “ossicle body”, which forms the external bone

structure around the hematopoietic core (153), which also provide

site for malignant and normal HSC to home and improve their

engraftment and differentiation. Pievani e tal (154) created

leukemia microenvironment using patient-derived MSCs in vivo

and found MSCs improve the leukemia engraftment; Implantation

of cartilage pellets followed by MSCs subcutaneous transplantation

into NSG mice, bone marrow-stromal progenitors from AML mice

have an increased adipogenic differentiation ability (155). The

implantation of primary AML cells can be successfully achieved

by transplanting subcutaneously injected polyurethane scaffolds,

ceramic scaffolds or matrix gel coated with freshly separated human

bone marrow-derived MSCs in vivo (156), which proves that tumor

cells or transplanted AML cells rich in CD34+ can circulate

between ossicles.

For MM, there are already advanced SCID mice models with

artificial humanized bone marrow microenvironment such as

SCID-hu (human fetal bone) (157),SCID-rab (rabbit bone) (158),

SCID-synth-hu (the 3D polymeric scaffold previously composed

with human bone marrow stromal cells) (159). SCID-rab uses

rabbit bone (158) to avoid the ethical problem of human fetal

bone caused by SCID-hu and uses rabbit bone subcutaneously

implanted in mice. Immunohistochemical analysis shows that most

bone marrow microenvironment cells originate from rabbits. Direct

injection of MCs from 28 patients into the implanted bone can

successfully implant tumor cells from 85% of patients with MM and

lead to the production of patients’ M protein isoforms and typical

myeloma manifestations. MCs only grow in rabbit bones, but can

transferred to another bone in the same mouse at a distance; Cells

from patients with extramedullary diseases also grow along the

outer surface of the rabbit bone. The system can now be widely used

to study the biology and expression of myeloma and to develop new

treatment methods for the disease.

Others: Denervation of bone marrow in recipient mice by using

6-hydroxydopamine can also improve the implantation rate of

AML by changing the bone marrow microenvironment (160);

NHL tumor microenvironment (161) is maintained by implanting

BCL2 + and CD20+ lymphocytes (48).
5 Humanized mouse models with
human immune cell composition and
human hematological malignancy
development for cancer
immunotherapy study

Immunotherapy is a powerful tool to treat a variety of human

hematological malignancy clinically. Immunotherapy for

hematological malignancies includes non-myeloablative

transplantation, T-cell immunotherapy, NK cells, immune-

agonists, monoclonal antibodies (mAb) and vaccination (1). The

history of immunotherapy for hematological malignancies began

with mAb therapy in B-cell lymphoma (162), and then transited to
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gene-modified T cell therapy. These T cells were designed to

recognize and target specific antigens, such as anti-CD19

Chimeric Antigen Receptor (CAR)-T cell therapy, and produced

significant results in patients with B-cell malignant tumors (163).

The advantage of immunotherapy is that it reproduces the

microenvironment of immune cells and improves the overall

survival rate of patients. The Food and Drug Administration

(FDA) has studied and approved several immunotherapy

programs for hematological malignancies, but many programs are

still in the late stage of clinical development, including adoptive cell

transfer, antibody-based therapies, and immune checkpoint

inhibitors (1). In addition, patients with hematological

malignancies who receive immunotherapy, especially CAR-T

therapy, will also relapse (164), and have toxic reactions (165).

The mechanisms include memory response and the source of

immune cytokines, and many patients cannot benefit from

current immunotherapy. To sum up, to minimize the risk of

clinical trials, better animal models in vivo are needed for further

research (166) to develop new immunotherapy schemes and

prolong the survival period of patients. The early human

hematological malignancy mouse model of immunotherapy was

directly infused with corresponding immunotherapy cells, such as

CAR-T, on the basis of CDX/PDX to verify the curative effect (167).

However, they rely on the immune system of mice and cannot

represent the real human immune therapy response. Therefore,

there is an urgent need for a mouse model of the human functional

immune system to reproduce the immune surveillance/immune

regulation of humans to further study the complex response of

immunotherapy in the human body.

The mouse model with human functional immune system

focuses on the study of human immune surveillance, immune

regulation (84) and pro-inflammatory cytokines, which can verify

the immunotherapy of various hematological malignancies,

including immune-cytokine therapy (168,)bispecific antibody

(169), mAb (170), and CAR-T therapy (171). At present, the

humanized mouse models applied to hematological malignancy

mainly include Hu-PBL (human PBMC), Hu-SRC (SCID

repopulating cell) and Thy/HSC models (also known as BLT

models) (10).

Hu-PBL model was a humanized PDX/CDX model constructed

by transplanting human PBMCs, which were easy to process and

obtain, and by inoculating hematological malignant cells. In this

model, human lymphocytes were rapidly expanded in mice, which

can be used to study the interaction between human immune cells

and hematological malignancies (172). However, because the

injected cells are human mature immune cells, human myeloid

cells and B lymphocytes are rarely detected in this model. Activated

human CD4+or CD8+ T cells in mice often leads to severe graft-

versus-host disease (GVHD), which markedly limits the

observation period and making its wide application difficult.

