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Acute liver injury (ALI) in children, which commonly leads to acute liver failure

(ALF) with the need for liver transplantation, is a devastating life-threatening

condition. As the orchestrated regulation of immune hemostasis in the liver is

essential for resolving excess inflammation and promoting liver repair in a timely

manner, in this study we focused on the immune inflammation and regulation

with the functional involvement of both innate and adaptive immune cells in

acute liver injury progression. In the context of the severe acute respiratory

syndrome coronavirus-2 (SARS-CoV-2) pandemic, it was also important to

incorporate insights from the immunological perspective for the hepatic

involvement with SARS-CoV-2 infection, as well as the acute severe hepatitis

of unknown origin in children since it was first reported in March 2022.

Furthermore, molecular crosstalk between immune cells concerning the roles

of damage-associated molecular patterns (DAMPs) in triggering immune

responses through different signaling pathways plays an essential role in the

process of liver injury. In addition, we also focused on DAMPs such as high

mobility group box 1 (HMGB1) and cold-inducible RNA-binding protein (CIRP), as

well as on macrophage mitochondrial DNA-cyclic GMP-AMP synthase (cGAS)-

stimulator of interferon genes (STING) signaling pathway in liver injury. Our

review also highlighted novel therapeutic approaches targeting molecular and

cellular crosstalk and cell-based therapy, providing a future outlook for the

treatment of acute liver injury.

KEYWORDS

acute liver injury, inflammation, damage associated molecular patterns, macrophages,
cell therapy
Abbreviations: BNIP3, BCL2/adenovirus E1B interacting protein 3; cGAS, cyclic GMP-AMP synthase;

eCIRP, extracellular cold-inducible RNA-binding protein; ER, endoplasmic reticulum; GSDMD, Gasdermin

D; IRE1a, inositol-requiring enzyme-1a; MD2, myeloid differentiation factor 2; mtDNA, mitochondrial DNA;

STING, stimulator of interferon genes; TLR4, toll-like receptor 4; XBP1, X-box binding protein 1.
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1 Introduction

Acute liver injury (ALI) is characterized by a rapid decline of

hepatic function with serum aminotransferases rising from mild to

substantial levels, jaundice, and impaired coagulation function. It

manifests in patients with baseline liver diseases and identifiable

causes of liver damage, or without preexisting liver disease. Severe

acute liver injury for fewer than 26 weeks duration with

encephalopathy and an international normalized ratio (INR)

higher than 1.5 in a patient without cirrhosis or preexisting liver

disease is grouped into acute liver failure, which is a devastating life-

threatening condition with a mortality of 5-10% (1). Usually, mild

and moderate liver injury results in rapid and efficient regeneration

through hepatocyte proliferation, whereas severe acute liver injury

leads to failure of regeneration and involves a high risk of

progression to acute liver failure (2). Pediatric acute liver failure

(PALF) differs from adult acute liver failure due to the type and

diversity of causes, and the subset of children with indeterminate

etiology comprises up to 50% of the PALF population. Compared

with groups of definite etiology, children with ALF of indeterminate

etiology were more likely to require liver transplantation.

Upon appropriate immune activation by pathogens or tissue

damage in the liver, tightly regulated inflammation is a homeostatic

inflammatory process that resolves inflammation and promotes

tissue regeneration, thus avoiding pathological consequences.

Conversely, excessive and dysregulated hepatic immune and

overactive inflammation in the liver lead to dyshomeostasis and

pathological conditions. As the largest organ in the human body,

the liver contains not only liver sinusoidal endothelial cells (LSECs),

hepatocytes, hepatic stellate cells (HSCs), but also diverse

populations of resident immune cells, such as Kupffer cells (KCs),

dendritic cells (DCs), T cells, natural killer (NK) cells, natural killer

T (NKT) cells, etc., which play central roles in hepatic immune

balance. Therefore, the orchestrated regulation of immune

hemostasis in the liver is essential for resolving excess

inflammation and promoting liver repair and regeneration in a

timely manner (3–5).

