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Introduction: Infection with SARS-CoV-2 leads to coronavirus disease 2019

(COVID-19), which can result in acute respiratory distress syndrome andmultiple

organ failure. However, its comprehensive influence on pathological immune

responses in the respiratory epithelium and peripheral immune cells is not yet

fully understood.

Methods: In this study, we analyzed multiple public scRNA-seq datasets of

nasopharyngeal swabs and peripheral blood to investigate the gene regulatory

networks (GRNs) of healthy individuals and COVID-19 patients with mild/

moderate and severe disease, respectively. Cell-cell communication networks

among cell types were also inferred. Finally, validations were conducted using

bulk RNA-seq and proteome data.

Results: Similar and dissimilar regulons were identified within or between

epithelial and immune cells during COVID-19 severity progression. The relative

transcription factors (TFs) and their targets were used to construct GRNs among

different infection sites and conditions. Between respiratory epithelial and

peripheral immune cells, different TFs tended to be used to regulate the

activity of a cell between healthy individuals and COVID-19 patients, although

they had some TFs in common. For example, XBP1, FOS, STAT1, and STAT2 were

activated in both the epithelial and immune cells of virus-infected individuals. In

contrast, severe COVID-19 cases exhibited activation of CEBPD in peripheral

immune cells, while CEBPB was exclusively activated in respiratory epithelial

cells. Moreover, in patients with severe COVID-19, although some inflammatory

genes, such as S100A8/A9, were found to be upregulated in both respiratory

epithelial and peripheral immune cells, their relative regulators can differ in terms

of cell types. The cell-cell communication analysis suggested that epidermal

growth factor receptor signaling among epithelia contributes to mild/moderate

disease, and chemokine signaling among immune cells contributes to

severe disease.
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Conclusion: This study identified cell type- and condition-specific regulons in a

wide range of cell types from the initial infection site to the peripheral blood,

and clarified the diverse mechanisms of maladaptive responses to

SARS-CoV-2 infection.
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1 Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-

2) infection causes a contagious disease known as coronavirus

disease 2019 (COVID-19), which spread quickly across the globe,

resulting in the COVID-19 pandemic. According to the World

Health Organization (WHO), there had been more than 761 million

cases worldwide (including over 6.8 million deaths) by the

beginning of March 2023. Although the vast majority of infected

individuals present asymptomatic, moderate, or mild symptoms, a

proportion of cases require hospitalization and intensive care, or

even progress to death (1–4). SARS-CoV-2 enters epithelial cells,

assembles its structures and nucleocapsids, is released, and

subsequently stimulates immune cells (such as macrophages and

dendritic cells) by inducing inflammatory factors. Finally, its

antigen is presented via histocompatibility complexes I and II

(MHC I and II) to activate humoral and cellular immunities,

which are mediated by B and T cells, to induce the production of

cytokines and antibodies (5–10). The severity of inflammation can

lead to cytokine storms in some COVID-19 patients (11–14).

COVID-19 affects patients differently, with observed distinct

features. For example, immunological signatures are altered during

severe infection, and levels of a wide range of pro-inflammatory

cytokines [such as S100A8/A9, interleukin 1 beta, interleukin 6 (IL-

6), IL-8, CXCL10, and tumor necrosis factor alpha (TNFa)] are

dramatically increased (15–18). Compared to severe disease, the

substantial expression of genes associated with interferon (IFN)

responses (type I in particular) has been observed in cells (such as

epithelia) in mild or moderate COVID-19 disease (19–21).

Additionally, patients with severe COVID-19 show activation of

neutrophils (22, 23) and lymphocyte exhaustion (24, 25). Given the

distinct antiviral immunity among cell types during the progression

of SARS-CoV-2 infection, various therapeutic strategies have been

developed to improve COVID-19 treatment (13, 26). For example,

targeting cytokine storms improves outcomes and reduces mortality

in elderly patients with COVID-19 (27). In this respect, Tocilizumab,

an IL-6 pathway inhibitor, improved the clinical manifestations in 21

patients with severe and critical COVID-19 (28).

Multiple studies have been conducted to date to investigate

alterations associated with immune responses, with the aim of

providing deeper insights into the roles of the nasal, upper, and

lower airway tissues and peripheral blood (21, 29–32). A large-scale
02
single-cell transcriptome atlas of the lungs and peripheral blood of

COVID-19 patients has also been compiled (33). However, a

detailed analysis of the gene regulatory changes in both

respiratory epithelial and peripheral immune cells during

progression to severe COVID-19 is required to completely

understand aberrant and protective immune responses to SARS-

CoV-2 infection.

Therefore, in this study, we analyzed single-cell RNA

sequencing data from nasopharyngeal swabs and peripheral blood

mononuclear cells (PBMCs) to capture the immune response at the

site of infection (epithelial cells) and of the peripheral immune

system. We found that epithelial cells (e.g., squamous and goblet

cells) and immune cells (e.g., CD14 and CD16 monocyte cells)

exhibit substantial phenotypic differences after SARS-CoV-2

infection. The transcription factor regulatory network

construction underlies heterogeneous immune responses during

progression to severe COVID-19 among different cell types from

various infection sites. Furthermore, we demonstrated the

important role of some inflammatory genes (such as S100A8 and

S100A9) in the pathogenesis of COVID-19 and found that

regulators of these critical genes can be unique to cell types and

conditions. A cell-cell communication analysis suggested that

epidermal growth factor receptor (EGFR) signaling in epithelial

cells may contribute to mild/moderate COVID-19. Collectively, our

work reveals and clarifies the mechanisms involved in maladaptive

responses to SARS-CoV-2 infection and provides a rich resource for

predicting, preventing, and treating SARS-CoV-2 infection in

respiratory epithelial cells and peripheral immune cells.
2 Materials and methods

