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Berlin, Germany, 3Center of Gastrointestinal Diseases, Changzhou Second People’s Hospital,
Changzhou Medical Center, Nanjing Medical University, Changzhou, China
The biliary epithelial cells, also known as cholangiocytes, line the intra- and

extrahepatic bile ducts, forming a barrier between intra- and extra-ductal

environments. Cholangiocytes are mostly known to modulate bile composition

and transportation. In hepatobiliary diseases, bile duct injury leads to drastic

alterations in cholangiocyte phenotypes and their release of soluble mediators,

which can vary depending on the original insult and cellular states (quiescence,

senescence, or proliferation). The cholangiocyte-secreted cytokines (also termed

cholangiokines) drive ductular cell proliferation, portal inflammation and fibrosis,

and carcinogenesis. Hence, despite the previous consensus that cholangiocytes

are bystanders in liver diseases, their diverse secretome plays critical roles in

modulating the intrahepatic microenvironment. This review summarizes recent

insights into the cholangiokines under both physiological and pathological

conditions, especially as they occur during liver injury-regeneration,

inflammation, fibrosis and malignant transformation processes.
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Introduction

Cholangiocytes, also known as biliary epithelial cells (BECs), are specialized epithelial

cells forming the biliary epithelium and lining the bile ducts (1). In general, cholangiocytes

are polarized with apical and basal membranes corresponding to different functions: 1)

maintain bile flow via the cilium system and intraductal homeostasis via active biomolecule

transport; 2) modify bile via secreting bicarbonate (HCO3
−) through the plasma membrane

domain; 3) maintain cross-ductal interaction in the liver, depending on their tight

junctions and immunoglobulin A (IgA) secretion; 4) reabsorb different molecules,

including bile salts, bile acids, glucose, amino acids and ions (2–4). Cholangiocytes

represent a heterogeneous population in terms of morphological characteristics,

classically described as small or large cholangiocytes (5). Accordingly, cholangiocyte
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transcriptome is highly variable, so as their structural and metabolic

functions. Large cholangiocytes typically line the larger branches of

the biliary tree and form more complex structures than those small

cholangiocytes. Simultaneously, large cholangiocytes engage in

hormone-modulated bile secretion, while small cholangiocytes are

able to proliferate and exhibit functional plasticity in diseases (6–8).

Small cholangiocytes appear more capable of self-replication during

liver injury, implying their potential in the liver regeneration and

ductular reaction (DR) (9). DR is described as a complex of

dynamic interactions among liver parenchymal cells, stromal

cells, and immune cells, which serves a crucial machinery during

liver injury-regeneration, fibrogenesis , and malignant

transformation processes. Though not affirmatively being

recognized as the origins of DR, cholangiocytes participate in DR

as both initiators and executors (10).

To date, cholangiocyte biology has been merely studied in liver

diseases, due to their relatively small population in the liver. However,

a rising number of studies unveiled crucial functions of

cholangiocytes in liver pathobiology. Interacting with both intra-

and extrahepatic ductal environments, cholangiocytes are exposed to

both hepatic molecules and gut-derived stimuli [pathogen-associated

molecular patterns (PAMPs), danger-associated molecular patterns

(DAMPs) and microorganisms] (11, 12). Cholangiocytes have been

identified as collateral targets of various liver diseases such as fatty

liver disease [nonalcoholic fatty liver disease (NAFLD)/non-alcoholic

steatohepatitis (NASH)] and alcohol-related liver disease (ALD).

BECs are also directly injured in chronic cholestatic liver diseases

including primary biliary cholangitis (PBC), primary sclerosing

cholangitis (PSC), biliary atresia (BA) and cholangiocarcinoma (13,

14). Furthermore, stimulated cholangiocytes can adopt varying

secretory phenotypes. Importantly, bile duct-derived ductular cells

are considered to play active roles in liver regeneration, although

contradictory results suggest the necessity of a more comprehensive

analysis of their function. More interestingly, activated

cholangiocytes exhibit a peculiar secretory phenotype that

dramatically shapes their surrounding microenvironment by

modulating immune cell recruitment and mesenchymal cell

migration and activation (15). From our current understanding, the

release of cholangiokines (cholangiocyte-secreted cytokines,

including chemokines, growth factors, ect.) is associated with cell

statuses, which are affected by tissue inflammation, infection, and

metabolic dysregulations. Both acute and chronic liver disorders have

been shown to alter the BEC secretory profiles (16–18).

