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The treatment outcome of breast cancer is closely related to estrogen receptor

(ER), progesterone receptor (PR), and human epidermal growth factor receptor 2

(HER2) expression. Triple-negative breast cancer (TNBC) lacking ER, PR, and

HER2 expression has limited treatment options and a poor prognosis. Tumor-

infiltrating lymphocytes (TILs) play a role in promoting or resisting tumors by

affecting the tumor microenvironment and are known as key regulators in breast

cancer progression. However, treatments for TNBC (e.g., surgery, chemotherapy

and radiotherapy) have non-satisfaction’s curative effect so far. This article

reviews the role of different types of TILs in TNBC and the research progress

of adoptive cell therapy, aiming to provide new therapeutic approaches

for TNBC.
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1 Introduction

Breast cancer is the most common cancer in women worldwide. The International

Agency for Research on Cancer estimates that the incidence of breast cancer will increase

by more than 40% and the mortality rate will increase by more than 50% by 2040 (1). Breast

cancer can be characterized into four subtypes: luminal A, luminal B, human epidermal

growth factor receptor 2 (HER2)-enriched, and triple-negative breast cancer (TNBC)

subtypes (2). Among them, TNBC with negative immunohistochemical results for estrogen

receptor (ER), progesterone receptor (PR), and HER2 in the breast cancer tissue (3) is a

highly heterogenous disease with an extremely poor prognosis. TNBC accounts for 15–20%

of breast cancers (4). Because of its unique phenotype, TNBC is mainly treated by

cytotoxic chemotherapy.

Increasingly more studies in recent years have shown that tumor-infiltrating

lymphocytes (TILs) are associated with the progression of TNBC. Among patients with

metastatic breast cancer, those with high-level TILs tend to have better therapeutic
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outcomes (5). TILs are mainly composed of T cells, B cells, and

natural killer (NK) cells and react with tumor cells and non-TILs of

breast cancer patients in various ways, promoting or resisting

tumors and affecting the prognosis of the patients (6). Hence,

further research on the role of TILs in TNBC helps provide new

approaches for the treatment of TNBC.
2 TIL subsets interact and coordinate
to build a more rigorous anti-tumor
immunity against the tumor
microenvironment

With the participation of the extracellular matrix, cellular

components, such as tumor cells, vascular endothelial cells,

pericytes, immune cells, bone marrow-derived cells, and tumor-

associated fibroblasts form a relatively dynamic environment, the

TME, through the release or induction of cell-signaling proteins

(e.g., cytokines and chemokines). The interaction between tumor

cells and the TME has a fundamental impact on cancer initiation,

progression, and therapeutic efficacy (7). The rapid proliferation of

tumor cells creates a hypoxic environment in the body, upregulates

the expression of hypoxia-inducible factors, accelerates the

recruitment of tumor cells and other related cell components to

the TME, and ultimately promotes the development and metastasis

of cancer cells (8). For example, hypoxia affects the release of

exosomes, thereby promoting the secretion of various pro-
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angiogenic factors (e.g., vascular endothelial growth factor

(VEGF), angiopoietin 1, and matrix metalloproteinase 9) in

human umbilical vein endothelial cells (9, 10), stimulating the

proliferation and migration of cancer cells and regulating tumor

angiogenesis. VEGF inhibits the effect of antigen-presenting cells

and effector T cells or activates immunosuppressive cells such as T

regulatory cells and myeloid-derived suppressor cells and enhances

the invasion effect of tumor-associated macrophages, thereby jointly

suppressing the immune responses of the body (11). Nevertheless, a

high TIL density in patients with TNBC is usually correlated with

longer survival (12). Among the TIL subsets, T cells account for up

to 75% of TILs (13). As the lymphocytes with the largest proportion

in invasive breast cancer, CD8+ T cells are indirectly recruited by

NK cells, which are only 5% of TILs, to form an important line of

defense for anti-tumor immunity (14–16). B cells serve as antigen-

presenting cells for T cells, eliciting localized T-cell responses in

tumors (6) (Figure 1).
2.1 As a good prognostic marker, TILs
provide a basis for subsequent diagnosis
and treatment of TNBC

