
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Katri Typpo,
University of Arizona, United States

REVIEWED BY

Le Liu,
Southern Medical University, China
Lorella Paparo,
University of Naples Federico II, Italy

*CORRESPONDENCE

Brian Scottoline

scottoli@ohsu.edu

RECEIVED 24 March 2023
ACCEPTED 26 June 2023

PUBLISHED 21 July 2023

CITATION

Andres SF, Zhang Y, Kuhn M and
Scottoline B (2023) Building better barriers:
how nutrition and undernutrition impact
pediatric intestinal health.
Front. Immunol. 14:1192936.
doi: 10.3389/fimmu.2023.1192936

COPYRIGHT

© 2023 Andres, Zhang, Kuhn and Scottoline.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Review

PUBLISHED 21 July 2023

DOI 10.3389/fimmu.2023.1192936
Building better barriers: how
nutrition and undernutrition
impact pediatric intestinal health

Sarah F. Andres1, Yang Zhang1, Madeline Kuhn1 and
Brian Scottoline2*

1Division of Pediatric Gastroenterology, Department of Pediatrics, Oregon Health and Science
University, Portland, OR, United States, 2Division of Neonatology, Department of Pediatrics, Oregon
Health and Science University, Portland, OR, United States
Chronic undernutrition is a major cause of death for children under five, leaving

survivors at risk for adverse long-term consequences. This review focuses on the

role of nutrients in normal intestinal development and function, from the

intestinal epithelium, to the closely-associated mucosal immune system and

intestinal microbiota. We examine what is known about the impacts of

undernutrition on intestinal physiology, with focus again on the same systems.

We provide a discussion of existing animal models of undernutrition, and review

the evidence demonstrating that correcting undernutrition alone does not fully

ameliorate effects on intestinal function, the microbiome, or growth. We review

efforts to treat undernutrition that incorporate data indicating that improved

recovery is possible with interventions focused not only on delivery of sufficient

energy, macronutrients, and micronutrients, but also on efforts to correct the

abnormal intestinal microbiome that is a consequence of undernutrition.

Understanding of the role of the intestinal microbiome in the undernourished

state and correction of the phenotype is both complex and a subject that holds

great potential to improve recovery. We conclude with critical unanswered

questions in the field, including the need for greater mechanistic research,

improved models for the impacts of undernourishment, and new interventions

that incorporate recent research gains. This review highlights the importance of

understanding the mechanistic effects of undernutrition on the intestinal

ecosystem to better treat and improve long-term outcomes for survivors.
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Introduction

Malnutrition encompasses conditions of both undernutrition and overnutrition in

terms of energy intake and includes disorders of inadequate vitamins and minerals (1). This

review will focus on malnutrition in the form of undernutrition.

Nearly half (45%) of all deaths in children under 5 are linked to undernutrition (1).

Severe acute malnutrition (SAM) consists of both nutritional edema (Kwashiorkor) and

Marasmus (severe wasting) (2). Malnutrition significantly alters the structure and function
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of the intestine and is a major contributor to illness and death in

children worldwide (1). Stunting is one long-term effect of

malnutrition that is not significantly reduced by providing

supplemental food (3). This demonstrates that simply restoring

balance to the diet is insufficient to correct long-term pathological

changes and points to underlying changes in the intestinal

physiology, which impact nutrient digestion and absorption that

must be remedied before increased nutrient intake can functionally

impact growth. There are several groups, such as Bandsma et al. (2,

4–7) looking at the physiological impact of undernutrition on the

intestine, however, more studies are urgently needed to mitigate and

potentially reverse the damage caused by this deadly condition. This

review discusses normal intestinal development and digestive

function, including the closely associated immune and

microbiome compartments under normal nutrient conditions and

what is known about the effects of undernutrition on GI tract

function (Figure 1). We then aim to highlight areas that require

further study and critical unanswered questions in the field with the

ultimate goal of improving the survival and lives of millions of

children worldwide.
Intestinal development

The intestinal epithelium refers to the single layer of intestinal

epithelial cells (IEC) that lines the luminal surface of the intestine.

These cells form the most significant barrier within the human body

and exist at the interface between ingested nutrients and the body

cavity. The IEC barrier coordinates nutrient digestion and

absorption, bacterial interactions, immune cell modulation, cell

proliferation, and cell death (8). Regulation of these processes and

maintenance of the barrier is critical to intestinal and

organismal health.

The human intestine develops from the hindgut endoderm

during weeks 3-7 of human embryonic development. The hollow

tube that will become the intestinal tract elongates, and the luminal

surface area increases through the eventual folding and evagination

of the epithelial cell layer to form crypt evaginations that house the

intestinal stem cells (ISC) and finger-like projections called villi.