Consequently, elevating attention has been given to cholangiokines

in the liver, which inspires more work on obtaining in-depth and

systematic understandings.
Pathogenic triggers of
cholangiocyte activation

More than constituents of bile ducts, cholangiocytes play a

critical role in maintaining liver homeostasis, which refers to the

balance of various physiological processes in the liver. One of the

essential functions of cholangiocytes is to regulate biliary

composition and bile flow by secreting and absorbing electrolytes,
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water, and other solutes. Standing to reason, cholangiocytes are

vulnerable targets in cholangiopathies, which is a complex umbrella

term encompassing inherited disorders, autoimmune or other

poorly understood diseases (e.g., PSC, PBC and autoimmune

cholangitis), exogenous stimuli-induced injury (e.g., infection and

drug), ischemic injury and other undefined types of insults. Under

such injury conditions, cholangiocytes assuasively secrete

cholangiokines to sustain the microenvironment of the portal

area. Moreover, cholangiocytes participate in the immune

response and inflammation regulation through cytokine and

chemokine production. Therefore, circulating immune cells are

attracted and activated to promote portal inflammation (1, 19–22).

According to variable chronic liver injury mouse models, BECs

actively interact with hepatocytes and liver progenitor cells (HPCs) to

promote the DR, which ultimately constitutes an alternative liver

regeneration process (23, 24). Synchronously, BECs have been

determined to fuel DR by several cholangiokines (25, 26). Hence,

this section will demonstrate intriguing secretory phenotypes that

occur in cholangiocytes, triggered by a complex portal niche (Figure 1).
Cholestasis

Bile flow perturbation generally leads to an impaired bile efflux

to the intestines, resulting in a pathogenic accumulation of bile acids

in the intra-hepatic environment. Gradually concentrated and

thickened bile exerts detrimental effects on the gut-liver axis, thus

referred to as ‘toxic bile’ (27). Due to their anatomical location along

the biliary tree, cholangiocytes are amongst the first cells to be

affected by cholestasis. Studies have showed that higher levels of

interleukin-8 (IL-8), a potent chemoattractant for neutrophils, were

detected in the bile of PSC patients as compared to non-PSC

patients (28, 29), which suggests that bile duct injury induces the

secretion of inflammatory cytokines into the bile (30). Of note, the

effects of the main bile salts, namely tauroursodeoxycholate

(TUDC), taurocholate (TC), taurodeoxycholate (TDC),

taurochenodeoxycholate (TCDC) and taurolithocholate (TLC),

also remain to be defined. Results from Lamireau et al. indicated

that TC effectively stimulated murine BECs to release monocyte

chemoattractant protein-1/C-C motif chemokine ligand-2 (MCP-1/

CCL-2) and IL-6 (31). In addition, oxysterols were revealed to insult

cholangiocytes and induce malignancy transformation, which can

be taken as a destructive part of ‘toxic bile’ (32–34).

Neuroendocrine hormones including secretin (Sct), are released

by proliferating cholangiocytes (35, 36). Other than inducing biliary

bicarbonate secretion by binding with its basolateral receptor (SR)

(7, 37, 38), the Sct/SR axis plays a key role in the modulation of

biliary proliferation and hepatic fibrosis by influencing the BEC

secretome (35, 36, 39). The SR gene expression was shown to be

elevated in the biliary obstruction animal model after bile duct

ligation (BDL) (40). Furthermore, studies have shown that

increased expression of vascular endothelial growth factor-A

(VEGF-A) and transforming growth factor-beta 1 (TGF-b1)
occurs when the Sct/SR axis is activated, leading to enhanced

proliferation of ductular cells and fibrogenesis. Moreover, DR and

liver fibrosis can be ameliorated when the SR expression was
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genetically disrupted in BDL andMdr2−/− (Abcb4−/−) mouse models

(35, 39). Additionally, increased activity of the Sct/SR/TGF-b1 axis
was observed in the liver of PSC patients compared to healthy

livers (39).

Furthermore, fibroblast growth factor 19 (FGF19) was found in

the liver samples from patients with cholestasis (41). Exposure to

FGF19 has been associated with the proliferation and IL-6 release of

cholangiocytes (42). More importantly, human gallbladder cells

secrete FGF19 into the bile, which is assumed to participate in

cholangiopathies (43). Even though many other cell populations

have been identified as sources of FGF19, it would be interesting to

elucidate the functions of cholangiocyte-secreted FGF19,

particularly in the hepatoportal regions (44).