2.2.1 T cells cooperate with each other to push
the TME to the peak of tumor growth inhibition

T cell–mediated immunity plays a leading role in the anti-

tumor process. After positive selection, T cells differentiate into

CD4+ T and CD8+ T cells. Naïve CD4+ T cells differentiate into five
FIGURE 1

Functional subsets of CD4+ T cells and the role of other lymphocytes in immunity. Naïve CD4+ T cells differentiate into five subtypes: Th1, Th2,
Th17, Treg, and Tfh, through the corresponding STAT pathway and cytokine induction. IFN-g and IL-4 produced by anti-tumor Th1 cells and tumor-
promoting Th2 cells not only restrict each other to maintain balance but also jointly inhibit the differentiation of Th17 cells. Th17 cells have a dual
role—according to the different TMEs to secrete CCL2 and CCL20 to enhance immunosuppression or secrete CXCL1 to directly act on the surface
of tumor cells to promote tumor progression. CXCL13 secreted by CD8+ T cells not only recruits Tfh but also participates in B cell differentiation
together with IL-21. Differentiated and mature long-lived plasma cells release corresponding antibodies and upregulate NK cells to kill tumor cells.
CD8+ T cells differentiate into tissue-resident memory CD8+ T cells to recognize E-cadherin on the surface of tumor cells and inhibit tumor growth.
Breg and Treg cells are both tumor-promoting cells. Breg cells release IL-10 and recognize soluble PD-L1, which jointly induce Treg cell
differentiation, suppress immune responses, and build a microenvironment which is conducive to tumor growth.
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subtypes: T helper (Th)1, Th2, Th17, T regulatory (Treg), and T

follicular helper (Tfh) cells. Th1-secreted interferon gamma (IFN-g)
not only induces the activation of signal transducer and activator of

transcription (STAT)1 and STAT4 to promote the differentiation of

more Th1 cells but also recruits CD8+ T cells, NK cells, and other

immune cells to enhance anti-tumor immunity, while Th2 cells with

tumor-promoting effects mainly depend on the induction of IL-4

for differentiation (17). Importantly, IFN-g inhibits the

differentiation of Th2 cells, and interleukin (IL)-4 inhibits the

differentiation of Th1 cells, thereby mutually restricting each

other to maintain balance in the tumor. IFN-g and IL-4 inhibit

the development of Th17 cells (18). In the absence of these two

cytokines (IFN-g and IL-4), naïve CD4+ T cells are polarized into

Th17 cells under the co-induction of TGF-b, IL-6, and IL-23 and

subsequently secrete IL-17A, IL-17F, and IL-22 and trigger the

inflammatory response in the body; moreover, Th17 cells induce the

production of chemokines, such as C-C motif ligand 2 (CCL2) and

CCL20 to promote macrophages and activate T cells to infiltrate the

TME (19, 20). In addition, Th17, as a novel prognostic marker, was

directly associated with improved overall survival of patients with

non-inflammatory TNBC (21). However, a previous study showed

that Th17 cells produced C-X-Cmotif chemokine ligand 1 (CXCL1)

during breast cancer progression, which enhanced cancer cell

invasion (22). As another subtype of CD4+ T cells, Tfh cells exist

in secondary lymphoid tissues and recognize CXCL13 released by

CD8+ T cells through regulating C-X-C chemokine receptor type 5

(CXCR5) to mediate Tfh cell recruitment. Tfh cells also secrete IL-

21 to stimulate the differentiation of CD8+ T cells to participate in

cytokine production and play cytotoxicity. As the main helper cells

of tumor-infiltrating B cells, Tfh cells participate in germinal center

formation and B cell differentiation, and control the humoral

immune response by interacting with T follicular regulatory cells

that differentiate from Treg cells. When the equilibrium shifts to the

side with Tfh cells, they activate humoral immunity to actively kill

tumors (23, 24).