Villi increase the absorptive surface of the intestine by 6.5-fold

when compared to a surface without villi to achieve a surface area

of ~ 30m2 in an adult human (9). Much is still unknown about how

the intestine forms and the gene expression programs that govern

epithelial remodeling. For a more detailed discussion, we refer

readers to this detailed review (10). The fully developed intestinal

epithelium is composed of multiple specialized cell types that work
Abbreviations: AHR, aryl hydrocarbon receptor; EEC, enteroendocrine cell;

GALT, gut-associated lymphoid tissue; HMO, human milk oligosaccharide; IEC,

intestinal epithelial cell; ILF, isolated lymphoid follicles; ISC, intestinal stem cell;

miRNA, microRNA; mTORC1, mammalian target of rapamycin complex 1;

NEC, necrotizing enterocolitis; NICU, neonatal intensive care unit; PPAR,

peroxisome proliferator-activated receptor; RUSF, ready-to-use supplementary

food; SAM, severe acute malnutrition; SCFA, short chain fatty acids; sIgA,

secretory immunoglobulin A; SIRT1, sirtuin 1; TLR, toll-like receptor.
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in concert to perform the digestive, absorptive, secretory, and

barrier functions of the intestinal epithelium (11).

The human intestinal epithelium is the most dynamic tissue in

the human body, turning over every 3-5 days (12). IEC renewal is

driven by a small pool of ISCs (13, 14), which continuously divide to

replenish the stem cell pool and generate transit-amplifying

progenitor cells to maintain the entire intestinal epithelium.

Absorptive enterocytes comprise >80% of IECs and arise from

highly proliferative transit-amplifying progenitor cells (13, 15),

while the secretory cell types arise from a common secretory

progenitor (11). Goblet cells migrate onto the villi where they

secrete mucus, which serves as an additional barrier and protects

the IEC from bacteria (16). Enteroendocrine cells are also largely

present on the villi, where they respond to nutrients within the

lumen and secrete hormones and growth factors that contribute to

intestine growth (17–19). Tuft cells are rare cells comprising <1% of

all IECs. These sensory cells coordinate signaling from luminal

microbes, the host immune system, the enteric nervous system, and

the intestinal barrier itself (20). Paneth cells migrate down to the

base of the crypt; intercalated between the ISC, Paneth cells secrete

ISC niche factors and antimicrobial peptides to regulate the

intestinal microbiota (21, 22). Lastly, M cells are an epithelial

component of Peyer’s patches that sample luminal bacteria and

antigens and transport these factors to tissue macrophages and

lymphocytes below (11). Peyer’s patch development and function

will be discussed in more detail in the intestinal and systemic

immunity section.

These epithelial cell types are joined together by tight junctions

to form a selectively permeable barrier between the body and the

complex luminal environment of digestive contents, chemicals, and

bacteria. Maintaining an intact epithelial barrier is key to proper

intestinal function, appropriate nutrient absorption, regulation of

bacterial diversity, and balanced immune cell activation.

At birth, the intestinal barrier is somewhat permeable (23–26)

allowing for immune system priming with select intestinal bacteria,

as well as transport of large intact proteins, such as

immunoglobulins from human milk into the body (27). Within

days the barrier rapidly closes, typically as a result of human milk

feeding and interactions with the developing microbiota (26), to

prevent unwanted immune activation, bacterial translocation, or

transit of undigested nutrients (23–25, 27). This barrier consists of

epithelial cells joined together by tight junctions, adherens

junctions, and desmosomes, which form a strong seal between

adjacent cells (28). Tight junctions are composed of lipid and

protein components in which variations can alter barrier

permeability (29). They allow for the selective restriction of

intestinal bacteria but the regulated flux of ions and molecules

through the epithelial layer. Tight junctions are stabilized by

adherens junctions and desmosomes (30, 31). Selective movement

of nutrients and ions is mediated through the paracellular pore (32–

34) and leak (35, 36) pathways, which mediate the passage of

molecules based on their size and or charge as in the pore pathway.

Inflammation, infection, or damage are examples of barrier breach,

opening the unrestricted pathway and allowing for the passage of

ions, nutrients, and bacteria across the barrier (37, 38). Rapid

sealing of the barrier and restitution of the lost epithelium
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requires cellular proliferation and expansion. For a more detailed

discussion on intestinal barrier function, we refer readers to this

review (28).
The effect of nutrition on the
intestinal epithelium

Intestinal barrier maintenance is a highly energetic process closely

coupled to the presence or absence of nutrients. This is exemplified by

snakes whose intestine rapidly rebuilds upon feeding and atrophies

after digestion is complete to conserve energy that would be consumed

by continuous epithelial upkeep (39). Similar less dramatic adaptations

occur within the mammalian gut in response to dietary changes (40–

44), primarily driven by nutrient responsive ISC.

Modulation of calorie intake expands and contracts ISC

populations. In instances of calorie restriction, where calorie

consumption is reduced but dietary balance is maintained, ISC

and other niche cell types expand and differentiation is decreased

(40–43). This process is driven through mTORC1 and SIRT1

activation, both of which are core regulators of cellular

metabolism (40, 42) and PPAR-gamma downstream of fatty acid

oxidation (43). ISCs expand in response to fasting ketone bodies

and rely on oxidative phosphorylation and lactate produced by

glycolytic Paneth cells for their metabolism (45, 46). This may be a

protective mechanism to ensure the continued survival of ISC when

nutrients are scarce. Similar to a fasting snake, this pool of ISCs sits

ready to differentiate into functional daughter cells in response to

nutrient intake (40). Differentiation into secretory cell types is

driven by Notch gene expression and stimulated by dietary fat

and glucose consumption (46). ISC differentiation is also linked to

nutrient metabolism as reactive oxygen species generated by ISCs

contribute to the differentiation of daughter progenitors (45). These
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changes are in contrast to stem expansion and uncoupling from

Paneth cell niche signals that occurs with high fat diet feeding (44,

47, 48) and can lead to cancer (44, 49).