It has been reported that BDL-induced bile duct obstruction in

mice triggers cholangiocytes to secrete osteopontin (OPN) (45, 46).

Additionally, nerve growth factor (NGF) was found to be secreted

by cholangiocytes in an experimental mouse cholestasis model (47).

TGR5, well-known as a G-protein-coupled bile acid receptor, is

highly expressed on cholangiocytes and hepatic macrophages. It is

postulated that TGR5 can participate in bile production,

proliferation regulation and inflammation modulation. The

beneficial secretion of bicarbonate and chloride was known

attributing to the TGR5-mediated cholangiocyte activation (48).

Furthermore, it is hypothesized that TGR5 might impede hepatic

cell-cell communication, which either directly or indirectly affects

the cholangiocyte-associated secretory characteristics. Nonetheless,

the effects of TGR5 on the cholangiocyte secretome have already

been discussed elsewhere (49).
Exogenous stimulus

Environmental factors (microorganisms, drugs, ischemia, etc.)

serve a pivotal role in the cholangiocyte activation and pathogenesis
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of cholangiopathies. Notably, the microbiota has emerged as a crucial

mediator of BEC functions (50). Although hepatocytes and Kupffer

cells are generally responsible for the clearance of bacterial products in

the liver (51, 52), cholangiocytes can also play auxiliary roles in this

process, especially regarding the response to intraductal stimuli. In

terms of physiology, the gut barrier stands as the first line of defense

preventing external insults from entering the organism via the venous

system, while bile duct acts as the front-line defending bile-derived

insults (12). The portal channel, however, may allow certain bacteria,

PAMPs, and DAMPs to enter the liver, affecting biliary inflammation

or possibly inducing inflammation in the biliary tree. Paik et al. recently

reported that gut-resident bacteria can inhibit Th-17 cell functions by

producing bile acids (3-oxoLCA), which evidences a bacteria-induced

immune turbulencein the gut-liver inflammatory modulation (53).

Additionally, a growing number of studies have revealed the critical

functions that gut microbiota plays in influencing the progression of

liver disease, particularly in PSC and PBC (54–56). Indeed, PAMPs

refluxed into the bile duct can be sensed by cholangiocytes via pattern

recognition receptors, which can provoke a variety of inflammatory

signaling pathways and cytokine secretion.

Fundamentally, cholangiocytes express the Toll-like receptor

(TLR) family proteins, which are well-known as mediators in innate

immune responses (57, 58). TLRs can recognize microbial and

other exogenous molecules, PAMPs and DAMPs. Furthermore, the

TLR activation induced by PAMPs and DAMPs triggering their

conrrespondingsignaling pathways, results in the recruitment of

toll/IL-1-domain containing adaptor molecules [e.g., myeloid

differentiation protein 88 (MyD88)], and the activation of protein

kinases [e.g., IL-1 receptor associated kinase (IRAK)]. The

activation of these specific intracellular pathways leads to a

nuclear factor kappa-B (NF-kB)-dependent secretion of

proinflammatory cytokines/chemokines (59). Furthermore,

cholangiocellular autocrine and paracrine signals are robustly

enhanced by several cytokines including IL-1, IL-6, IL-8
FIGURE 1

Ductular reaction and cholangiokine secretion Cholangiocytes stand as a crucial component in the hepatic portal areas, maintaining liver
homeostasis. Cholangiocellular phenotypes can be altered by cholestasis, exogenous stimulus, and inflammatory factors. Besides evidence and
debates on cholangiocyte stemization and hepatocyte-cholangiocyte trans-differentiation, activated cholangiocytes drive the DR by producing
variable cytokines and chemokines, termed cholangiokines. Furthermore, cholangiokines are responsible for autocrine and paracrine effects in the
portal microenvironment. CIC, circulating immune cell; DAMPs, damage-associated molecular patterns; HC, hepatic cell; HSC, hepatic stellate cell;
KC, Kupffer cell; PAMPs, pathogen-associated molecular patterns.
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and interferon-g (IFN-g) (60). Moreover, emerging studies

have elucidated the mechanisms of microbiota implication

on cholangiopathies. For instance, PBC patients were found

to tolerate autoantibodies that can cross-react with bacterial

antigens from E. coli and N. aromaticivorans (61). E. coli

infection is known as a key factor in breaking immunological

tolerance against the mitochondria, resulting in the production of

PBC-specific autoantibodies (termed anti-mitochondrial

autoantibodies) (62). These findings lend credence to prospective

mechanisms underlying the secretome changes in association

with cholangiocytes.