Treg cells are a T cell subtype that promotes immune escape of

tumor cells. Because of a relatively high immunogenicity, TNBC has

higher Treg cell infiltration. A study by Bai et al. showed that

targeting Annexin A1 downregulated CD25, C-C chemokine

receptor 8 (CXCR8), and programmed cell death protein 1 (PD-

1) expression and reduced the function of Treg cells, thereby

enhancing anti-tumor immunity in TNBC (25). However, some

scholars believe that Treg cells have a positive impact on the

prognosis of patients with breast cancer. Cai et al. showed that

Foxp3+ and Foxp3− Treg cells were found in CD4+CD25+ TILs in

17 patients with TNBC (12). Foxp3+ circulating T cells expressed

higher levels of cytotoxic T lymphocyte antigen 4, lymphocyte

activation gene 3, and transforming growth factor-beta (TGF-b)
after T-cell receptor (TCR) stimulation, while Foxp3− circulating T

cells produced high levels of IL-10, enhancing the immune effect of

CD8+ TILs (26).

CD8+ T cells recognize specific antigenic peptides on the surface

of tumor cells and release large amounts of IFN-g, granzyme B, and

perforin to destroy tumor cells. Surprisingly, the higher expression
Frontiers in Immunology 03
of CD8+ T cell is significantly correlated with better survival in

TNBC (27). CD103 is composed of the integrin subunit aE and

integrin b7. CD8+ T cells co-expressing CD103, CD69, and CD49a

are called tissue-resident memory T cells (28). As an E-cadherin

receptor, CD103 further interacts with E-cadherin to promote the

activation and migration of T cells. Shields et al. showed that E-

cadherin enhanced the expression of CD103 in melanoma. Under

the combined actions of mature B and T lymphocytes, exogenous

expression of E-cadherin delayed tumor growth, reduced tumor

metastasis, and improved the survival of patients with melanoma

(29). In contrast, E-cadherin deficiency promoted tumor growth

and metastasis. However, the expression and anti-tumor activity of

E-cadherin on CD103 in TNBC have not been verified, but some

studies have preliminarily shown that CD103 and E-cadherin exist

in TNBC as good prognostic markers (30, 31).

2.2.2 Are B cells “friend” or “foe”?
Humoral immunity has increasingly shown a crucial role in the

TME in recent years. B cells are effector cells that are mainly

responsible for humoral immunity. They are activated by antigen

stimulation and co-stimulatory signals. Under the action of

CXCL13, the interaction between follicular dendritic and Tfh cells

and B cells triggers the germinal center response, which induces the

differentiation of activated B cells into memory B cells and long-

lived plasma cells (32). When antigens are presented to B cells, B

cells recognize and secrete the corresponding antibodies, which

stimulate NK cells to naturally kill target tumor cells.

Studies have shown that TNBC is rich in highly activated B cells.

By enhancing the expression of CXCL13, CXCR4, CCL19, IL-17,

IL-22, and other cytokines or chemokines, B cells are recruited and

accumulate in the tertiary lymphoid structure, and anti-tumor

dense aggregates are formed (33, 34). The density of B

lymphocytes expressing immunoglobulin (Ig)G, and particularly

IgG1, are elevated in tumors and induce antigen-driven reactions

with a high affinity. This improves the sensitivity of the humoral

immunity of the body, which was shown to relate to positive

therapeutic outcomes of TNBC. Vito et al. showed that

upregulation of the B cell antigen receptor signaling pathway

inhibited the expression of genes encoding nitric oxide synthase

2, arginase 2, IL-1 receptor type 1, and related factors, destroying

the inhibitory TME formed by high-density myeloid-derived

suppressor cells (MDSCs) in breast cancer, blocking the immune

suppression of T cells by MDSCs, and promoting anti-tumor

responses of immune cells in the TME (35).