2.1 Data collection

Single-cell RNA sequencing (scRNA-seq) data from

nasopharyngeal swabs and PBMCs were collected (21, 31). The nasal

scRNA-seq data were publicly available for exploration and download

via the single-cell portal (https://singlecell.broadinstitute.org/

single_cell/study/SCP1289/), and the PBMCs data were available for

viewing and downloading from the COVID-19 Cell Atlas (https://

www.covid19cellatlas.org/#wilk20) hosted by the Wellcome

Sanger Institute.
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Biological samples of nasopharyngeal swabs were collected from

the University of Mississippi Medical Center between April and

September 2020. Eligible participants for blood samples were

recruited into the Stanford University ICU Biobank study between

March 2020 and April 2020. With respect to the nasal epithelial data,

eight individuals were removed from our study based on the

following criteria: (1) healthy individuals with a recent history of

COVID-19 and (2) individuals who needed intensive care units but

without a recent history of COVID-19. In addition, because of the

small numbers of cells collected from mast cells (6 cells),

plasmacytoid DCs (11 cells), and enteroendocrine cells (1),

these cell types were excluded from our analyses. A total of 15

healthy participants and 35 patients diagnosed with COVID-19

were ultimately studied. According to the COVID-19 severity

stratification of the World Health Organization (WHO) guidelines,

these 35 patients were further divided into two groups: those

with mild/moderate disease (14 patients) and those with severe

disease (21 patients). WHO scoring system for healthy, mild/

moderate, and severe cells were represented by Control_WHO_0,

COVID19_WHO_1–5, and COVID19_WHO_6–8. With respect to

the PBMCs scRNA-seq data, six healthy and seven severely ill

individuals were studied. Processed count matrices with

embeddings were used only for the PBMCs. The cell identity labels,

annotated by the authors in the original papers, were transferred to

the scRNA-seq datasets in this study. All sample characteristics were

given in Supplementary Table 1.
2.2 Single-cell RNA sequencing
data processing

The Seurat package (version 4.0.4) (34) implemented in R

(version 4.1.0) was used to explore the single-cell transcriptome

data. The count matrices were normalized using Seurat

NormalizeData. Specifically, the log-normalized method was used

to normalize the total feature expressions per cell, multiply them by

a scaling factor (10,000 by default), and further log-transform the

results. Highly variable genes were then identified using the

FindVariableFeatures function (3,000 top variable features were

set). The percentage of mitochondrial genes was regressed out using

the ScaleData function. The scaled data were passed to run a

principal component analysis (PCA) dimensionality reduction

algorithm. The FindNeighbors and FindClusters functions were

then employed to cluster the cells, and a graph-based clustering

algorithm that calculates the k-nearest neighbors and constructs a

shared nearest neighbor graph, was applied to identify cell clusters.

Nonlinear dimensionality reduction (RunUMAP function) and

Uniform Manifold Approximation and Projection (UMAP) were

then conducted to visualize the clustering results in two dimensions.

To identify differentially expressed genes (DEGs) when comparing

any two given groups, the FindMarkers function in Seurat was

applied with the following configurations: test.use = “wilcox” (a

Wilcoxon Rank Sum test), min.pct = 0.25, logfc.threshold = 0.25,

and only.pos = FALSE. An additional adjusted P-value threshold of

≤ 0.05 was used for filtering DEGs.
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Additionally, an additional scRNA-seq with accession number

GSE158055 (33) was integrated with the aforementioned scRNA-

seq PBMCs dataset. The GSE158055 dataset included immune cells

from PBMCs. Cell identities annotated by the authors in the

original paper were used. Common cell types between GSE158055

and existing scRNA-seq PBMCs were selected for integration,

which were seven immune cell types (CD14 Monocyte, CD16

Monocyte, B, CD4 T, CD8 T, NK, and DC). For integration, the

Seurat integration workflow was performed to remove batch effects.

The FindIntegrationAnchors function with reciprocal PCA was

used to discover anchors in large datasets. These anchors were

then passed to the IntegrateData function. Finally, downstream

visualizations were conducted following the RunPCA and

RunUMAP functions.
2.3 Gene regulatory network analysis
and visualization

To explore the regulatory landscape across cell types between

healthy and COVID-19 patients, the SCENIC (single-cell regulatory

Network Inference and Clustering, version 1.2.4) (35) tool was used.

SCENIC is a set of tools that can infer transcription factors (TFs)

and construct gene regulatory networks (GRNs) from scRNA-seq

data. The required human RcisTarget database was downloaded

from https://resources.aertslab.org/cistarget/. GENIE3 and

RcisTarget in SCENIC were used to identify potential direct

binding targets (called regulons) based on co-expression modules

and a TF motif analysis. Here, the regulon represented one TF and

its targets. Utilizing the AUCell algorithm, the activity of regulons

in each individual cell were analyzed and evaluated by calculating

the area under the recovery curve (AUC) score. To identify specific

regulators of cell type-specifics and conditions (healthy, mild/

moderate, and severe COVID-19), we calculated the average

regulon activity by cell type in each condition and merged them

to create an AUC score heatmap via the pheatmap package in R.

The AUC score matrix of all regulons in each cell was submitted to

the Seurat object to project the AUC (as well as TF expression) onto

UMAP plots. In addition, in terms of each condition, the targets of

the identified TFs in each cell type were filtered using the

corresponding DEGs. Finally, GRNs for each cell type and

condition, which comprised the observed TFs and their

differentially expressed target genes, were constructed and

displayed using Cytoscape software (version 3.9.1) (36).
2.4 Function and pathway
enrichment analysis

Gene ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) enrichment analyses of gene sets of interest were

performed using the clusterProfiler (version 4.0.5) (37) package in

R. The GO enrichment analysis was conducted based on biological

processes, and GO annotation data were provided by

AnnotationHub. KEGG annotation data were available in the
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KEGG database (https://www.genome.jp/kegg/). An adjusted P-

value ≤ 0.05 was considered significantly enriched.
2.5 Cell-cell communication analysis

The CellChat (version 1.5.0) (38) package in R was used to infer

and analyze cell-cell communications (CCCs) among cell types.