This review, therefore, focused on the immune activation and

regulation with molecular and cellular crosstalk in the liver during

acute liver injury/failure. Based on that, therapeutic strategies and

targets for acute liver injury/failure have been summarized, which

may provide clues to new therapeutic investigations on acute liver

injury, especially in children (6).

2 Pediatric acute liver injury/failure in
the SARS-CoV-2 pandemic era

Causes of acute liver injury/failure are diverse, including mainly

para-acetaminophen (APAP) toxicity, cholestatic liver injury (CLI),

alcoholic liver disease (ALD), non-alcoholic steatohepatitis

(NASH), hepatic ischemia-reperfusion injury (I/R), virus-related

liver injury, and hepatitis of unknown reasons in children (7, 8).

Cause-based treatment of pediatric acute liver failure has been

comprehensively reviewed by Deep et al. (1). However, virus-

related liver injury became another important issue, especially in
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the SARS-CoV-2 pandemic era (9–11). Becchetti et al. reported

alterations in liver enzymes among liver-transplanted patients with

SARS-CoV-2 infection and increased in-hospital fatality in a

European cohort of liver transplant recipients (12). New evidence

for liver injury from SARS-CoV-2 infection has also been provided

(13). As the primary receptor for SARS-CoV-2 cellular entry, the

angiotensin-converting enzyme 2 (ACE2) receptors, which are

expressed not only in the lung parenchyma but also in the

gastrointestinal tract and liver epithelia, function in directing the

contribution of the virus to the hepatic injury (11). Over-activated

immune responses also contribute to liver injury in patients with

SARS-CoV-2 infection, leading to cytokine storm syndrome, which

may cause acute hepatitis and acute liver failure, even multiple

organ failure (14–16).

Acute severe hepatitis of unknown origin in children is another

new important issue that has gained international concern since it

was first reported in Scotland on 31 March 2022. From 1 October

2021 to 8 July 2022, a total of 1,010 probable cases fulfilling the

WHO case definition have been reported from 35 countries, of

which 46 (5%) have required liver transplantation (LT), and 22

(2%) died. The etiology of this severe acute hepatitis in children is

still not clear and under investigation. Based on the WHO working

case definition, laboratory testing has excluded hepatitis A-E viruses

that are known to cause acute viral hepatitis. Among the 1,010

probable cases, many cases had PCR assays for pathogen detection

such as human adenovirus (HAdV) and SARS-CoV-2. According

to the available data, HAdV was the most frequently detected

pathogen with a cumulative of 209 PCR-positive cases (21%), and

SARS-CoV-2 was detected in 78 cases (8%). In the European region,

SARS-CoV-2 was detected by PCR in 16% of cases (54/335) and

HAdV in 52% of cases (193/368). In the UK, SARS-CoV-2 was

detected in 17% of cases (34/196) while HAdV was detected in 66%

of cases (142/216). In the United States of America, SARS-CoV-2

was detected in 8% of cases (15/197). Reports from Japan indicated

that SARS-CoV-2 was detected in 8% of cases (5/59) while HAdV

was detected in 9% of cases (5/58) (17). A UK study reported that

during the 2022 outbreak, over 50% of children with acute hepatitis

without liver failure, and all indeterminate pediatric acute liver

failure (ID-PALF) cases (10/10) had a presentation of

adenoviremia, whereas the proportion of adenovirus-associated

ID-PALF to all ID-PALF cases was lower from 2017 to 2021 (3/6,

1/4, 2/3, 0/3, and 0/5, respectively). The presentation of

adenoviremia was probably linked to the higher rates of

adenovirus infection in children during the outbreak, revealing

that the 2022 outbreak was not a newly emerging disease (18). A

retrospective review in the US showed an almost twofold increase of

non-A-E severe acute hepatitis in children during 2021-2022

compared with the period of 2018-2021, which was associated

with higher positive rates for viruses, with adenovirus (26.1%)

and SARS-CoV2 (10.3%) being the most frequently detected

viruses during the outbreak (19).