Similar to T cells, regulatory B (Breg) cells are a subset of B cells

that suppress immune responses in the TME. They secrete a large

amount of IL-10 to negatively regulate T cell immunity. In addition,

Breg cells recognize soluble programmed death-ligand 1 (PD-L1),

promote B cell differentiation into Breg cells, and stimulate naïve

CD4+ T cells to differentiate into Treg cell subtypes. A study by Li

et al. showed that the percentages of Breg cells and PD-1+ Breg cells

were the highest among TNBC patients with different breast cancer

subtypes, indicating that the prognosis of TNBC was worse than

that of the other breast cancer subtypes (36).
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2.2.3 NK cells with memory-like functions are
expected to become a powerful weapon against
anti-tumor immunity

As the first line of defense against tumors, NK cells are roughly

divided into two types according to the expression of surface

proteins, CD56highCD16dim and CD56dimCD16high. NK cells

exhibit two different roles, in which CD56dimCD16high NK cells

play a cytotoxic role, and release perforin and granzyme B after

binding to target cells to mediate apoptosis, while CD56highCD16dim

NK cells release IFN-g, tumor necrosis factor, granulocyte-

macrophage colony-stimulating factor, and other cytokines to

induce other immune cells to attack the target tumor cells. NK

cells exert different immune functions as tumor growth progresses.

However, long-term exposure to the TME also leads to the

inhibition of certain NK cell functions, ultimately promoting the

immune escape of tumors (37). Recent studies have found that

Socs3highCD11b-CD27- immature NK cells, which exist only in

TNBC, can activate Wnt signaling to achieve tumorigenic effects

(38). By targeting PD-L1 with high-affinity NK cells, which is

artificially engineered, derived from NK-92, high concentrations

of granzyme and perforin granules were released while preserving

NK cell receptor expression, which inhibited the growth of MDA-

MB-231 cells in TNBC with high expression of PD-L1 (39).

Most studies of tumor immunity focus on adaptive immunity

mediated by T or B cells, while only a few studies focus on NK cells

in the innate immune system. This is because the turnover rate of

NK cells is relatively fast in the human body, and because the

memory function of NK cells in the human body remains uncertain.

A recent study by Nikzad et al. showed that human liver-resident
Frontiers in Immunology 04
NK cells displayed long-term antigen-specific memory responses

after immunization or viral infection and were not induced by T

cells or B cells (40). In addition, the killing ability of memory-like

NK cells mediated by IL-12, IL-15, and IL-18 against tumors was

significantly enhanced in vivo and in vitro (41). There are various

indications that we are expected to differentiate tumor-associated

memory NK cells and maximize their strong killing ability and

become a powerful weapon for anti-tumor immunity.
3 Adoptive cell therapy brings hope to
patients with TNBC

Generally speaking, ACT artificially cultivates lymphocytes that

recognize tumors with a high affinity for attacking target tumor cells

in vivo. Thus, ACT is highly individualized and is divided into four

types according to the different mechanisms of action: ACT with

chimeric antigen receptor (CAR)-engineered T (CAR-T) cells, ACT

with CAR-engineered NK (CAR-NK) cells, ACT with TILs, and

ACT with TCR-engineered T (TCR-T) cells (Figure 2).
3.1 ACT with CAR-T cell technology is the
most mature

ACT with CAR-T cells (CAR-T-cell therapy) is an emerging cell

therapy. Through genetic engineering, CARs are introduced into the

surface of T cells extracted from the patient’s blood. The cells are

further cultivated to a certain number and subsequently infused back
B

C

D

A

FIGURE 2

Production process of ACT. (A) Preparation of CAR-T cells for CAR-T-cell therapy: peripheral blood mononuclear cells of the patients are extracted
by leukapheresis, washed to remove impurities, and specific T cells are isolated using magnetic-bead separation. After activation, viral or non-viral
vectors are used to transduce T cells for CAR expression on the cell surface. The CAR-T cells are then expanded to the target dose, and the
effectiveness and safety of the cells are checked. CAR-T cells that pass quality control are reinfused into the patients. (B) The preparation of CAR-NK
cells for ACT is similar to the preparation of CAR-T cells. However, CAR-NK cells exert a more powerful and specific tumor targeting capacity by
expressing NKG2D, CD266, and other NK cell surface receptors. (C) Preparation of TCR-T cells for ACT: T cells are extracted from the peripheral
blood of the patients, followed by delivering specific TCR genes to the T cells through a viral or non-viral delivery system, expanding the TCR-T cells
in large quantities, and conducting quality control for the cell culture. The qualified TCR-T cultured cells are reinfused into the patients.
(D) Preparation of TILs for ACT: Tumor tissues collected from the patients are cut into many small pieces and cultured in a 24-well plate for two to
three weeks with medium containing a high concentration of IL-2, followed by selecting TILs which are capable of secreting IFN-g and culturing
them to a therapeutic dose before infusing the cells into patients.
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into the patient’s body, where the modified T cells are now equipped