“Secreted Signaling” was set to explore intercellular communication

networks, and the communication probability was then computed

to infer the cellular communication network. The aggregated CCC

network was calculated by counting the number of links or

summarizing the communication probability. Collectively, based

on gene expressions and prior knowledge of the interactions, all

significant communications (ligand-receptor interactions)

associated with signaling pathways from one cell type to other

cell types were determined.
2.6 Whole blood bulk transcriptomic and
proteomic data analysis

Pre-processed whole-blood bulk transcriptomic data are

publicly available for download at GEO (accession number

GSE157103) (39). Transcript counts were normalized using the

transcript per million (TPM) method. Samples were selected from a

total of 126 samples according to the following criteria: (i) select

COVID-19 infection samples and (ii) samples were removed if the

sequential organ failure assessment (SOFA) scores were unknown.

A final total of 56 samples were used in this study. The selected

samples were then grouped based on the SOFA score and the

Pearson’s correlations calculated between the TPM and SOFA

scores. The lung proteome data are available at the iProX

database with accession number IPX0002393000 (40). The plasma

proteome data (accession number GSE207015) are available at GEO

(41). Sample characteristics of bulk transcriptome and proteome

datasets were given in Supplementary Table 1.
3 Results

3.1 Single-cell characterization of
nasopharyngeal swabs and PBMCs

To better understand and compare the host response to SARS-

CoV-2 infection at the initial infection site and peripheral immune

cells, we obtained single-cell RNA sequencing (scRNA-seq) data

from nasopharyngeal swabs (21) and peripheral blood mononuclear

cells (PBMCs) (31) under three different conditions: healthy

individuals and COVID-19 patients with mild/moderate and

severe disease. Metadata, such as cell type annotation and

embedding of PBMCs data, were mainly obtained from original

studies. As mentioned in the Materials and Methods section, certain

cells associated with nasal scRNA-seq data were excluded from this

study based on the criteria described therein. Data from

nasopharyngeal swabs and PBMCs were then processed using the
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same protocols, including those relating to data normalization,

dimensionality reduction, and cell clustering, and the results were

visualized on the UMAP plot. A total of 26,894 cells from the nasal

mucosa and 44,721 cells from PBMCs were analyzed, comprising 15

and 13 cell types, respectively (Figure 1A; Supplementary Figure 1,

Supplementary Table 2). Of the cell types, SARS-CoV-2 induced

CD14 monocyte expansion and NK cell loss, while the B and T cell

abundances remained similar between healthy and COVID-19

patients. In addition, ciliated and goblet cells from nasal epithelial

cells and dendritic cells (DCs) from PBMCs exhibited the highest

number of expressed genes.
3.2 Similarity and dissimilarity of regulons
and pathways were identified in respiratory
epithelial and peripheral immune cell types
associated with COVID-19

To investigate the gene regulatory network (GRN) changes

underlying COVID-19 manifestations, we conducted single-cell

regulatory network inference and clustering (SCENIC) analyses

(35). Regulons, including transcription factors (TFs) and their

direct target genes, were detected in each cell type. We then

calculated the average area under the recovery curve (AUC) scores

per cell type to estimate regulon activities. Using a SCENIC analysis,

we identified potential TFs in terms of the cell type and the three

conditions (healthy individuals and COVID-19 infections with mild/

moderate and severe disease). By comparing nasopharyngeal swabs

and PBMCs, we found that there were notable differences between

the many identified regulons among conditions or infection sites (i.e.,

nasal or peripheral blood), while some were found to be shared, and

XBP1, FOS, STAT1, and STAT2 were activated in both the epithelial

and peripheral immune cells of virus-infected individuals (Figure 1B).

In addition, when comparing the detected regulons across cell types,

we found that some cell types were distinguished by different regulon

combinations among the three conditions, but some were not

(Supplementary Figure 2A). Specifically, epithelial cells, such as

ciliated cells and mitotic basal cells, unexpectedly shared common

TFs, whereas distinct TFs were identified in other epithelia, such as

basal cells, squamous cells, and goblet cells. For example, RFX2 and

RFX3 showed high activity in ciliated cells regardless of disease

severity, while XBP1, NR2F6, SPDEF, and ELF3 were preferentially

activated in goblet cells in patients with severe COVID-19, and KLF5

and STAT2 were coactivated in patients with mild/moderate

COVID-19. Furthermore, NR2F6, SPDEF, and ELF3 were found to

be activated in squamous cells in patients with severe COVID-19, and

this activity was also shared with goblet cells.

It is of note that we mainly focused on epithelial cells from nasal

scRNA-seq data due to their very small number of immune cells,

but we then used PBMCs scRNA-seq data to analyze immune cells.

The PBMCs data showed that most regulons were unique to cell

types or patient condition (healthy and severe). For example,

CEBPD and FOS were highly activated in both CD14 and CD16

monocyte cells in severe COVID-19 disease, whereas BACH1

exhibited particularly high activation in CD16 monocyte cells

(Supplementary Figure 3A).
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For each cell type, we further analyzed the differentially

expressed genes (DEGs) between COVID-19 patients and healthy

individuals, and we then performed GO (biological process) and

KEGG enrichment analyses using these DEGs (Figures 1C, D;
Frontiers in Immunology 05
Supplementary Figures 2B, 3B, Supplementary Tables 3–8). In the

case of nasal epithelial cells, many genes were upregulated in the

ciliated cells of patients with mild, moderate, and severe COVID-19,

and they showed enrichment in some functions and pathways, such
A

B C

D

FIGURE 1

Characterization of nasopharyngeal swabs and PBMCs data. (A) Cell types in nasopharyngeal swabs and PBMCs data and their percentage proportion
in patients with different COVID-19 severity. Middle: cell type visualization on UMAP plots. Right: cell proportion associated with disease severity
(mild/moderate and severe) and healthy cells. (B) Heatmap of the area under the curve (AUC) scores of regulons estimated per cell type by SCENIC.
Detected regulons are represented by their corresponding transcription factors in the right-hand columns. Columns represent AUC scores of cell
types. For each condition, the column order is the same as the label order in (A). Asterisks behind the TFs represent commonly identified TFs
between nasopharyngeal swabs and PBMCs. (C) Number of differentially expressed genes (DEGs) when comparing COVID-19 (mild/moderate,
severe) and healthy cells. Yellow and light-blue colors represent upregulated and downregulated genes, respectively. The corresponding gene
numbers are shown at the top and bottom of each bar. In the upper panel, bars without dots indicate identified DEGs by comparing mild/moderate
disease to healthy cells, while bar with dots indicate DEGs when comparing severe disease and healthy cells. (D) GO (biological process) enrichment
analysis to compare upregulated genes found in diseased and healthy cells.
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as COVID-19, oxidative phosphorylation, protein targeting, and