The results so far revealed that acute severe hepatitis in children

may be related to HAdV or SARS-CoV-2 infection. It seems that

HAdV infection was a facilitatory factor rather than a primary

driver in the causation of the 2022 outbreak. A proposed

mechanism is that superantigen-mediated aberrant immune
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response to HAdV in the gut following SARS-CoV-2 infection

results in excessive IFN-g release and thus in IFN- g-mediated

hepatocyte apoptosis (20, 21). SARS-CoV-2 virus in the

gastrointestinal tract may release viral proteins across the

intestinal epithelium and thereby accelerate the immune

activation afterward. The superantigen hypothesis is so far the

most popular theory to explain multisystem inflammatory

syndrome in children (20, 21). Within the SARS-CoV-2 spike

protein, there is a superantigen motif that resembles

staphylococcal enterotoxin B. This superantigen can trigger

strong and broad non-specific T cell activation, which was

supported by the expansion of TRBV11-2 T cells in multisystem

inflammatory syndrome in children (22–24). In addition to

autoimmune hepatitis-like liver histology with CD8+ lymphocyte-

predominant infiltration, Th1-type immune skewing, with

remarkable peripheral CD8+ T-cell activation, was found in

children with severe acute hepatitis of unknown origin (25).
3 Immune activation in acute liver
injury/failure

Regulation of immune homeostasis within the liver has

attracted much attention, especially under several pathological

conditions. From the innate immunological aspect, the monocyte-

macrophage system mediates liver inflammation and plays an

essential role in acute liver injury and liver failure (26–28).

Macrophages in the liver are mainly KCs, most of which are

intravascular to engulf toxic solutes in blood, forming a powerful

phagocyte network and providing efficient immune surveillance in

the liver. Some KCs are also found in perivascular space interacting

with HSCs and hepatocytes. On one hand, KCs combat foreign

invaders such as bacteria and viruses; on the other hand, these cells

contribute to the immune-compromised microenvironment in the

liver to harness antigenic stimuli such as metabolic products by

suppressing MHC expression in HSCs and hepatocytes (29, 30).

Upon activation, KCs and monocyte-derived macrophages

(MoMF) release pro-inflammatory cytokines to exacerbate

inflammation and cause tissue damage. Neutrophils and

macrophages begin to phagocytose necrotic debris and apoptotic

bodies. Activated Kupffer cells, dendritic cells, stellate cells, and T

cells facilitate the recruitment of neutrophils and monocytes from

the systemic circulation via the secretion of chemoattractants such

as CCL2 and IL-17 (31–33) (Table 1). Additionally, there are also

NK cells, NKT cells, and gð T cells, which all contribute to the

immune surveillance in the liver (55). The activated NK and NKT

cells play roles in liver injury by impairing liver regeneration via

TNF-a and IFN-g release (53). gd T-cells are also involved in the

activation of neutrophils in liver fibrosis (54) (Figure 1A).

Following injury, proper resolution of the inflammation is the

prerequisite for tissue repair and regeneration. Monocyte-

macrophage system and cells, such as regulatory T cells (Treg)

and HSCs, essentially mediate the resolution of inflammation.