ISC and the epithelium at large are also responsive to specific

dietary nutrients. For example, the human and murine intestines

respond to dietary vitamin D by enhancing stem cell proliferation

and strengthening the intestinal barrier (50, 51). Interestingly,

dietary activation of the aryl hydrocarbon receptor (AHR) via

feeding of compounds present in green, leafy vegetables can limit

proliferative signals and promote functional differentiation within

the intestinal epithelium (52). In animal models, loss of AHR results

in stem cell expansion, reduced differentiation, and compromised

barrier function (52).

In animal studies of calorie restriction, reduced calorie

consumption expanded the stem cell pool and increased the

regenerative capacity of the intestine in response to discrete

insults (40, 43, 46), suggesting that reduced calorie consumption

may be beneficial to promote intestinal health with aging or in

preparation of targeted damage, such as radiation treatment.

However, these benefits of priming the intestine for regeneration

in the face of injury are not seen in the malnourished state; in fact,

undernutrition increases risk of disease and intestinal barrier breach

in the face of infection or insult. One could speculate that

imbalances in nutrient-coupled proliferation/differentiation

signaling pathways (such as AHR) contribute to barrier

disruption and inflammation in malnutrition, either directly

through IEC or indirectly through the immune system (53–57).
Early infant nutrition

Human milk is the ideal nutrition for infants, with numerous

benefits, including reducing all-cause mortality in the first year of
FIGURE 1

Undernutrition negatively impacts every facet of intestinal health. An imbalance of lumen nutrients is detrimental to the mammalian intestine. The
villi atrophy in the absence of balanced nutrients, including Goblet cell loss and reductions in the protective mucus layer. Less mucus and varied
nutrients allow for bacterial retention, dysbiosis, and infection, exacerbated by deficiencies in the mucosal immune system and ultimately
culminating in barrier damage and leakage of lumen contents into the submucosal space. This perpetuates a vicious cycle further promoting
inflammation and permitting bacterial invasion. The ideal treatment and cure for undernutrition will address each of these facets of intestinal health.
Figure composed using BioRender.
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life and, compared to bovine-based formula, improved

neurodevelopment (58–61). Data suggests the benefits of human

milk are dose-dependent (58). Thus, the provision of optimal

amounts and composition of human milk as nutrition during

early infant life is critical to the current and lifelong health of the

developing child. Undernutrition beginning early in the infant years

would be expected to decrease the benefits conferred by milk.

Surprisingly, maternal milk production volume is protected in the

setting of maternal undernutrition; only in severe malnourishment

is milk volume or macronutrient content impaired (62–64).

Although the lactating mother will scavenge energy and

macronutrients from body stores to preserve milk production,

micronutrient content can be impacted (65). Despite the

preservation of milk volume production, impaired infant growth

has been observed in infants who breastfeed from mothers with

malnourishment (66). While some of this may be due to maternal

micronutrient deficiencies transmitted to the infant, there may be a

contribution from increased infant inflammation (64).

Human milk is a complex fluid with thousands of proteins,

lipids, oligosaccharides, microRNAs (miRNAs), maternal cells, and

metabolites, which have been selected for millennia to provide

optimal infant nutrition and development (67). In addition to the

provision of energy and nutrients, milk is a system of bioactive

proteins, lipids, sugars, miRNAs, and metabolites that assist in

infant development, with examples being intestinal, immune, and

central nervous system development (67, 68) and development of

the intestinal microbiome (69–72). It remains to be defined if severe

maternal undernourishment impacts the bioactive components of

milk in a manner that might adversely affect early infant

development and growth.
Early infant digestion and milk

There are several ways that undernutrition may alter human

milk digestion, particularly with regard to human milk proteins.

Human milk proteins are often divided into two classes, caseins and

wheys. Wheys are highly proteolyzed during digestion and caseins

are less degraded. Caseins include proteins with bioactivities in their

intact forms, such as lactoferrin, immunoglobulins, and growth

factors (73). It is unknown whether the human milk proteome is

affected by maternal undernutrition or malnutrition. The

proportion of bioactives in human milk may differ in abundance

or ability to survive digestion in undernutrition than in the well-

nourished state. There is evidence that human milk proteins may

encode cryptic bioactive peptides with activities important for

infant health (67). These include enterocyte and monocyte

immune modulation (74, 75) and modulation of bacterial growth

and survival (76). How undernutrition may alter the production of

these milk protein digestion products is unknown. Moreover, how

undernutrition could alter milk’s digestion or survival of other

bioactive or cryptically bioactive components (e.g., HMOs, lipids,

metabolites, extracellular vesicles) remains to be defined.