In the past three years, Coronavirus disease 2019 (COVID-19)

has swept the world and brought new challenges to human diseases,

leading to investigations and discussions on the COVID-19-

interfered cholangiopathies (63, 64). A case report of COVID-19

patients discovered unique histologic features, including severe

cholangiocyte injury and intrahepatic microangiopathy in their

liver samples, suggesting a SARS-CoV-2-induced hepatic injury

(64). Additionally, SARS-CoV-2 can infect cholangiocytes via the

angiotensin-converting enzyme 2 (ACE2), which can be reduced by

ursodeoxycholic acid while being induced by farnesoid X receptor

(FXR) signaling in cholangiocytes (65).

Drug-induced cholangiopathies [also known as drug-induced

vanishing bile duct syndrome (VBDS)] were first described in rare

clinical cases (66). Certain medications, including carbamazepine

and amoxicillin/clavulanic acid, have been shown to cause biliary

damage (67). Additionally, fluorodeoxyuridines and 5-fluorouracil

were revealed to selectively induce injuries in large bile ducts (68).

Interestingly, cholangiocytes are implicated in drug metabolism as

they were shown to express cytochrome P450 (CYP450)

superfamily members (69, 70) . Therefore , functional

investigations linking drug metabolism or drug-induced liver

damage to the secretory characteristics of cholangiocytes are

highly anticipated.

Similar cholangiopathies with vanishing bile ducts, biliary

strictures and protein casts also occur after ischemic insults,

including ischemic-type biliary lesions (ITBL) after liver

transplantation, secondary sclerosing cholangitis of critically ill

patients (SC-CIP) after acute respiratory distress syndrome,

COVID-19, shock and sepsis (71). Regrettably, most studies only

investigated cellular injury or histological manifestations of such

cholangiopathies without a detailed description of cholangiocyte-

associated secretory phenotypes.
Endogenous stimulus

In comparison to injuries, endogenous stimulus, mainly

inflammatory factors, play pivotal roles in modulating a variety of

cholangiocyte phenotypes. In this context, cholangiocytes act as a

major sensor rather than an initiator of inflammation, which

possibly explains the general notion of cholangiopathies in most

acute and chronic liver diseases (14).

When there is a disturbance in homeostasis, cholangiocytes are

more susceptible to immunological responses, which enhances their

secretion of cytokines including chemokines, and angiogenic
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growth factors. For instance, IL-1 and tumor necrosis factor-a
(TNF-a) trigger cholangiocytes to release epithelial cell-derived

neutrophil-activating protein (ENA-78) and growth-related gene

products (72). Moreover, primary human cholangiocytes treated

with cytokines (IL-1b, TNF-a and IL-17) or TLRs-related PAMPs

[Pam3CSK4, poly(I:C) and LPS] can attract periductal Langerhans

cells (Langerin+ periductal cells) via secreting the chemokine

macrophage inflammatory protein-3a (MIP-3a) to activate

PAMPs-sensing TLRs, thereby regulating biliary innate immune

response in PBC (73). Poly (I:C)-treated primary cholangiocytes,

mimicking biliary damage in BA, also trigger a stronger release of

chemokine (C-X3-C motif) ligand 1 (CX3CL1) and the subsequent

attraction of malfunctional natural killer (NK) cells (74). Other

cytokines (IL-1b, IL-6, and IL-23p19) and chemokines [chemokine

(C-XC-C motif) ligand (CXCL)-1/2/3/6/8, CCL-2 and CCL-20)

were found enriched in the interlobular bile ducts from PBC

patients, which was also confirmed in the in vitro stimulation of

primary cholangiocytes with PAMPs [Pam3CSK4, poly(I:C) and

LPS] and IL-17 (75).