Induced by released anti-inflammatory mediators, such as IL-10
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and TGF-b, from the inflamed liver (56), more pro-inflammatory

M1-type macrophages could be polarized into restorative M2-type

macrophages (34), which release anti-inflammatory cytokines and

promote angiogenesis and neutrophil apoptosis, therefore aiding

homeostasis restoration and tissue recovery. Depletion of DCs

resulted in aggravation of liver injury, with a significantly higher

expression of IL-6, CCL2, and TNF-a in serum, suggesting a

protective role of DCs in liver injury (35). The mediators

(cytokines/chemokines/etc.) from various immune cells in liver

inflammation and repair processes are summarized in Table 1

(36, 37). Cells with immune suppressive function such as Treg,

via facilitating osteoblast differentiation (38), and myeloid-derived

suppressor cells (MDSCs), by promoting angiogenesis (46), are

other important players within liver regeneration. Hepatocytes

proliferate to replenish the lost parenchyma (Figure 1B). Self-

antigen-driven invariant NKT (iNKT) cells promote hepatocyte

proliferation and macrophage transition to pro-restorative

phenotype via IL-4, thereby facilitating liver regeneration (40).

Besides the aforementioned, many studies revealed evidence

that T cells played a role as central regulators in dysregulated and

hyper-inflammatory immune activation in the liver, especially in

PALF. As PALF is a complex and rapidly evolving clinical

syndrome and almost 50% of PALF cases received the diagnosis

of indeterminate without specific etiology, there are emerging

insights into immune-mediated pathophysiology in PALF,

revealing the role of T cells in inflammatory dysregulation in

PALF. A model based on the percent of perforin and granzyme

expression on CD8+ lymphocytes, absolute count of CD8+ T cells,

and sIL2R predicted a high activation of circulating lymphocytes

and linked to indeterminate etiology of PALF (41, 42). The

characteristic phenotype of indeterminate PALF intrahepatic

immune cells was perforin+CD103+CD8+ T-cell, which performs

effector functions and expresses surface markers of tissue-resident

memory T cells (43, 44). Other studies also reported that

indeterminate PALF cases were characterized by predominant

CD8+ T-cell infiltrates in the liver tissue (45, 46). Treg, following

injections of CCl4, were remarkably expanded, and depletion of

Treg enhanced the liver inflammation, demonstrating that Treg

controls liver inflammation via regulating the aberrant activation

and functions of immune effector cells (47). A mechanistic study

expanded the role of Treg cells in inflammation resolution by

secreting IL-13, which stimulates IL-10 production in

macrophages, thus promoting macrophage engulfment of

apoptotic cells via the Vav1-Rac1 signaling pathway (48). A

transcriptional analysis identified an immune-driven PALF group,

in which over 90% of patients were indeterminate PALF cases with

moderate to dense CD8 staining, expressing increased levels of gene

signatures for adaptive immune cells including Th1 cells, regulatory

T cells, T effector memory cells, cytotoxic T cells, and innate

immune cells including macrophages and activated dendritic cells.

In addition, gene signatures for several immune cells, for instance, T

central memory cells, Th2 cells, Th17 cells, and B cells, were not

found significantly expressed in the indeterminate PALF group (49,

50). Although the exact mechanisms have not been fully clarified
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yet, the determined high levels of a gene signature of T cells, such as

CD8+ T cells, Th1 cells, and T effector memory cells, indicate that a

complex immune network regulates immune‐mediated liver injury

in indeterminate PALF.

Extracellular vesicles (EV) were also reported to contribute to

the M2 macrophage polarization (51, 52, 57). In a CCL4-induced

ALI mouse model, the effects of EVs released from hepatocytes and

other non-parenchymal cells on hepatic macrophages were

explored, indicating that EVs play a pivotal role in liver

regeneration by depolarizing MoMF and inducing Kuffer cells to

M2-type (58, 59). Although M2-like macrophage response

promotes injured liver repair and regeneration, the immune

suppressive mediators released into the circulation can be harmful

and lead to immune-compromised status, therefore increasing the

susceptibility to infections, even immune paresis in sepsis in PALF

(60–62). Therefore, immune evaluation for children with

indeterminate, progressive hepatitis or indeterminate ALF should

be carried out, including assessments for T cell activation,

macrophage activation, NK cell function, and other serum

biochemical markers (63). Such precise immune monitoring and

evaluation will help to understand the phases of liver injury and the

complicated coordination between immune cells and liver cells

during the regeneration phase.
Frontiers in Immunology 04
4 Molecular crosstalk between
immune cells in the liver during acute
liver injury/failure

Behind the cellular communication of immune cells in the liver,

molecular crosstalk between them is essential for maintaining the

“gatekeeper” function of hepatic immunity. During liver injury,

release and activation of DAMPs result in a wide range of immune

responses, including KCs activation, neutrophil recruitment to the

site of injury, and induction of proinflammatory cytokines such as

TNF-a that activate the NF-kB pathway in the hepatocyte (64).