viral gene expression (Supplementary Tables 6, 7). Surprisingly, we

found that squamous cells showed the highest number of

downregulated genes (200 genes) during mild/moderate COVID-

19, and goblet cells displayed the highest number of upregulated

genes (1,033 genes) during severe COVID-19 (Figure 1C). The 200

deregulated genes were associated with regulating translation, the

cellular amide metabolic process, and RNA splicing, while the 1,033

upregulated genes were associated with the ATP metabolic process,

interleukin-1-mediated signaling pathway, Wnt signaling pathway,

planar cell polarity pathway, response to decreased oxygen levels,

and the viral life cycle (Figure 1C; Supplementary Figure 2B).

Likewise, we found that compared to the number of upregulated

genes, a larger number of genes tended to be downregulated in most

cell types from PBMCs, and the highest differences between healthy

and severe COVID-19 patients were noted in CD14 monocyte cells

(Figure 1C). During severe COVID-19, upregulated genes in both

CD14 and CD16 monocyte cells were associated with type I

interferon signaling, response to the virus, positive regulation of

cytokine production, and toll-like receptor (TLR) signaling

pathways (Figure 1D). TLRs have been reported to play an

important role in responses to certain infections, and their

changes may lead to cytokine storms (14, 42). We also found that

I-kappaB kinase/NF-kB signaling was enriched. A recent study

suggested that NF-kB might be associated with a poor pro-

inflammatory cytokine production mechanism in the monocytes

of patients severe COVID-19 (32). Other findings based on the GO

and KEGG analyses among cell types are given in Supplementary

Table 8. These results may provide an important reference for

understanding the mechanisms of cytokine storms in different

cell types.

By comparing respiratory epithelial and peripheral immune

cells, the SCENIC analysis identified similar and dissimilar TFs

between the conditions. Furthermore, different combinations of

these TFs were common or unique to certain cell types under

different conditions. These distinct cell type- or condition-specific

TFs potentially contribute to transcriptional regulation among cell

types during disease progression. The studies on DEGs indicated

different response mechanisms to SARS-CoV-2 occur at different

infection sites (based on nasal and peripheral blood data).

Specifically, DEGs of certain cell types were enriched in pathways

such as the regulation of cytokine production, response to decreased

oxygen levels, and viral response.
3.3 The construction of a gene regulatory
network from nasopharyngeal swabs
and PBMCs evidences immune responses
to SARS-CoV-2 infection in different
cell types

With our identified cell type- and condition-specific regulons,

further studies on TFs and their direct targets were conducted with

the aim of exploring the detailed mechanisms of immune responses

at different infection sites. Our findings suggested that goblet and

squamous cells among epithelial cells, as well as CD14 and CD16
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monocyte cells among immune cells, exhibited considerable

differences in not only DEGs but also regulons. We constructed

and visualized GRNs (i.e., regulons) per cell type using the

Cytoscape tool (36). The target genes of each TF were further

filtered using the corresponding DEGs in relation to cell types and

conditions. We aimed to construct GRNs for all cell types and

conditions; however, some cases failed because there were no

remaining target genes of certain TFs after DEG filtering (i.e., the

targets were not differentially expressed and thus the regulons were

removed), or all of the regulons of these cell types or conditions

showed very low activation. Note that we constructed the GRNs

with differentially expressed targets (min.pct = 0.25, logfc.threshold

= 0.25), while potentially existing regulons without having target

genes to be differentially expressed were not examined in this study.

As a result, the GRNs of goblet, squamous, CD14, and CD16

monocyte cells, were constructed (Figure 2). In goblet cells,

STAT2 and KLF5 were highly activated and upregulated in many

genes with mild/moderate COVID-19, such as ISGs (PARP14 and

IFI44L), whereas ELF3, SBP1, NR2F6, and SPDEF were

preferentially activated in severe COVID-19 to regulate the

expression of their targets (Figure 2A). We found that related TFs

were expressed, and regulons showed high AUC scores in the

corresponding cell types (Figure 2B; Supplementary Figure 4).

Furthermore, their target genes, including cytokines, interferon-

stimulated genes (ISGs), and S100/Calbindin genes, were

significantly upregulated in severe COVID-19 patients

(Figure 2C). For squamous cells, there were no activated regulons

in SPDEF and ELF3 in mild/moderate COVID-19, but they were

activated in severe COVID-19 (Figure 2A). In summary, SPDEF

and ELF3 were shared between goblet and squamous cells in severe

COVID-19, and S100A9 was co-upregulated. The regulators of

S100A8 were not identified, although they were significantly

upregulated in the two cell types. However, MAFF and GRHL1

downregulated S100A8 and S100A9, respectively, in healthy

squamous cells (Supplementary Figure 5). In addition, ELF3

upregulated the expression of S100A11 in goblet cells (Figure 2).

Similarly, for CD14 and CD16 monocyte cells in severe COVID-19,

CEBPD and FOS were particularly activated in the two cell types,

and CEBPD upregulated S100A8 and S100A9 (Figure 2). We also

identified the substantial expression of SELL (an ISG) in most CD14

monocyte cells in severe COVID-19. BACH1 was uniquely

regulated in CD16 monocytes. Unexpectedly, HLA-DRA, a major

histocompatibility complex II (MHC-II) molecule, was

considerably downregulated in CD14 monocyte cells, but

upregulated in CD16 monocyte cells. MHC I molecules are

considered to contribute to the SARS-CoV infection response

(42). A recent study demonstrated that epithelial cells with SARS-

CoV-2 RNA+ express only MHC-I and poorly express MHC-II

family genes (21). However, a previous study discovered that the

MHC class II transactivators, CIITA and CD74, can defend against

many viruses, such as SARS-like coronaviruses; therefore,

upregulation of MHC-II family genes may block the entry of

viruses (43).