to identify camouflaged tumor cells. CARs are composed of antigen

recognition domain, transmembrane domain, costimulatory domain,

and signaling domain. After continuous improvement, TRUCKs

were raised in the fourth generation of CAR-T-cell therapy. By

introducing the nuclear factor of the activated T cell (NFAT)-

reactive expression cassette, which can activate cytokines such as

IL-12, into CAR-T, and then innate immune cells are attracted to

eliminate tumors, bringing hope for solid tumor treatment (42, 43).

To 2023, eight CAR-T cell products have been approved for

marketing (Table 1), indicating that its industrial chain has been

approached mature. In addition, CAR-T-cell therapy constantly

optimizes production processes and turns its attention to

automated production processes that are less costly and less

polluting. The successes of CAR-T-cell therapy in clinical aspects

also provide new strategies for the production of other ACTs (54, 55).

However, CAR-T-cell therapy also has disadvantages, such as

stimulating an excessive release of immune cytokines after cell
Frontiers in Immunology 05
infusion and causing the accumulation of a large number of

activated macrophages, resulting in serious clinical diseases (56).

To reduce the occurrence of such events, numerous improved CAR-

T-cells have been established. Due to the high expression of

epidermal growth factor receptor (EGFR) in TNBC, Lin et al.

designed a CAR-T-cell therapy model targeting EGFR and

applied it to TNBC cells. The results showed that the granzyme-

perforin-poly adenosine diphosphate (ADP) -ribose polymerase

(PARP), factor-associated suicide (Fas) -Fas-associated death

domain (FADD) -caspase, and IFN-g signaling pathways were

activated in TNBC cells and had a durable and potent inhibitory

effect while ensuring safety (57). Similarly, high expression of

mesothelin targets were positively correlated with TNBC

progression and differentially expressed in normal and tumor

cells. Wang et al. used mesothelin as the potential target of a

CAR-T-cell therapy model and combined mesothelin with natural

killer group 2, member D (NKG2D) protein to construct a dual-

target mesothelin in the VHH-NKG2D CAR-T-cell model,
TABLE 1 FDA- and NMPA-approved CAR-T cell therapies.

Product Target Intracellular
domain

Sponsor Agency Disease NCT/CTR Phase Patients apheresed/
treated, n

Response

Tisa-cel CD19 4-1BB, CD3-z Novartis FDA R/R B-
ALL

NCT02435849 Phase
II

92/75 CR 60%, ORR
81% (44)

R/R
DLBCL

NCT02445248 Phase
II

167/115 CR 49%, ORR
53% (45)

R/R FL NCT03568461 Phase
II

98/97 CR 69.1%, ORR
86.2% (46)

Axi-cel CD19 CD28, CD3-z Gilead FDA R/R
DLBCL,
tFL,
PMBCL,
HGBCL

NCT02348216 Phase
I/II

111/101 CR 54%, ORR
82% (47)

Brexu-cel CD19 CD28, CD3-z Gilead FDA R/R MCL NCT02601313 Phase
II

74/68 CR 59%, ORR
85% (48)

Liso-cel CD19 4-1BB, CD3-z Celgene FDA R/R
DLBCL,
FL grade
3,
PMBCL,
HGBCL

NCT02631044 Phase I 344/256 CR 53%, ORR
73% (49)

Ide-cel BCMA 4-1BB, CD3-z Celgene FDA R/R MM NCT03361748 Phase
II

140/128 CR 33%, ORR
73% (50)

Cilta-cel BCMA 4-1BB, CD3-z Janssen
Research

FDA R/R MM NCT03548207 Phase
Ib/II

113/97 CR 67%, ORR
97% (51)