High mobility group box 1 (HMGB1) is one of the most

characterized DAMPs. HMGB1/TLR-4/NF-ĸB signaling directs

the triggering of inflammation, innate and adaptive immune

responses, and tissue healing after damage. Experimental evidence

indicates that HMGB1 release from necrotic hepatocytes seems to

be critical for neutrophils and monocyte recruitment, injury

exacerbation, and lethality in paracetamol-mediated liver injury

(65). Cold shock protein such as cold-inducible RNA-binding

protein (CIRP) is a new DAMP molecule participating in acute

live injury/failure and sepsis. Extracellular CIRP mainly stimulates

monocytes/macrophages through TLR4/myeloid differentiation
frontiersin.or
TABLE 1 The mediators (cytokines/chemokines/others) from various immune cells in liver inflammation during the injury/repair process.

Cell type Released mediators Main functions

Macrophage M1-like:
IL-6, TNF-a, IL-1b, IL-12,
IL-18
CCL2, CXCL9, CXCL10,
CXCL11, CCL15, CCL20
M2-like: TGF-b, IL-10

➢ release various proinflammatory cytokines thereby enhancing inflammation and activating other immune cells, and
recruit other immune cells, propagating a Th1 type immune response.
➢ perform anti-inflammatory functions for resolution of inflammation and subsequent tissue repair by clearing cells debris
(34–52)

Liver-
infiltrating
monocyte

TNF-a, IL-6, IL-1b, IFN-
g, IL-8
CCL1, CCL2, CCL3,
CCL5
IL-10, TGF-b, G-CSF,
GM-CSF

➢ recruited via receptor CCR2
➢ secrete proinflammatory cytokines to aggravate inflammation, augment the recruitment of inflammatory cells
➢ involved in the resolution of inflammation and wound healing (31–33)

KCs IL-6, TNF-a, IL-1b, IL-18
CCL2, CCL5, CXCL1,
CXCL2, CXCL8, CXCL16
IL-10, TGF-b

Amongst the main cytokine producers to enhance the inflammation and tissue damage, recruit monocytes and neutrophils,
advance hepatocyte necrosis, and mediate resolution and induce proliferation of surviving hepatocytes (29, 30)

Hepatocyte TNF-a, DAMPs, free
radicals
CCL2, CCL3, CCL5,
CXCL9, CXCL10
TGF-b

➢ damaged hepatocytes release stress signals such as TNF-a and free radicals
➢ activate resting KCs and HSCs
➢ secrete chemotactic mediators for formation of an inflammatory infiltration (20, 21, 29, 30)

NK/NKT
cells

IFN-g, TNF-a promote liver injury and impair the liver regeneration (53)

gd T cells IL-17, IFN-g involved in the activation of neutrophils to enhance inflammation (54)

Treg IL-13 promote macrophage engulfment of apoptotic cells via Vav1-Rac1 signaling pathway (48)

iNKT IL-4 promote hepatocyte proliferation and macrophage transition to pro-restorative phenotype (40)

DCs IL-6, TNF-a, CCL2 depletion of DCs leads to exacerbated liver injury (35)