Another popular humanized mouse (173) model is Hu-SRC

model. It was constructed by transplanting human cord blood-, fetal

liver-, bone marrow-or G-CSF-mobilized peripheral blood-derived

CD34+ cells into irradiated neonatal immunodeficient mice. This
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model has sustainable multilineage human immune cell (including

T cells, B cells and myeloid cells) reconstitution. This model can

reproduce the primary immune reaction of T cells in humans.

Among them, human T cells develop in the mouse thymus, and

after positive and negative selection, this model has mouse MHC

restriction (174). However, residual innate immunity, poor human

thymopoiesis, immature B cells, lack of human leukocyte antigen

(HLA) restrictions, and poor T cell-dependent humoral responses

also exist.

Thy/HSC model (also known as BLT model) (90) is generated

by co-transplantation of human fetal liver CD34+ cells (intravenous

injection) and thymus tissue (under renal capsule) into sublethal-

total-body-irradiated immunodeficient mice. This model has high

levels of human immune system reconstruction and secondary

lymphoid organ well development. HSCs extracted from human

liver tissue have more efficient transgenic expression. The Thy/HSC

model can generate specific T cell and antibody responses against

protein antigens, virus antigens, autoantigens, allogeneic and

xenogeneic cell antigens, which proves that it can generate strong

human immune responses. Transplanted human liver and thymus

provide a microenvironment that supports the development of

human T cells. Hassall’s corpuscles formed by human stromal

cells and T progenitor cells can be detected, which can produce a

human HLA-limited human T cell immune response. Mouse DCs

can migrate to the human thymus and induce human T progenitor

cells, reducing xenograft rejection.

Application of humanized mice in the immunotherapy of

hematological malignancies: mainly embodied in the verification

and exploration of immune checkpoint inhibitors, cytokine therapy,

and cell therapy, such as CAR-T. (Table 3)

Immune checkpoint inhibitors: The application of immune

checkpoint inhibitors in hematological malignancies mainly

includes CD137 antibody, programmed cell death protein-1 (PD-

1) antibody, or cytolytic T lymphocyte-associated antigen (CTLA)-

4 antibody, and their effect can be verified in humanized mouse

models, with either single therapy or combined therapy for different

types of tumors. The efficacy of anti-CD137 antibody was tested in

MM CDX humanized mice models with inoculation of human

healthy NK cells (hu-PBL) (195). The effect of PD-1 and CTLA-4

antibodies were evaluated in EBV induced B cell lymphoma

humanized mouse models (196) before clinical trial. The human

immune cells of humanized mice can mediate the immune response

against therapeutic antibodies. For example, the effectiveness of bi-

specific CD20/CD3 antibody can also be verified in a lymphoma

CDX hu-PBL humanized mice model (169). However, these

humanized mouse models have different immune cells from

human donors, which cannot completely replicate the immune

response in patients with tumors.

For cytokine therapy, humanized mice with cytokines

can reproduce the immune response in patients during

immunotherapy. For example, human IL-2 transgenic mice (197)

produce various NK cells, which can reproduce human NK cells

targeted to implanted leukemia and lymphoma cells (198);Human

IL-15 knock-in (199, 200) humanized mice better mimic human

NK (201)and CD8+T cells that remain in human circulation and
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tissue to target Burkitt lymphoma, as well as ADCC effect on CD20

antibody (68, 133).

For cell therapy, humanized mice can represent its immune

effect and toxicity in humans in vivo. Recently Caruso et al.

described a humanized mice model system constructed with

human HSCs, AML cells and human endothelial tissues to

evaluate the on target-off tumor toxicity of CAR.CD123-NK cells.

This is a new model for studying the off-tumor toxicity of

immunotherapy for hematological malignancy, especially for

relapsed/refractory pediatric AML (202). Additionally, humanized

mice can reproduce cytokine release syndrome (CRS) and

neurotoxicity in patients after infusion of CAR-T cells. For

example, Mhaidly et al (203) experimented in NSG mice with

CD19+human B-lymphoblastic leukemia, delivering anti-CD19

CAR by CD8 targeting lentivirus and injecting human PBMC

(204). Compared to the control, a single injection was sufficient

to eliminate tumor cells. However, its CAR-T cells came from

allogeneic and HLA donors (205). Although the occurrence of CRS

was the same as that of CAR-T patients (206), CRS could not be

distinguished from allogeneic reactions. Therefore, it is necessary to

verify the humanized spontaneous model of human hematological

malignancy by monitoring auto-functional human immunity.