Given the role of human milk in health (77), defining the

impacts of undernutrition and malnutrition on the production,

consumption, and digestion of milk is of high importance.
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Development of intestinal immunity

The intestine is considered the largest immune organ in the body

(78, 79), containing concentrated regions of lymphoid tissue called gut-

associated lymphoid tissue (GALT), as well as myriad innate and

adaptive immune cells present throughout the epithelial, submucosal,

lamina propria, and muscle layers (79, 80). These cells are tasked with

maintaining intestinal homeostasis, preventing inappropriate immune

reactions to harmless antigens or microbes (tolerance), while also

mounting swift immune reactions to pathogens (activation).

Intestinal macrophages and dendritic cells (DCs) exist in different

compartments throughout the small intestine and colon where they

perform distinct functions, recently reviewed here (80). Within the

lamina propria macrophages participate in barrier maintenance,

removal of dying cells, and tolerance of the microbiota (80).

Subpopulations of macrophages are also present within Peyers

Patches where they present antigen or clear apoptotic immune cells

(81–83). Muscularis macrophages are found in the myenteric plexus

where they mediate crosstalk with the crosstalk with the enteric

nervous system during infection (84). DCs are also present

throughout the intestinal lamina propria, including Peyers patches

and lymphoid follicles. Here they sample luminal antigens and

migrate to mesenteric lymph nodes (85) where they facilitate oral

tolerance (86). Notably, draining lymph nodes from each intestinal

region harbor DCs with differing levels of tolerance and sensitivity to

inflammatory cytokines, for example duodenal DCs are more

tolerogenic, while ileal DCs possess more inflammatory cytokine

receptors (87). DCs are shaped by their microenvironment, including

stromal cell interaction, dietary ligands, and the microbiota.

Interestingly, certain subclasses of DCs can affect nutrient uptake,

as recently demonstrated for CD11c+ cells, which stimulate

expression of epithelial lipid transporters (88).

The intestine is also home to a large adaptive immune population.

B and T cells are found within small intestinal GALT, which develops

alongside the IEC cells in utero, with B and T cell clusters visible as

early as 14-16 weeks’ gestation (89, 90). These clusters exist as large

multi-follicular lymphoid aggregates known as Peyer’s Patches or

isolated lymphoid follicles (ILF) of varying sizes throughout the

small intestine (SI) (79). ILF are also present within the colon but

develop later than small intestinal GALT (90). Both SI and colonic

GALT development are influenced by stromal-immune cell crosstalk

(90) and house primarily B and T cells (adaptive immunity) as well as

dendritic cells to facilitate immune cell priming, mast cells, and

granulocytes (91, 92). The intestine is also home to numerous innate

immune cells, including the largest population of macrophages in the

body, innate lymphoid cells, dendritic cells, and eosinophils.

Eosinophils begin to populate the intestine before birth and

participate in parasitic and allergic responses (93).

This large and diverse collection of intestinal immune cells,

which composes the mucosal immune system, is responsible for

surveying the epithelial barrier, protecting against pathogen breach,

and maintaining a healthy balance of intestinal microbes. M cells

and the follicle-associated epithelium (FAE) (94) which overlay

Peyer’s Patches, selectively take up antigens, to facilitate adaptive

immunity via DC-mediated antigen presentation (95, 96). For a

more detailed discussion of B cells in mucosal immunology, we
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refer readers to this recent review (97). After antigen exposure,

either from luminal contents or deliberately via an oral vaccination,

primed B cells clonally expand and migrate between germinal

centers. Upon repeat antigen exposure, high-affinity B cell clones

are selected. These will be distributed within Peyer’s patches and the

lamina propria along the length of the intestine where they produce

high affinity secretory immunoglobulin A (sIgA) antibodies against

the target antigen as part of the mucosal barrier (92, 98). IgA is one

of the primary mediators of the mucosal immune response. sIgA

promotes either bacterial clearance through mucus shedding or

retention when mucus flow is low (99). sIgA selectivity and

specificity shape and regulate the intestinal microbiota (99–101).

sIgA also neutralizes pathogen toxins while preventing bacterial

proliferation and antigen absorption (102).
Shaping the intestinal microbiome

Intestinal barrier function, mucosal immunity, and nutrition

are intimately connected to the intestinal microbiota. The intestinal

tract contains the body’s most abundant and diverse microbial

community. The term gut microbiome refers to the community of

microbes, their DNA, and byproducts, including the associated

metabolome and proteome, which is shaped by host genetics, as well

as environmental factors, including mode of birth, diet, antibiotic

use, geography, and the host immune system as discussed above

(103). Many intestinal microbes coexist within their human host in

a mutualistic and beneficial fashion, digesting insoluble fiber (104),

modulating host gene expression (105–107), shaping the host

immune system (108–111), and providing natural competition for

pathogenic organisms within the gut environment (69, 71, 112).
In utero colonization