CD8+ T
cells

TNF-a, Granzyme,
Perforin

activate death pathways of sensitized hepatocytes and induce necrosis (41–44)
g
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factor 2 (MD2) complex and the NF-kB pathway, promoting

inflammatory responses (Figure 2) (66–69). On the other hand,

the superfamily of heat shock proteins is also signaling molecules

involved in the inflammatory response and restoration of

homeostasis. Inhibition of HSP90 reduces proinflammatory

cytokine production and prevents LPS-induced liver injury (70),

whereas induction of endogenous HSP70 and HSP27 or treatment

with exogenous HSP70 ameliorates the hepatic injury during

experimental septic shock (71–73). HSPA12A, an atypical

member of the heat shock protein 70 family, attenuates LPS-

induced liver injury by inhibiting hepatocyte pyroptosis via PGC-

1a-mediated AOAH expression (74). IL-33, also a classic hepatic

DAMPs molecule, is actively involved in various inflammatory

pathologies (75, 76). IL-6 trans-signaling drives the coagulopathy

and hepatic endotheliopathy associated with COVID-19, which

could be a possible mechanism behind liver injury as well (77).

As hepatocyte cell death is a major event and responsible for

disease progression in acute liver injury, we also summarized

different modes of cell death in immune dyshomeostasis. It is

believed that DAMPs are released into the extracellular space

largely in necrosis and necroptosis modes due to the loss of

plasma membrane integrity and eventually cellular rupture,

whereas integral plasma membrane and apoptotic bodies of
Frontiers in Immunology 05
apoptotic cells constrain DAMPs from being released into

extracellular space. X-box binding protein 1 (XBP1) modulates

the macrophage proinflammatory response under several

pathogenic conditions. While activation of mitochondrial DNA

(mtDNA)-cyclic GMP-AMP synthase (cGAS)-stimulator of

interferon genes (STING) signaling in macrophage plays an

important role in acute liver injury, it also plays a role in the

activation of XBP1-mediated hepatocellular mitophagy and

pyroptosis. Macrophage STING signaling pathways were observed

in human livers with ALI and also acute lung injury in mice

(Figure 2) (78–81). Pyroptosis is a profoundly inflammatory

mode of regulated cell death related to the innate immune

system. It has evolved to remove intracellular pathogens and has

a cell-bursting morphology associated with pores in the plasma

membrane formed by activated Gasdermin D (GSDMD) (82). It has

been reported that inhibition and mutation of TNF-a could

suppress the effects of HMGB1, thereby inhibiting the process of

pyroptosis. The TNF-a/HMGB1 inflammation signaling pathway

plays an important role in pyroptosis during liver failure and acute

kidney injury (AKI) (83). Ferroptosis is also involved in APAP-

induced cell death in primary hepatocytes, and Ferrostatin-1 as a

ferroptosis inhibitor plays a protective role in APAP-treated

primary hepatocytes (84).
A

B

FIGURE 1

Immune responses in acute liver injury/failure and regeneration. (A) KCs and MoMF recognize DAMPs and PAMPs and then being activated, thus
releasing pro-inflammatory cytokines to enhance inflammation and damage the local tissue. Activated KCs and other cells such as T cells, stellate cells,
dendritic cells, and hepatocytes, secrete chemokines and thus attract monocytes and neutrophils to the site of injury. Monocytes migrate across the
liver’s sinusoidal endothelial cell layer and differentiate into M1-type macrophages which exacerbate injury by pro-inflammatory cytokines. Neutrophils
and macrophages phagocytose necrotic debris and apoptotic bodies. (B) In the process of resolution, restorative M2 macrophages phenotype release
anti-inflammatory cytokines and promote neutrophil apoptosis, resulting in homeostasis restoration in the liver. Hepatocytes proliferate to replenish the
lost parenchyma. Treg also contributes to anti-inflammatory conditions, to facilitate hepatocyte regeneration.
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5 Therapeutic strategies and targets
for acute liver injury