We also constructed GRNs in other respiratory epithelial and

peripheral immune cells, such as ciliated, B, T, and NK cells

(Supplementary Figures 5, 6). Notably, although certain TFs were
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shared among cell types and conditions, their target genes and

regulations differed considerably. For example, RFX2 and RFX3

were activated in ciliated cells under all three conditions, but the

majority of targets were downregulated in mild/moderate COVID-

19 patients compared to healthy cells (Supplementary Figure 5).

Furthermore, RFX3 upregulated most of its target genes in patients

with severe COVID-19. For the NK cells, many ISGs were

upregulated by STAT1 in severe COVID-19, such as EIF2AK2,

PARP14, ISG15, PSMB9, MX1, SP110, DDX60, SAMD9L, ADAR,

IFI44L, IFIT3, EPSTI1, SAMD9 (Supplementary Figure 6). In

patients with severe disease, we also found that TCF4 was

activated in B cells, whereas RUNX3, IKZF1, and EOMES were

activated in CD8 cells (Supplementary Figure 6).

By analyzing different cell types from nasal or peripheral blood

during progression to severe COVID-19, our findings demonstrated

the existence of diverse GRNs. Intriguingly, we found that S100A8 and

S100A9 were considerably upregulated by different TFs in a wide range
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of respiratory epithelial and peripheral immune cells in patients with

severe COVID-19 (Supplementary Figure 4), which suggests that their

upregulation tends to be independent of certain cell types and virus-

infection sites but that different regulators can be used among cell types.

Specifically, the systemic upregulation of S100A8 and S100A9 mainly

occurred in goblet, squamous, B, CD14/CD16 monocytes,

granulocytes, PB, and DC. However, their regulators can differ in

terms of cell type at different infection sites. S100A8 and S100A9 have

been reported to be markers of severe COVID-19 (18) and contribute

to the recruitment of immune cells and cytokine storms in

megakaryocytes and monocytes (21, 33, 44).
3.4 Robust DEGs were identified in T cells

To identify robustly expressed genes during the immune

response against SARS-CoV-2 infection, we observed the overlap
A B

C

FIGURE 2

Gene regulatory networks of specific cell types. (A) The gene regulatory networks (GRNs) of specific cell types from COVID-19 patients were
constructed using Cytoscape software. In the network, the red, yellow, and light blue colors represent transcription factors, upregulated, and
downregulated genes, respectively. (B) UMAP plot visualization of TF expression (left) and AUC score (right) of each regulon for nasopharyngeal
swabs and PBMCs data. (C) The dot plots represent target gene expressions of detected TFs in (B). The target genes include specific cytokines,
interferon-stimulated genes (ISGs), and inflammatory genes (S100A8, S100A9).
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of DEGs in T cells from nasal and PBMCs scRNA-seq data.

Compared to one type of T cell in the nasal data, three types of T

cells were annotated in the PBMCs data: CD4, CD8, and gd T cells.

We extracted corresponding DEGs when comparing healthy

individuals and severe patients to identify overlapping DEGs by

comparing one T cell type from nasal data to three T cell types from

PBMCs data, and then visualized their expressions in the two

datasets (Figure 3). The majority of overlapping genes were

robustly downregulated in patients with severe disease, while

prothymosin alpha (PTMA) was the only one gene consistently

upregulated. Interestingly, PTMA, the proprotein of thymosin

alpha-1 (Ta1), has been reported to show increased expression in

CD8 T memory cells in severe disease and slightly reduced

activation of T cells in vitro (45), and the authors indicated that

lymphopenia in COVID-19 patients could be relieved by Ta1
treatment. Among the overlapping downregulated genes, genetic

defects in TCM6/8 may lead to lower intrinsic immunity to human

b-papillomaviruses (b-HPVs) in epidermodysplasia verruciformis

patients (46). SUN2 (Sad1 and UNC84 domain containing 2) is

associated with mitosis, maintains a repressive chromatin state, and

inhibits HIV-1 infection via association with Lamin A/C (47, 48).

Despite previous studies showing quercetin and resveratrol,

inhibitors of thioredoxin-interacting protein (TXNIP), as

potential therapies for COVID-19 (49, 50), our observation of

robust TXNIP downregulation in severe patients suggested that

these inhibitors may exhibit reduced performance in these

treatments to a certain degree.
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3.5 Alterations in enriched pathways
and cell-cell communications between
mild/moderate and severe COVID-19
were identified

As nasal epithelial cells mute the antiviral response in severe

COVID-19 compared to mild/moderate patients, and this early

failure may underlie and predict severe COVID-19 (21), we

analyzed and compared these cells between the two patients

groups. There was a greater upregulation in squamous and goblet

cells in patients with severe disease than in those with mild/

moderate disease (Figure 4A; Supplementary Table 9).

Upregulated genes in squamous cells were associated with

pathways such as viral entry into the host cell, epidermis

development, protein localization, and apoptotic signaling, while

upregulated genes in goblet cells were related to protein targeting,

response to hypoxia, and viral gene expression (Figure 4A).

Although only a few downregulated genes were identified in

squamous (19 genes) and goblet (50 genes) cells, they were still

enriched in certain pathways. For example, CD74, TNFAIP3, and

S100A4 in squamous cells were associated with I-kappaB kinase/

NF-kappaB signaling and interleukin-6 production, while MX1,

IFIT1, SP100, and XAF1 in goblet cells were associated with the type

I interferon signaling pathway (Supplementary Figure 7).