Whether or not bacteria colonize infants in utero remains

controversial. A collection of studies detected microbial components

in the placenta (113), amniotic fluid (114), umbilical cord blood (115),

and meconium (116). However, these studies lack information about

the mother’s health, leaving open the argument that the detection of

bacteria and bacteria components in the fetal environment could be

due to maternal infection or other inflammatory conditions during

pregnancy. Although in utero microbial colonization is debated, a

recent study showed that embryonic IECs can sense short chain fatty

acids (SCFAs) produced by thematernal microbiota throughG-protein

coupled receptors (117), a process that is essential to facilitate the

development of fetal EECs. This finding demonstrates that maternal

microbial byproducts such as SCFAs can communicate directly with

the fetal environment to shape intestinal development, eliminating the

need for in utero bacteria.
Postnatal colonization: delivery mode

Bacterial colonization begins at birth and is profoundly

influenced by delivery mode (118–120). Vaginally-delivered term
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infants are introduced to the vaginal microbiota. These first

colonizers of the neonatal gut are usually aerobic or facultative

bacteria, including Enterococcus, Streptococcus, Prevotella,

Lactobacillus, Bacteroides, and Escherichia (119). Classic culture-

based studies between the 1970s and 1980s revealed that the

infantile gut microbiota is less complex and has a higher

proportion of facultative bacteria than the adult microbiota (121–

124). As these bacteria grow, they consume oxygen, making the

intestinal environment more hospitable for the proliferation of

facultative and anaerobic bacteria, including Bifidobacterium,

Clostridium and Bacteroides (122). Once these oxygen-sensitive

species establish, the population of aerobic and facultative

bacteria decline, and the complexity of the microbiota increases,

resulting in a more diverse microbiota (125), closer to that of their

adult parents by age five (126, 127).

The microbial communities of infants born by c-section and

those born vaginally will eventually converge; however, differences

can persist for the first 1-2 years of life (119, 128). In comparison,

newborns delivered by cesarean section are deprived of contact with

their mother’s gut and vaginal microbiota. They are usually

colonized by bacteria associated with the maternal skin and

mouth, found on hospital staff, or in the surgical environment

(118, 119), delaying the acquisition of Bacteroides, Bifidobacteria

and E. coli (129).
Feeding mode

Infant nutrition is a significant driver of intestinal microbial

colonization and diversity. Human milk contains all the essential

nutrients infants need to thrive, including all three primary

macronutrients (fats, carbohydrates, proteins), bioactive factors

(130) (cytokines, cells, immunoglobulins), immunological factors,

prebiotics (e.g., human milk oligosaccharides), and even bacteria,

which all contribute to shaping the infant microbiome.

Human milk is a rich source of commensal and mutualistic

bacteria (131–136). It is estimated that breastfed infants consume 8 ×

104 - 8 × 106 bacteria per 800 mLmilk per day, with humanmilk being

the second source of microbes to infants after vaginal birth (131).

Humanmilk contains immunological factors such as maternal IgG and

IgA antibodies, which shape the early gut microbiome by dampening

mucosal CD4+ T helper cell responses and protecting against enteric

pathogens (137, 138). Prebiotics in the form of human milk

oligosaccharides (HMOs) are another highly abundant and

important component of human milk that are indigestible by

humans (72, 139) and therefore not present for infant nutrition

(140). Rather, HMOs are a rich nutrient source for bacteria, such as

Bifidobacterium longum ssp infantis (141), that shapes the infant

microbiome. Early infant gut microbiome is enriched in genes that

facilitate lactose utilization found in Lactobacilli (142). High levels of

Bifidobacterium species and bacteria capable of metabolizing HMOs

are also found in term infants’ gut (143) and in human milk (119).

HMOs are the primary nutrient source in the colon that supports the

healthy growth and colonization of these saccharolytic microbiotas,

helping to prevent or reduce colonization with specific pathogens (71,

144). In turn, metabolites produced by these bacteria, such as SCFAs,
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are an important source of energy for enterocytes and key signaling

molecules for gut health maintenance (145, 146). There is growing

interest in events that shape the milk microbiome, inspired by findings

that delivery mode and lactation stage alter the milk microbiota

composition (147), suggesting an impact of the physiological labor

process, stress, and hormonal signals on the infant microbiota

composition (70, 147–151).
Antibiotic treatment

The use of broad-spectrum antibiotics in infants drastically

alters the microbiota. In neonatal intensive care units (NICUs)

where antibiotic treatment is common, infants usually acquire a

very sparse microbiota almost absent of anaerobes (152, 153).

Yeasts, Enterococcus, and Enterobacteriaceae dominate the

microbiota (152, 153). This dysbiosis or imbalance in the gut

microbiota places these infants at increased risk of diseases, such

as necrotizing enterocolitis (NEC) (154).
Beneficial roles of the intestinal
microbiome on intestinal function

The intestinal microbiome plays an integral role in gut barrier

function, including roles in early immune development and

immune system priming, as well as direct effects on the IECs, all

aimed at restricting bacteria to the luminal compartment of the

intestine (155). Commensal microbes compete for space and

resources with pathogenic colonizers, which helps reduce disease

and can alter the host metabolism (156). The earliest colonizers

(Bifidobacterium, Clostridium, and Bacteroides spp.) (125) interact

with the mucosa to shape immune system development and

intestinal function (157–162). Lactobacillus spp. and Akkermansia

muciniphila proteins stimulate mucus production and strengthen

the epithelial barrier (38, 163–167). IEC detect bacterial byproducts

or the bacteria themselves through pattern recognition receptors,

such as toll-like receptors (TLRs). These signals regulate numerous

aspects of the IEC barrier, including mucus and antimicrobial

peptide production, tight junctions, and IEC proliferation and

differentiation (38, 164, 165, 168, 169).