Liver transplantation is the only curative treatment currently

available for PALF, but there is a scarcity of livers for donation,

thus clinical needs are not met. Novel therapy approaches have

been explored that are less invasive than liver transplantation and

could reduce posttransplant rejection risks and long-term

immunosuppression management. As DAMPs play a pivotal role

in the development and progression of acute liver disease, DAMPs

can be harnessed as therapeutic targets. Targeting molecules such as

HMGB1, HSP, CIRP, circulating free DNA, S100 proteins, and

extracellular histones via reducing their release, promoting their

removal, or inhibiting their signaling could be a promising strategy

to ameliorate liver inflammation and minimize organ damage. For

instance, treatment with a partly humanized anti-HMGB1

monoclonal antibody has hepatoprotective effects due to it

blocking excessive amounts of extracellular HMGB1s, which

decreases serum levels of ALT and microRNA-122 and eliminates

inflammatory mediators in APAP-induced ALI (85). Accumulating

evidence has shown that inhibition of different cell death modes can

be utilized as a therapeutic strategy for acute liver diseases.

Administration of ferric chelator Deferoxamine (Desferal) after

APAP overdose significantly delayed the development of APAP-

induced hepatotoxicity in mice (86). The synthetic compound Fer-

1, which scavenges initiating alkoxyl radicals produced by ferrous

iron from lipid hydroperoxides to produce the same anti-ferroptotic

effect as GPx4, is a potent inhibitor of ferroptosis (87). Treatment

with glycyrrhizin, an HMGB1 inhibitor, could increase GSH and

GPX4 levels, and activate the Nrf2/HO-1/HMGB1 pathway,

blocking ferroptosis in ALF models induced by the co-injection of

d-galactosamine (d-GalN) and lipopolysaccharides (LPS) (88).

Researchers have found that promethazine, one of the
Frontiers in Immunology 06
cytochrome P450 substrate compounds, functions as a lipid

peroxyl radical scavenger to inhibit ferroptosis, ameliorating LPS/

GalN-induced ALF and decreasing cell death (89). APAP overdose

induced VDAC1 oligomerization in hepatocellular cells, and thus

the application of VDAC1 oligomerization inhibitor VBIT-12

alleviated ferroptosis by protecting mitochondria and restoring

ceramide and cardiolipin levels (90). In CCl4-induced acute liver

injury, treatment with chloroquine downregulated HMGB1 levels

and NF-kB expression, and increased the Bax/Bcl-2 ratio and

caspase-3 activation in hepatic tissue, demonstrating inhibition of

HMGB1-mediated inflammation and activation of pro-apoptotic

pathways (91).