To investigate the ligand-receptor (L–R) interactions among

epithelial cells, we performed a cell-cell communication (CCC)

analysis using CellChat (38). Compared to patients with mild/
A

B

FIGURE 3

Overlap of DEGs in nasal and PBMCs T cells when comparing healthy and severe COVID-19 cases. Violin plots represent expressions of overlapping
DEGs in (A) nasopharyngeal swabs and (B) PBMCs data. The asterisk following each gene indicates a significant difference between healthy and
severe COVID-19 cases. Significance: *P < 0.05, **P < 0.01, ***P < 0.001.
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moderate COVID-19, our CCC analysis suggested that epidermal

growth factor receptor (EGFR) signaling from ciliated cells to other

cell types was lost in patients with severe COVID-19 (Figures 4B,

C). EGFR (also known as ErbB1) belongs to a family of receptor

tyrosine kinases (ErbB), and ErbB contains four receptors: ErbB1,

ErbB2, ErbB3, and ErbB4 (51). In this study, three of the receptors

(not ErbB3) were identified in mild/moderate patients. The ligand
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of these receptors is betacellulin (BTC), and a previous study

indicated that it might be useful in preventing an excessive

fibrotic response to viral infections (such as SARS-CoV) by

inhibiting EGFR signaling (52). Similarly, we observed an absence

of EGFR signaling in healthy cells (Supplementary Figure 8A), and

we therefore consider that EGFR inhibitors could be used as a

potential treatment for mild/moderate COVID-19. In contrast, L–R
A

C

B

FIGURE 4

Comparisons between mild/moderate and severe COVID-19 from nasopharyngeal swabs. (A) Number of identified DEGs when comparing severe
and mild/moderate COVID-19. Yellow and light-blue colors represent upregulated and downregulated genes, respectively. The right panel indicate
the results of GO enrichment analysis using DEGs based on biological process. Cell-cell communication (CCC) in (B) mild/moderate and (C) severe
COVID-19. The left-hand networks of (B) and (C) represent cell interaction numbers among cell types. Cell types are represented by circles with
different colors. Circle size indicates the number of cells of a cell type, while the edge width corresponds to the numbers of ligand-receptor (L–R)
interactions. The Bubble plots [right-hand side of (B) and (C)] show all the significant L–R pairs associated with signaling pathways from a given cell
type to another one. The dark blue to red colors relate to the communication probability (from minimum to maximum).
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interactions associated with the midkine (MDK) signaling pathway

were observed in ciliated, secretory, and other cells in healthy, mild/

moderate, and severe COVID-19 patients (Figures 4B, C;

Supplementary Figure 8A). Moreover, we visualized the enriched

signaling pathways among epithelial cells in networks separately

and compared them between mild/moderate and severe COVID-19

(Supplementary Figure 9). Some of the representative signaling

pathways were found to be shared between the two conditions, but

some were not. The common enriched pathways included MDK,

VISFATIN, GRN, and GALECTIN signaling pathways. ANNEXIN

and PERIOSTIN signaling pathways were specific to severe

COVID-19. In contrast, EGF, GDF, and SEMA3 signaling

pathways were unique to mild/moderate COVID-19.
3.6 Whole blood bulk transcriptomic data
analysis showed genes correlated with the
sequential organ failure assessment score

To test whether our identified genes could contribute to

immune responses during the progression of COVID-19 severity,

we downloaded public whole blood bulk transcriptomic data of

COVID-19 patients for validation (39) and analyzed alterations in

gene expression levels in terms of the sequential organ failure

assessment (SOFA) score. The transcripts per million (TPM)

method was used to normalize the transcript counts. We then

calculated and ranked the Pearson correlations between every single

gene TPM value and the SOFA scores in COVID-19 patients

(Supplementary Table 10). We found that 26 genes were highly

positively correlated with SOFA scores (Pearson’s r > 0.50)

(Figure 5A), indicating that gene expression levels increased with

the severity of clinical organ failure in critically ill patients.

Intriguingly, among the top 26 correlated genes, two were from

the S100 gene family: S100A8 and S100A12. According to our

scRNA-seq data findings in this study, these two genes were

differentially expressed in patients with severe COVID-19

(Figure 2C). We further calculated the average TPM value for

each SOFA score, including several S100 and other genes, as

shown in Figure 5A (Figure 5B). The S100A8/A12 expression

increased with an increasing SOFA severity score. The expression

of S100A9 showed a certain correlation with the SOFA score (r =

0.22), but S100A11 was negatively correlated. Notably, we found

that matrix metalloproteinase family members (MMPs), MMP8

and MMP27, were highly correlated. It has been reported that

MMPs contribute to the COVID-19 severity (53–55). Taken

together, our findings indicate the critical roles of S100 family

members and other genes (e.g., MMPs) in the progression of

COVID-19.
4 Discussion

SARS-CoV-2 infection causes immune response alterations

during the progression of COVID-19 severity, such as the

enhanced expression of pro-inflammatory cytokines (i.e., cytokine

storm) and considerably different expressions of genes associated
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with ISGs, MHC I, and II families (11–13, 21, 24, 43, 56). However,

the GRN changes in terms of a wide range of cell types and COVID-

19 severity (healthy, mild/moderate, and severe) require further

description. In this study, therefore, we conducted a SCENIC

analysis to capture similar and dissimilar regulons, and we then

finely constructed a GRN landscape for both healthy individuals

and COVID-19 patients across a wide range of cell types by

comparing scRNA-seq data related to the various infection sites

(respiratory epithelial and peripheral immune cells). Further

analyses of the target genes of regulators and cell-cell

communication revealed detailed intracellular and extracellular

immune responses. Lastly, the comparison of findings using

different data sources and the validation of certain key findings

using additional scRNA-seq, bulk RNA-seq, and proteome data

provided greater robustness to our results.

We identified cell type- and condition-specific activated

regulons (including TFs and their targets) in a wide range of cell

types, and we demonstrated that some cells, such as goblet,

squamous, and monocyte cells, display a strong response against

SARS-CoV-2 infection. For example, compared to activated STAT2

and KLF5 in mild/moderate goblet cells, SPDEF, ELF3, XBP1, and

NR2F6 were found activated in patients with severe COVID-19.