Bacteria facilitate nutrient digestion by providing the enzymes

infants lack for the breakdown of milk glycans (170, 171). The

genomes of these bacteria encode a large number of carbohydrate-

metabolizing enzymes that are involved in HMO consumption

(170, 171), allowing infants to obtain more usable calories from

their food. For example, term infants with a diverse community

dominant in Bifidobacterium and Bacteroides have a higher

concentration of SCFAs, the end products of fermentation of

dietary fibers, than low-birth-weight infants (142). These

observations indicate that the microbiota contributes to the

digestion of more than 200 different oligosaccharide structures in

human milk (172). Moreover, intestinal bacteria possess genes for

vitamin synthesis, including vitamin B12 and folate (142).
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Impact of undernutrition on intestinal
development and function

The physiology of the intestine in the undernourished state mirrors

that of other chronic intestinal diseases, such as Celiac or Crohn’s

disease. The villi are sparse and stunted, reducing both the absorptive

surface area and the presence of digestive enzymes to mediate nutrient

breakdown. This reduced digestive and absorptive surface area likely

contributes to failed nutrient absorption and secretory diarrhea

following therapeutic feeds. Lactose and glucose malabsorption are

highly prevalent among malnourished children (4, 5) and constitute a

significant barrier to success with therapeutic feeds. Circumventing

these deficiencies through feeding reduced carbohydrate and lactose-

free formulations does not improve outcomes (6), indicating that more

work is needed to understand the molecular pathophysiology as it

impacts nutrient digestion and absorption in malnourished children.

There is limited information about the effect of severe undernutrition

on the intestinal epithelium.

The effects of undernutrition on the ISC compartment are

varied depending on the model. In wasting marmosets, there is

no change in ISC or Paneth cell number, but the progenitor pool

expanded (173). Several mouse models of undernutrition (1-2%

protein) exhibited reduced expression of ISC marker mRNAs (7,

174). These are in sharp contrast to caloric restriction studies in

which marked ISC and progenitor expansion occurs (40, 42, 175).

In a 28-week, 60% calorie restriction model, Paneth cells also

expanded (40); however, this has not been seen in other studies.

These expanded progenitor cells are poised for differentiation once

nutrient signals direct their specification, but in the case of

undernutrition, these signals may be drastically reduced or

absent, leading to dysfunction (42, 43, 175, 176). For example,

chronic loss of fatty acid oxidation (3 months) in response to

undernutrition compromises ISC and progenitor cell function

and abolishes the pro-regenerative effects of reduced nutrient

consumption (43). How undernutrition alters the ISC niche of

human patients remains an open question.

There is also relatively little known about the effects of

undernutrition on specific differentiated cells of the intestinal

epithelium. Villus atrophy is universally seen across caloric

restriction and undernutrition models (7, 40, 42, 173, 175–178),

accompanied by a decrease in absorptive enterocytes (40, 42, 173).

Goblet cell numbers are reduced in the intestines of mice, rats, and

piglet models of undernutrition, as well as mouse models of caloric

restriction (40, 42, 173, 179–183). Goblet cell loss leads to reduced

mucus (2) leaving the epithelial barrier more susceptible to insults

from pathogens or toxins (184). Goblet cell atrophy could result

from limited differentiation, dysbiosis (185, 186), or both.

Enteroendocrine cells (EEC) produce hormones that regulate

growth, hunger, and satiety and are reported as unchanged in

wasting marmosets and calorie-restricted mice, although Igarashi

et al. found a reduction in EECs in their mouse model of modest

(30%) calorie restriction (42). A subset of EECs exhibit reserve stem

cell potential (187), which can enhance regeneration after damage

(175). The effects of undernutrition on human EECs require further
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investigation. EECs regulate intestinal growth (17, 18); therefore,

dietary modifications influencing EEC form or function could be

important for developing targeted dietary therapies for

undernutrition. The effect of undernutrition on human tuft cells

is unknown, although these cells are drastically expanded in wasting

marmosets (173). Given the chemosensory role of tuft cells (20),

this expansion may protect the intestinal barrier through immune

surveillance and nutrient monitoring.

Undernutrition is characterized by leakiness of the intestinal

barrier, which is often measured by urine sugar excretion in human

studies (188). Barrier breakdown results from a reduction in tight

junction proteins (178) and elevated apoptosis leading to cell loss

(177, 178). Reductions in vitamin D signaling may contribute to the

disrupted barrier, as seen in inflammatory bowel disease patients

(189). Breaches in the barrier allow for luminal bacteria to

translocate into the circulation, loss of unabsorbed nutrients

through the unrestricted pathway (37, 38), and a loss of

absorptive surface area. These effects are exacerbated by decreased

bacterial diversity, presumably resulting from the reduction in

nutrient intake coupled with changes in the luminal environment

(190, 191). The intestinal microbiome is integral to intestinal

maturation (190, 192, 193) and its role will be discussed below.

While we do not completely understand the underlying intestinal

pathophysiology of undernutrition, several dietary modulations show

promise in preclinical models of undernutrition. One study used a

mouse model of undernutrition (1% protein diet) to show that bovine

milk extracellular vesicles could restore intestinal barrier function

after only 4 days of feeding. Although the study did not see differences

in growth, the short four-day time point was likely not long enough to

appreciate the benefits of a strengthened intestinal barrier (7).