Cell-based therapy is a fast-developing research field in the

restoration of liver function and treatment of various liver diseases

and acts by remodeling and repairing the liver injury niche and

promoting parenchyma regeneration. Hepatocyte transplantation

has been explored for specific metabolic liver disorders, especially

for pediatric patients and liver failure conditions (92), as well as for

various drug-induced ALFs such as halothane, dilantin, and

multiple polysubstance misuses (93, 94). Apart from human

primary hepatocyte transplantation as the first form of cell

therapy, stem cells are considered very promising for liver injury

as well, such as embryonic stem cells (ESCs), hematopoietic stem

cells (HSCs), induced pluripotent stem cells (iPSCs), and

mesenchymal stem cells (MSCs), which have the ability to self-

renew and differentiate, or function in immunomodulation, fibrosis

degradation, and hepatocyte proliferation (95–97). Transplantation

of ESC-derived hepatocytes into mice with APAP-induced acute

liver failure rescued hepatic function (98). The infusion of umbilical

cord-derived CD362-positive MSCs was demonstrated to alleviate

hepatic inflammation by expanding the anti-inflammatory M2

phenotype of macrophages in a primary sclerosing cholangitis

mouse model (99). Transplantation of human bone marrow
FIGURE 2

Molecular crosstalk between immune cells and liver cells in acute liver injury. DAMPs molecule eCIRP, released from damaged hepatocyte,
stimulates macrophage through TLR4/MD2 complex and NF-kB pathway, resulting in proinflammatory mediators release, which exacerbates
hepatocyte injury. In hepatocyte, accumulation of ROS in dysfunctional mitochondria upon damage leads to ROS-NLRP3-caspase-1-GSDMD
activation and hepatocyte pyroptosis, which facilitates mtDNA extracellular release. Macrophage engulfs mtDNA and then the cGAS/cGAMP/STING
signaling is activated with the secretion of proinflammatory cytokines. The liver injury also activates the IRE1a-XBP1 in the ER stress signaling
pathway and leads to BNIP3-mediated mitophagy, which regulates mitochondrial homeostasis and promotes the clearance of cytosolic mtDNA. The
XBP1 deficiency promotes mitophagy and thus effects the mtDNA release, and subsequently reduces the STING activation in macrophage.
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mesenchymal stem cells (hBMSCs) into immunodeficient mice with

fulminant hepatic failure induced restoration of the damaged liver

by enhancing hBMSCs differentiation into cholangiocyte via delta

ligand-like 4 (DLL4) activation (100). The effect of induced

hepatocyte-like cells (iHEPs) generated by direct reprogramming

from mouse embryonic fibroblast on acute liver injury was

investigated in a CCl4-induced mouse model and significantly

attenuated acute liver injury (101). Meanwhile, clinical trials on

hepatocyte or stem cells transplantation have been investigated or

are ongoing, among which MSCs are considered the most

promising candidates (95). The overall safety and effectiveness of

MSC therapy was evaluated and confirmed in 14 pediatric patients

with urea cycle disorders (UCDs) or Crigler-Najjar (CN) syndrome

6 months post transplantation (102). A clinical trial on autologous

MSCs transplantation for 158 patients, including teenagers, with

liver failure caused by hepatitis B has been carried out to assess the

short-term therapeutic effects and long-term fatal i ty

(NCT00956891) (Supplementary Table 1).

Additionally, various immune cells such as macrophages, Treg,

monocytes, and DCs, are highlighted in the development of therapies

for liver disorders. Given that macrophages play a crucial role in the

progression and resolution of ALI, the value of bone marrow-derived

macrophages (BMDMs) was identified as a cell-based therapy in an

APAP-ALI mouse model. Injection of activated BMDMs reduced

hepatocellular necrosis, infiltrating neutrophils, circulating

proinflammatory cytokines levels, and HMGB1 translocation,

meanwhile promoting hepatocyte and endothelium proliferation

(103). Treg, which is pivotal in preventing autoimmunity,

alloimmunity, and maintaining immunological tolerance and tissue

homeostasis, has attracted great attention in adoptive cell therapy

(104–106). The safety of autologous Treg infusion for four patients

with autoimmune hepatitis (AIH) was evaluated, indicating that

approximately 22-44% of infused Tregs homed to and resided in

the liver for up to 72 hours, and acted to suppress the tissue-

damaging effector T cells (107). In animal models, Treg could

ameliorate APAP-induced immune-mediated liver injury and also

inhibit CCl4 or triptolide-induced liver injury (51, 108–110). Treg

played a crucial role in the MSC-based alleviation of acute liver

inflammation, and adoptive transfer of MSC-primed Tregs

completely attenuated a-GalCer-induced ALF, which indicated a

novel therapeutic approach in Treg-based therapy of ALF (111).
6 Summary

In this review, we have focused on the immune activation and

regulation in pediatric acute liver injury in the SARS-CoV-2

pandemic era. We summarized both the cellular and molecular
Frontiers in Immunology 07
crosstalk between immune cells and liver cells in this process as well

as therapeutic targets and cell therapy strategies. Considerable

progress in multiple therapeutic approaches has been made in the

setting of acute liver injury and failure, especially in mice models.

Based on former results, the combination of different therapeutic

approaches might be promising for cell-based therapy of acute liver

injury. However, more clinical trials are still required for validation

of their safety and efficacy.
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