Relma-cel CD19 4-1BB, CD3-z Jw
Therapeutics

NMPA R/R
DLBCL

NCT04089215 Phase
II

68/59 CR 51.7%, ORR
60.3% (52)

Yescarta CD19 CD28, CD3-z Fosunkite NMPA R/R
DLBCL,
PMBCL,
HGBCL

CTR20181687 Phase
I/II

27/24 CR 42%, ORR
79% (53)
*The clinical trials are from clinicaltrials.gov or chinadrugtrials.org.cn.
Tisa-cel, tisagenlecleucel; Axi-cel, axicabtagene ciloleucel; Brexu-cel, brexucabtagene autoleucel; Liso-cel, lisocabtagene maraleucel; Ide-cel , idecabtagene vicleucel; Cilta-cel, ciltacabtegene
autoleucel; Relma-cel, relmacabtagene autoleucel; BCMA, B-cell maturation protein; FDA, food and drug administration; NMPA, national medical products administration; R/R B-ALL, relapsed
or refractory pediatric B-cell acute lymphoblastic leukemia; R/R DLBCL, relapsed or refractory diffuse large B-cell lymphoma; R/R FL, relapsed or refractory follicular lymphoma; tFL,
transformed follicular lymphoma; PMBCL, primary mediastinal B-cell lymphoma; HGBCL, high grade B-cell lymphoma; R/R MCL, relapsed or refractory mantle cell lymphoma; R/R MM,
relapsed or refractory multiple myeloma.
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characterized by a high activation level and secretion of many

cytokines that killed TNBC cells in vitro (58).

There are more complex TMEs in solid tumors, which secrete

signaling factors to inhibit the anti-tumor effects of CAR-T cells.

Based on this, Stüber et al. blocked TGF-b signaling with SD-208, a

TGF-b receptor 1 inhibitor, to effectively prevent the exhaustion of

receptor tyrosine kinase-like orphan receptor 1-CAR-T cells in

TNBC (59).
3.2 CAR-NK-cell therapy has demonstrated
a high level of safety

The construction of CAR-NK cells continues the research and

development ideas of CAR-T cells. NK cells are mainly derived

from peripheral blood, umbilical cord blood, stem cells, and NK92

cell lines. CAR-NK cell models are obtained by using viral or non-

viral vectors to transduce CARs into NK cells (60).

Hu (61) used tissue factor (TF) as a target for CAR-NK-cell therapy

and developed TF-CAR-NK cells containing a human FVII light-chain

recognition domain, CD28 transmembrane domain, 4-1BB co-

stimulatory domain, and CD3z signaling region. TF-CAR-NK cells

directly killed TNBC cells, and this effect was enhanced when

combined with second-generation TF-targeted immunoconjugates.

Jan et al. used low-dose chemotherapy drugs to downregulate the

expression of DNA-methyltransferase 1 and to stimulate the

demethylation of the promoter of the transporter associated with

antigen processing 1 gene, thus promoting the expression of human

leukocyte antigen G (HLA-G) on the surface of tumor cells, facilitating

the killing ability of HLA-G-CAR-NK cells and causing extensive

tumor ablation (62).

Due to the short survival time of NK cells in the body and the

reduced cytotoxicity, with the same therapeutic effect there would

be fewer side effects than encountered during CAR-T-cell therapy,

such as cytokine release syndrome. Therefore, ACT with CAR-NK

cells has shown good safety and therapy responses with great

potential for further development (63).
3.3 The affinity of TCR-T cells is
significantly correlated with the major
histocompatibility complex

TCR-T cell technology use lentivirus as a carrier to transduce

specific TCRs that are then expressed on the surface of T cells of the

patients. Although both ACT with TCR-T cells and ACT with

CAR-T cells are referred to as TCR redirection technologies, they

have significantly different mechanisms of antigen recognition.

ACT with TCR-T cells has an absolute dependence on major

histocompatibility complex (MHC). CAR-T cells directly bind to

tumor surface antigens, while TCR-T cells must be presented and

recognized by the a-b chain heterodimer through MHC. This

antigen-recognition property means that TCR-T cells are not
Frontiers in Immunology 06
limited in the selection of target cell antigens and thus are more

suitable for the treatment of solid tumors (64).