Similarly, SPDEF and ELF3 were found to be activated in squamous

cells, and CEBPD and FOS were shared between CD14 and CD14

monocytes in severe COVID-19. We then constructed and

compared GRNs . Mos t impor t an t l y , by compar ing

nasopharyngeal swab and PBMCs data, we discovered the

regulation of S100A8 and S100A9 expression, which could help

clarify maladaptive responses to SARS-CoV-2 infection in a large

range of cell types. Specifically, we found that SPDEF and ELF3 co-

upregulated S100A9 in goblet and squamous cells in severe patients,

whereas CEBPD upregulated S100A8 and S100A9 in monocyte

cells. In contrast, S100A8 and S100A9 were downregulated by

MAFF and GRHL1 in healthy squamous cells. We also observed

that during severe COVID-19, S100A8 and S100A9 were

considerably upregulated in multiple other cell types, such as B

cells, granulocytes, PB, and DC. The expression level of S100A8 was

further found to have a high positive correlation with the SOFA

score (Figure 5). A previous study reported the same regulation in

T, B, NK, and DC cells (33). However, compared to healthy

individuals, we did not observe upregulation of S100A8 and

S100A9 in CD4, CD8, and gd T cells in severe patients. In

addition, we identified regulators of many cytokines, ISGs, or

MHC II family genes in severe patients, such as gene regulations

of goblet (CLCL17, EIF2AK2, UBE2L6), monocyte (HLA-DRA,

SELL, TRIM25, UBE2L6), CD8 T (SAMD9), NK (EIF2AK2,

SAMD9, DDX60, PARP14, MX1, PARP9, ADAR, TXNIP, ISG15,

IFIT3, EPSTI1, SP110, SAMD9L, IFI44L, TAP1), granulocyte

(RSAD2, MX1, IFI44, EPSTI1, EIF2AK2, IFIT3, IFI44L, ISG15),

and DC cells (MX1, RSAD2, IFI44L, IFI44, ISG15, IFIT3) (Figure 2;

Supplementary Figures 5, 6). Notably, although ciliated cells play

critical roles in viral entry, we did not detect distinct regulators in

infected patients. Regulators RFX2 and RFX3 were shared between

healthy individuals and COVID-19 patients, but the two regulators

showed different target genes or target expression levels in the two

sample types (Supplementary Figure 5). Further CCC analysis
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demonstrated that compared to severe patients, EGFR signaling has

an important role when ciliated cells interact with other cells in

mild/moderate patients.

We also utilized PBMCs data to explore cell-cell interactions

among immune cells. The chemokine (C-C motif) signaling

pathway was found to be unique to severe patients compared to

healthy individuals (Supplementary Figures 8B, C). This pathway

mainly contributes to pathways from CD8 T and NK cells to CD14

monocytes via the CCL5 and CCR1 ligand-receptor pairs. A recent

study demonstrated that CCL5 contributes to the recruitment of

inflammatory cells (mainly T cells and macrophages), and

blockading CCR5 signaling using leronlimab (a monoclonal
Frontiers in Immunology 11
antibody) has been conducted to treat COVID-19-associated

cytokine storms (57).

Furthermore, to validate our findings, such as the identified TFs

and their differently expressed targets per cell type, we integrated the

scRNA-seq PBMCs with additional scRNA-seq data (GSE158055)

(Supplementary Figure 10). The integration was performed using

common cell types between the datasets, consisting of seven

peripheral immune cells (Supplementary Table 2). Then, the DEGs

were identified per cell type by comparing severe to healthy cells

(Supplementary Table 11). Consistent with our findings of GRNs

from existing scRNA-seq PBMCs (Figure 2; Supplementary Figures 4,

6), we discovered that the associated TFs were also expressed in the
A

B

FIGURE 5

Relationships between gene expressions and SOFA scores in COVID-19 samples. (A) Pearson correlations between gene expression and sequential
organ failure assessment (SOFA) score. Top 26 genes with over 0.5 correlations are shown. Transcripts per million (TPM) were used for RNA-seq
normalization. (B) Average TPM values of selected genes for each SOFA score. The selected genes include some S100 family members and some
genes from the top 26 gene list in (A). For each bar plot, the Pearson’s “r” between the TPM values and SOFA scores of all related samples is shown.
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corresponding cell types and upregulated their target genes such as

S100A8/A9 in severe COVID-19 (Supplementary Figures 10B, C).

Moreover, to make the findings more robust, we selected all identified

TFs and their differentially expressed targets across cell types from the

existing scRNA-seq PBMCs and then compared them to that of

integrated data. We found that many targets per cell type were

upregulated or downregulated as well in severe COVID-19 from

integrated data (Supplementary Table 12). Apart from this, two

proteome datasets were further used for validation analysis. On one

hand, the DEGs of integrated data, comparing severe to healthy

donors, were identified (Supplementary Table 13). Among these

DEGs, some cytokines, ISGs, and S100A8/A9 were found to be

upregulated in severe cases. Next, we validated similar

upregulations in the lung and plasma proteomes, which the

associated proteins exhibited higher levels in either the autopsy

COVID-19 lung proteome or the severe/critical COVID-19 plasma

proteome (Supplementary Figure 11) compared to those in healthy

donors. On the other hand, some of the top 26 genes identified from

bulk RNA-seq data (Figure 5) were also validated for their associated

protein considerable abundances in the two proteomes, including the

abundant S100A12 in either autopsy or severe/critical COVID-19

cases (Supplementary Figure 12).

In summary, this study integrated healthy individuals and COVID-

19 patient data from independent scRNA-seq data sources

(nasopharyngeal swabs, PBMCs, and GSE158055 scRNA-seq data),

compared the findings of each dataset, and validated certain key

findings using bulk RNA-seq and proteome data. By separately

analyzing the data from each study, we revealed the GRN landscape

and identified similar and dissimilar regulons and pathways under

different conditions (i.e., healthy individuals and COVID-19 patients).

Regulators of certain key genes (e.g., S100A8/A9) were found to differ

among cell types and disease severity. However, when comparing and

combining the independent studies, we found that virus-infected

individuals had certain common and/or unique features at different

infection sites. For example, (i) certain activated regulators (such as

XBP1, FOS, STAT1, and STAT2) were shared in both respiratory

epithelial and peripheral blood; (ii) certain genes (e.g., PTMA) were

differentially expressed in T cells from independent studies; (iii)

although S100A8/A9 were found to be upregulated in both

respiratory epithelial and peripheral blood, their relative regulators

can differ (e.g., SPDEF and ELF3 were found in goblet and squamous

cells and CEBPD was seen in monocyte cells, which showed that

regulators of a gene were specific to the infection site, cell type, and

condition). Collectively, the results using our approach offer clues to

comprehensively understanding the diverse disease mechanisms of

SARS-CoV-2 infection. These findings can be used as a rich resource

for predicting, preventing, and treating COVID-19 across a wide range

of cell types, which may help control severe symptoms.