Interventions such as bovine milk extracellular vesicles hold

promise for reducing the devastating toll of undernutrition on

children in the developing world. Another study used germ-free

mice colonized with bacteria from a stunted infant to demonstrate

that sialylated bovine milk oligosaccharides expand intestinal tuft

cells, among other physiological changes. This indicates the

importance of understanding the bacteria-substrate interactions

and how they may be altered in the presence of dysbiosis to impact

growth (192). These studies underscore the importance of the

intestine-microbiome relationship on systemic physiology,

especially in the context of undernutrition, and how much remains

to be discovered in this research realm.
Adequate nutrition is intimately linked
to intestinal immune function

The innate and adaptive immune systems are modulated by

nutrient status and key dietary components. Intestinal macrophages

and DCs respond to dietary nutrients, indicating the potential for

altered functionality in undernutrition. Macrophages are influenced

by retinoic acid (194), short chain fatty acids, amino acids (195), and

aryl hydrocarbon receptor ligands (196). For example, activation of

the aryl hydrocarbon receptor promotes intestinal barrier function

and limits inflammation-induced damage (197, 198). DC activity and
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homing can be shaped by retinoic acid (199), vitamin D (200, 201),

and glucose (202) levels.

The presence of enteral nutrients is key to GALT maintenance

and function through the maintenance of blood flow through the

tissue and continual antigen exposure. Intestinal macrophages are

also highly responsive to nutrients and dietary components. In rats,

administration of parenteral nutrition, whereby nutrients bypass

the digestive system and are administered into the circulation,

attenuates immune function in response to a bacterial insult (203,

204) and reduces macrophage regeneration (195). In mice, a 12-

hour fast is sufficient to induce GALT atrophy (205) and autopsies

of undernourished children reveal a loss of GALT tissue (206).

Adequately enterally-nourished hospitalized patients with

preserved mucosal immunity exhibit reduced infections and faster

discharge times compared to patients experiencing undernutrition

or fed parenterally (207–209), emphasizing the importance of

enteral nutrition in critically ill patients.

In addition to GALT tissue loss, undernourished children

secrete less sIgA (206, 210, 211) or secrete IgA that binds and

retains pathogenic bacteria capable of disrupting the intestinal

barrier and causing weight loss when transplanted into mice

(210). sIgA function is intimately linked to nutrition (101, 210).

sIgA selectivity and specificity are shaped by interactions between

the IgA molecule and bacterial surface glycans. These bacterial

glycans are influenced by the host’s diet and mediate differential

bacterial retention or shedding based on binding specificity (101).

Retention of beneficial bacteria has health benefits, such as

enhanced barrier function (212) and shaping the overall

microbiome ecosystem (71), while retaining pathogenic bacteria

can lead to disease (210). Imbalances in the microbial community

increase the risk of bacterial infections, which are exceedingly

common in malnourished children (213). sIgA is therefore a

critical mediator of intestinal microbial balance and, when

disrupted, magnifies the adverse effects of under or malnutrition

by promoting pathogenic colonization, reducing commensal

colonization, and exacerbating weight loss and barrier defects

concomitant with low nutrient states (101, 210).

Collectively, this suggests that nutrient status is linked to

immune tolerance and the ability to mount appropriate immune

responses indicating that undernutrition likely hampers

immune function.
Impact of undernutrition on the
intestinal microbiome and host

The symbiotic relationship between IEC, barrier function, and

the associated microbiome is intimately impacted by nutrition

(214–218). Numerous studies over the last decade illustrate that

undernutrition is linked to reduced microbial diversity and

microbiome immaturity (111, 190, 210, 219–221) and that this

“malnourished microbiome” is a major contributor to

undernutrition phenotypes as these can be transferred to animal

models with resulting impaired growth despite the provision of

adequate calories (111, 210, 221). Undernutrition is also associated
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with alterations in bacterial retention due to changes in bacteria

glycans and IgA affinity, which can affect the intestinal barrier

(101). In a 2014 study, microbiota maturity indices were used to

measure postnatal microbiota development in humans from birth

up to 24 months, giving rise to a means to classify malnutritional

states (190). They used machine-learning approaches to identify a

set of “age-discriminatory” taxa that defines “microbiota age.” The

model was then verified in a second cohort of Bangladeshi children

and a cohort of healthy children in Malawi, suggesting that it may

be used universally as a reference for normal intestinal microbial

ecology, and for comparison with a malnourished microbiome.

The microbiota of undernourished children is less efficient at

energy extraction from dietary nutrients, resulting in changes in

microbial metabolite production (222). Microbial metabolites are

critical regulators of intestinal barrier function (223), therefore

dysbiosis can exacerbate barrier leakiness and inflammation.

Additionally, microbial metabolites alter the host epigenome,

which can have long-term impacts on host health and physiology,

suggesting a potential mechanism for the sustained adverse effects

of undernutrition even after proper nutrients are provided

(111, 222).