Nevertheless, TCR-T cells have a low affinity for antigens than

do CAR-T cells (65). Improving the affinity of TCR-T cells to

antigens has become an urgent need in anticancer therapy.

However, the blind pursuit of a high affinity can also bring many

harmful side effects in the anti-tumor treatment process. The

affinity between the TCRs and peptide-MHC is low, and the

combination of the two fails to induce a strong immune response.

To solve these problems, Zhao et al. designed a capture project to

prolong the interaction duration between T cells and peptide-MHC

and to improve the responsiveness of T cells to ligand signals while

ensuring a moderate affinity level (66).

The results of a clinical trial of Kimmtrak-related ACT with

TCR-T cells showed that the 1-year overall survival rate of patients

who received ACT with TCR-T cells increased to 73%, and the

relative risk of death was reduced by 49% compared with patients

treated with other drugs (67). As a result, Kimmtrak was approved

by the U.S. Food and Drug Administration and became the first

approved ACT in the world using TCR-T cells for the treatment of

refractory solid tumors. In this context, relevant clinical trials for

TNBC, such as ACT with TCR-T cells targeting KK-LC-1

(NCT05483491) and MAGE-A1 combined with atezolizumab

(NCT04639245), are in the enrollment stage.
3.4 ACT with TILs more accurately
identifies targeted tumor cells

ACT with TILs was first demonstrated and applied to the

treatment of melanoma by Rosenberg et al., with satisfactory

results (68). Unlike CARs, the TILs of this ACT were mainly

derived from the tumor tissues of the patients, and TILs capable

of secreting IFN-g in the tissue were extracted and selected for cell

culture, which were finally injected into the patients (69).

Compared with ACT with CAR-T cells and ACT with TCR-T

cells, ACT with TILs has certain advantages and is more suitable for

the treatment of solid tumors. T cells that recognize many surface

antigens of cancer cells are key for ACT with TILs to attack tumors.

In a previous study, 10 out of 13 volunteers who had received other

therapeutic regimens but still had metastatic melanoma were

infused with TIL products. Among the 10 patients, 50% achieved

clinical efficacy, in which 2 patients were in complete remission and

3 patients achieved partial remission. Notably, neoantigen-specific

T cell populations, such as RBM12, ENTPD4, VARS, and

RAD51AP1-002, emerged and persisted in the peripheral blood of

all 10 patients after TIL infusion (70).

The efficacy of ACT with TILs has also been demonstrated in

other solid tumors. Standard treatments (e.g., chemotherapy and

radiotherapy) are not effective because of the extremely low

immunogenicity of metastatic breast cancer (especially TNBC),

while ACT with TILs effectively solves this problem. Zacharakis

et al. selected 42 patients with metastatic breast cancer who were
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injected simultaneously with short-term cultured TILs and

pembrolizumab. One patient with TNBC had complete regression

of liver, lymph node, and mediastinal metastases after 66 months of

treatment, and the disease was controlled thereafter by only requiring

surgery (71). To date, ACT with TIL therapy for TNBC is now in the

stage of recruiting volunteers (NCT04842812 and NCT04111510),

fully showing the tremendous potential of this therapy.
4 Summary and outlook

As the subtype of breast cancer with the worst prognosis, TNBC

has unsatisfactory curative effects after radiotherapy and

chemotherapy, and therefore, new treatment options are needed.

As the special soldiers in the TME, TILs play an important role in

the process of identifying and killing target tumor cells, which has

led to the development of immunotherapies. Among those

immunotherapies, ACT is a new star and has achieved good

results in recent years. The outstanding achievements of CAR-T-

cell therapy in hematological tumors and the promising effects of

ACT with TCR-T cells in solid tumors have prompted the search for

more suitable targets or combination programs for applying ACT to

solid tumors. Although issues remain, such as an unknown

therapeutic safety, long training period, and expensive cost, with

the continuous improvement and development of the technology,

ACT that meets expectations will likely be designed in the future,

bringing hope to patients with TNBC.
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