This study has several limitations. The numbers of epithelial cell

types were not equal: some were obtained in large quantities and

others in small quantities. It is acknowledged that a small number of

cells may influence transcriptional landscapes. In the case of

PBMCs data, we lacked those associated with mild and moderate

COVID-19. Technical issues, such as those encountered with

scRNA-seq techniques, have led to certain limitations that may be

challenging to overcome. Additionally, the distribution of donor
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demographics (e.g., age and gender) might potentially influence the

results to a degree due to the small group size, such as only 15

individuals in the control group of the nasal scRNA-seq dataset.

Nonetheless, by integrating additional information and data from

independent sources where available, some of these limitations may

be resolved. Therefore, further studies using large-scale data and

finer-grained descriptions of COVID-19 severity categories would

help to fully understand GRNs, their gradual shift, and dynamics in

terms of COVID-19 severity progression. Future characterization of

the specific role of some genes (e.g., S100 family members) in the

immune response to SARS-CoV-2 infection, particularly in relation

to disease severity, is needed in vitro and in vivo experiments.
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Gómez-Garcı ́a IA, Rodrı ́guez-Reyna TS, et al. Possible role of matrix
metalloproteinases and TGF-b in COVID-19 severity and sequelae. J Interf Cytokine
Res (2022) 42:352–368. doi: 10.1089/jir.2021.0222

54. Fernandez-Patron C, Hardy E. Matrix metalloproteinases in health and disease
in the times of COVID-19. Biomolecules (2022) 12:692. doi: 10.3390/biom12050692

55. Carolina D, Couto AES, Campos LCB, Vasconcelos TF, Michelon-Barbosa J,
Corsi CAC, et al. MMP-2 and MMP-9 levels in plasma are altered and associated with
mortality in COVID-19 patients. BioMed Pharmacother (2021) 142:112067. doi:
10.1016/j.biopha.2021.112067

56. Zhang J-Y, Wang X-M, Xing X, Xu Z, Zhang C, Song J-W, et al. Single-cell
landscape of immunological responses in patients with COVID-19. Nat Immunol
(2020) 21:1107–18. doi: 10.1038/s41590-020-0762-x

57. Agresti N, Lalezari JP, Amodeo PP, Mody K, Mosher SF, Seethamraju H, et al.
Disruption of CCR5 signaling to treat COVID-19-associated cytokine storm: Case
series of four critically ill patients treated with leronlimab. J Transl Autoimmun (2021)
4:100083. doi: 10.1016/j.jtauto.2021.100083
frontiersin.org

https://doi.org/10.1007/s10555-020-09889-4
https://doi.org/10.1073/pnas.2005615117
https://doi.org/10.1038/s41591-020-0868-6
https://doi.org/10.15252/embj.20105114
https://doi.org/10.1038/s41591-020-0944-y
https://doi.org/10.1084/jem.20210582
https://doi.org/10.1016/j.cell.2021.01.053
https://doi.org/10.1016/j.cell.2021.04.048
https://doi.org/10.1038/nmeth.4463
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1016/j.xinn.2021.100141
https://doi.org/10.1016/j.xinn.2021.100141
https://doi.org/10.1038/s41467-021-21246-9
https://doi.org/10.1016/j.cels.2020.10.003
https://doi.org/10.1016/j.cell.2021.01.004
https://doi.org/10.1016/j.cell.2021.01.004
https://doi.org/10.1038/s43856-023-00268-y
https://doi.org/10.1038/s43856-023-00268-y
https://doi.org/10.3389/fpubh.2020.00383
https://doi.org/10.3389/fpubh.2020.00383
https://doi.org/10.1126/science.abb3753
https://doi.org/10.1182/blood-2016-09-738005
https://doi.org/10.1038/s41422-020-0391-9
https://doi.org/10.1038/s41422-020-0391-9
https://doi.org/10.1084/jem.20170308
https://doi.org/10.1073/pnas.0609198104
https://doi.org/10.1073/pnas.0609198104
https://doi.org/10.1128/mBio.02408-17
https://doi.org/10.1186/s12950-021-00268-6
https://doi.org/10.1186/s12950-021-00268-6
https://doi.org/10.34172/ipp.2022.09
https://doi.org/10.1016/j.biocel.2014.03.014
https://doi.org/10.1016/j.biocel.2014.03.014
https://doi.org/10.1016/j.antiviral.2017.03.022
https://doi.org/10.1089/jir.2021.0222
https://doi.org/10.3390/biom12050692
https://doi.org/10.1016/j.biopha.2021.112067
https://doi.org/10.1038/s41590-020-0762-x
https://doi.org/10.1016/j.jtauto.2021.100083
https://doi.org/10.3389/fimmu.2023.1194614
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Single-cell RNA-seq public data reveal the gene regulatory network landscape of respiratory epithelial and peripheral immune cells in COVID-19 patients
	1 Introduction
	2 Materials and methods
	2.1 Data collection
	2.2 Single-cell RNA sequencing data processing
	2.3 Gene regulatory network analysis and visualization
	2.4 Function and pathway enrichment analysis
	2.5 Cell-cell communication analysis
	2.6 Whole blood bulk transcriptomic and proteomic data analysis

	3 Results
	3.1 Single-cell characterization of nasopharyngeal swabs and PBMCs
	3.2 Similarity and dissimilarity of regulons and pathways were identified in respiratory epithelial and peripheral immune cell types associated with COVID-19
	3.3 The construction of a gene regulatory network from nasopharyngeal swabs and PBMCs evidences immune responses to SARS-CoV-2 infection in different cell types
	3.4 Robust DEGs were identified in T cells
	3.5 Alterations in enriched pathways and cell-cell communications between mild/moderate and severe COVID-19 were identified
	3.6 Whole blood bulk transcriptomic data analysis showed genes correlated with the sequential organ failure assessment score

	4 Discussion
	Data availability statement
	Author contributions
	Funding
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