Loss of various dietary components, including protein and

antioxidants, can severely impact microbiota composition and in

turn barrier function. A metanalysis across malnourished children

at five geographic sites suggests that loss of dietary antioxidants,

such as vitamins C and E and carotenoids, can alter the redox

potential of the gut, causing dysbiosis (224). They observed a loss of

specific anaerobic bacterial species, such as those from the

Bacteroidetes or Eubacteriaceae families, and increases in

aerotolerant bacteria like Escherichia coli, Enterococcus faecalis,

and Staphylococcus aureus, which are considered common

pathogens (224), indicating the importance of dietary

antioxidants in maintaining intestinal bacterial diversity and

reducing risk of enteric infection.

The ability to induce a sustained shift from an immature,

malnourished microbiome to a healthier, more diverse set of

bacteria is a major focus of current research (193, 225, 226).

Simply increasing nutrient intake is insufficient to permanently

shift the microbiome away from a malnourished state to a more

healthy and diverse population that maximizes energy extraction

and beneficial metabolite production. Recent work indicates that

microbiota-directed food interventions for undernourished

children may improve long-term health outcomes in

undernutrition (225, 226). These interventions provide foods that

not only offer adequate energy but also support a shift in bacterial

taxa away from the malnourished microbiome. In an interventional

study, Chen et al. (193) administered microbiota-directed

complementary food prototype (MDCF-2) or the standard ready-

to-use supplementary food (RUSF) to Bangladeshi children with

moderate acute undernutrition for three months and monitored

growth, plasma protein biomarkers, and fecal bacteria one month

following the intervention. The results indicated that the MDCF-2

diet promoted growth and was linked to circulating proteins

associated with bone growth and neurodevelopment, as well as a

more substantial restoration of the intestinal microbiota, indicating
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the importance of nutrients that mediate healthy shifts in the

microbiome and not simply those that add calories (193).

Although these findings need to be validated in more sites and at

a later time post-treatment, they show promise for improved

therapeutic diets for undernutrition. Maintaining this sustained

shift to a mature and diverse gut microbiome is critical to

preventing long-term negative consequences of undernutrition,

such as neurodevelopmental delays and the development of

obesity and metabolic disease later in life (218, 227).

Modulating the intestinal microbiome in undernutrition

has the potential to improve intestinal barrier and immune

function, as well as host energy extraction to improve long-

term outcomes.
Limitations of current models and
future directions

To combat malnutr i t ion successful ly , part icular ly

undernutrition, we need a more detailed understanding of the

associated underlying intestinal pathophysiology and intestinal

microbiome derangements. Presently, most non-interventional

undernutrition studies are conducted in mice or rats using

reduced or very low protein diets in isolation (7, 174, 176, 177,

228) or in combination with a germ-free background (229). While

these models exhibit some similarities to human undernutrition,

especially reduced growth, intestinal epithelial villus stunting, and

reduced IEC proliferation, they do not always mimic the

physiologic or morphologic changes (27). Additionally, the

intestines of mice and rats are immature and permeable at birth

(27, 230), whereas the human neonatal intestine is relatively mature

and only selectively permeable, more similar to the intestines of

young pigs (183, 231) or guinea pigs (232–235). Notably, most

studies of GALT took place in murine models where development

and composition are distinct from humans in several important

ways. Murine ILF develop early in prenatal development (236) and

consist almost entirely of B cells, whereas human ILF develop

shortly before and after birth and contain proportionally more T

cells (237–239). Therefore, modeling undernutrition in animal

models should account for these intestinal differences, recognizing

the caveats of using less mainstream species. Non-human primate

models of undernutrition could address the shortcomings of more

distantly-related models, with a potential for more relevant and

detailed understanding of the impacts of the effects on the intestinal

epithelium and microbiome, but cost is a factor in such research.

Human enteroid culture could circumvent many of these

challenges and allow for testing therapies and delineating

pathophysiological mechanisms within malnourished human

tissue. Enteroids are a rapidly emerging model system for

studying complex intestinal diseases and interactions (240),

including necrotizing enterocolitis (241, 242), bacterial or viral

infection (243–249) and fundamental IEC dynamics (250, 251).

The ability to model undernutrition ex vivo using human tissue

could accelerate progress in reducing and eliminating the

devastating consequences of undernutrition.
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Important unanswered questions include (1) how specific

nutrients or dietary components such as vitamin D, substrates for

the aryl hydrocarbon receptor, protein, carbohydrates, or even

food-derived extracellular vesicles impact intestinal cell

populations in the malnourished intestine; (2) how nutrients alter

barrier function in the malnourished intestine; (3) the timing of

physiological changes to the intestine in response to undernutrition;

(4) what constitutes the composition of a healthy gut microbiota in

well-fed individuals; and (5) which core gut microbes will lead to

the most favorable health outcomes. To tackle these questions and

more, we need improved models to study undernutrition, including

those that incorporate the microbiome (252). Furthermore, we need

to understand how maternal health and the microbiome prior to

and during pregnancy shape the foundations of infant gut

development and health, and how the dynamic interactions of the

mother-child dyad influence the same through long-term

longitudinal studies.
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135. Jiménez E, Fernández L, Delgado S, Garcıá N, Albújar M, Gómez A, et al.
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