The humanized mouse model with homologous immune

system and spontaneous human leukemia development is a novel

mouse model recently developed by our group for human

hematological malignancy investigation. It is mainly based on the

Thy/Liv SCID-Hu mouse model (207). The model was constructed

by transplanting CD34+cells from human fetal liver and human

fetal thymus from the same embryo donor into NSG mice with

sublethal radiation. CD34+ cells were transduced by a retrovirus

carrying the MLL-AF9 fusion gene and GFP. About 10-12 weeks

after humanization, human immune cells were reconstructed,

human CD3+ T cells from spleen were isolated, transferred with a

virus vector encoding human CD19 specific CAR, expanded in vitro

for about 2 weeks, and then returned to leukemic humanized mice

with adoptive immunotherapy (208, 209). In most previous studies,

the reconstructed human immune system and inoculated human

tumors are allogeneic. The allogeneic response of human T cells to

malignant tumors may damage the value of data collected from

these models, making it difficult to predict the clinical immune

effects of anticancer drugs (10). While this model allows the

evaluation of anti-tumor response in “immune-active” hosts

without allogeneic or xenogeneic immune response. CAR-T cells

are modified autologous T cells developing in human thymus. In

mouse blood, we can detect anti-CD19 CAR-T cells, whose

dynamics and levels are similar to those of patients receiving

CAR-T, and are closely related to the burden of leukemia, B-cell

destruction and mouse survival, which is helpful to identify new and

more effective CARs (210), and inhibit side effects, such as CRS and

neurotoxicity. In this model, human immune cells and leukemia

cells were derived from CD34+ HSCs from the same human fetal

liver. These cells are considered autologous and have a homologous

immune monitoring system. Even the CAR-T produced by

humanized mice will not attack mice, nor will it cause strong

xenograft rejection. The humanized mouse model of B-ALL
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induced by MLL-AF9 can also verify the treatment of receptor

leukocyte infusion (RLI) without GVHD (211),which has a similar

immune response to patients. For instance, increase in the

proportion of cytokines produced by T cells and mononuclear

macrophages and Treg reveals that GM-CSF may play a key role

in CRS after CAR-T cell treatment; and RLI can improve the anti-

tumor efficiency by depletion of human T cells (211). In addition,

Leskov et al. developed a “double-hit” lymphoma model and

constructed a humanized mouse model of lymphoma with the

human immune system by inducing joint overexpression of c-MYC

and BCL2 in human HSC-derived B-lineage cells through lentivirus

transduct ion. This model accurately summarizes the

histopathological and clinical features of human “double-hit”
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lymphoma resistant to steroids, chemotherapy and rituximab

(212), and can evaluate immunotherapy.
6 Discussion and summary

Advancement in mouse models with human hematological

malignancy recapitulation intensively contributes to exploring the

pathological mechanism of related human diseases and facilitates

invention of effective drugs and therapeutic approaches in last two

decades. Development of mouse strains with severe deficiency of

murine immune system (such as NSG mice) almost completely

prevent mouse versus human immunological rejection after human
TABLE 3 Part of Investigational New Drug (IND)-approved drugs that utilize mouse models with human hematological malignancy for pre-clinical
tests between 2020-2023.

Hematological malignancy Current IND-approved drug name Model Reference

AML Entrectinib (Trk inhibitor) CDX (175)

ATL anti-CC chemokine receptor4 (CCR4) CCR4 mAb PDX with autologous human immune
cells

(176)

MM Teclistamab CDX/PDX inoculated with human T
cells (hu-PBL)

(177)

AML AG-120 (ivosidenib) xenograft mouse model (178)

ALL CD19 CAR-T cells PDX (179)

Leukemia Anti-CD52 mAb CDX (180)

T-ALL, B-ALL Isatuximab (CD38mAb) Xenograft models (181)

Lymphoma (NHL) HX-009 (bispecific antibody, targeting PD-1 and CD47 but with
weakened CD47 binding)

CDX (182)

Lymphoma PD-1 antibody combined with CTLA-4 antibody EBV-induced model (virus induced
model)

(6)

DLBCL AZD4573 (a selective inhibitor of cyclin-dependent kinases9) CDX (183)

AML
DLBCL

HexaBody-CD38 PDX (184)

relapsed/refractory MM ISB 1342 (a CD38 × CD3 T-cell engager) CDX injected with human PBMC (hu-
PBL)

(185)

ALL Radiotherapy combined with CD19-CAR-T cells CDX (186)

ALL Duvelisib PDX (187)

ALL
AML
MM

LAVA-051 CDX or CDX with human PBMC (hu-
PBL)

(188)

MM elotuzumab PDX (SCID-hu) (189)

MM daratumumab plus All-trans-retinoic acid (ATRA) CDX with humanized
microenvironment (scaffold)

(190)

NHL Tazemetostat (EPZ-6438) CDX (191)

NHL AZD0466 CDX (192)

MM CD38 CAR-T cells CDX with humanized
microenvironment (scaffold)

(193)

Leukemia CD-7 CAR-T cells CDX (194)
f
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cell/tissue transplantation and markedly elevate the successful rates

of CDX and PDX model construction. Whereas non-

immunological factors still constrain the capability of

immunodeficient mice to accept and repopulate less aggressive

human hematological malignant cells, especially the ones closely

rely on human specific microenvironment to survive and

differentiate. Thus, development of immunodeficient mouse

strains with delicate human cytokine/chemokine/ligand

expression or reconstruction of artificial human bone marrow

microenvironment would further promote their application in

human blood disease study. Importantly, proper combination of

humanized mouse model with functional human immune system

and the mouse model with human hematological malignancy

development may further generate a powerful tool to precisely

evaluate the efficacy of new drugs or immunotherapies and speed

up their translational paces in clinic.
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