During persistent liver injury, cholangiocytes synthesize and

release TGF-b, especially TGF-b2, which was significantly increased
in reactive bile ducts of fibrotic livers. In turn, TGF-b further

promotes cholangiocytes to secrete endothelin-1 and regulates, in

a paracrine manner, the deposition of extracellular matrix in the

adjacent mesenchymal cells (76). Cholangiocytes appear to be

responsive to IFN-g, is mainly secreted by CD8+ T cells (77).

IFN-g was revealed to ameliorate fibrosis and cholestasis in

carbon tetrachloride-treated mice (78). On the other hand, IFN-g
induces a shift of cytokine secretion in cholangiocytes from an

acute inflammation pattern to a chronic inflammation feature,

serving an important driver of persistent inflammation in

cholangiopathies. Specifically, IFN-g represses IL-8 secretion while

enhancing the secretion of several cytokines including MCP-1 (79),

monokine (80), interferon-inducible T cell alpha chemoattractant

(ITAC) (81) and interferon-g-inducible protein 10 (IP10) (82).

Furthermore, IFN-g and IL-6 stimulate nitric oxide (NO)

production in cholangiocytes by inducing nitric oxide synthase-2

(NOS-2) expression (83). Besides, BECs exposed to IFN-g
exhibit a phenotypic flip between the acute and chronic

inflammatory processes in terms of their release of inflammatory

components (84).

IL-6, HGF and epidermal growth factors (EGF) can promote

the proliferation of cholangiocytes in vitro, while the secretion of IL-

6 can be further enhanced by IL-1b and phorbol myristate acetate

(85). Exogenous IL-6 addition can also rescue the activin-A-

induced growth inhibition of primary cholangiocytes in vitro (86).

With the assistance of NO, IL-6 is involved in the LPS-induced

sepsis-related systemic inflammatory response and is one of the

most powerful mitogens for cholangiocytes (87, 88). Moreover, LPS

and IFN-activated liver-derived macrophages (LDM) express high

level of CD154 (also known as CD40 ligand, CD40L), which triggers

the CD40-dependent changes of secreting proinflammatory

cytokines with increased IL-3, IL-12p70, IL-10 and GM-CSF but

reduced CXCL10, IL-6 and CCL2 in human cholangiocytes (89).

Studies have showed that TNF-a and IFN-g could disrupt the

barrier function of cholangiocytes (90–92). In addition,
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inflammatory macrophages secrete TNF-a in the earlier phases of

liver diseases, causing an upregulation of integrin avb6 on the

membrane of epithelial cells and leading to the binding and

activation of latent TGF-b1 (93). Furthermore, BECs can produce

MIP-3a/CCL-20 in response to cytokines (IL-1b, TNF-a and IL-

17) and PAMPs (73). Such evidence suggests that mutual influence

exists between macrophages and cholangiocytes during

inflammatory hepatic processes.

Furthermore, the inflammatory milieu directly drives the

alterations of the cholangiocyte secretory profile, leading to the

recruitment of activated liver mesenchymal cells, thereby

participating in the positive feedback loop of the inflammatory

response as part of the DR. As a hallmark of epithelial–

mesenchymal crosstalk, alterations in the reactive cholangiocyte

secretome include the upregulation of TGF-b1, TGF-b2, IL-6,
platelet-derived growth factor-B (PDGF-B) and CCL-2 (76, 94,

95). Hypothetically, endogenous stimulus derived by neighboring

cells and circulating immune cells play constant roles in

cholangiocyte activation and cholangiokine secretion, which

eventually stimulate cholangiocytes to be a remarkable mediator

in liver diseases.
Cholangiocyte-associated
secretory phenotypes

Under physiological conditions, cholangiocytes stay quiescent,

maintaining both local and systemic bile homeostasis (38, 96). Even

though the replication rate is limited in the quiescent state,

cholangiocytes are able to re-enter cell-cycle and proliferate upon

various exogenous or endogenous insults (97), and even

compensate for the proliferation-incapable hepatocytes to

regenerate liver parenchyma (98). The secretory dynamics of

cholangiocytes act in autocrine, paracrine, and endocrine

manners to maintain biliary homeostasis and regulate other cell

types including hepatocytes, HSCs, portal fibroblasts (PFs) and

immune cells (99). Cholangiocytes detect pathogens via the TLRs

and then secrete antimicrobial IgA into the bile, which serves a vital

barrier against germs from both the duodenum and portal vein

(100, 101), as well as a variety of cytokines (IL-6 and MCP-1) (102),

chemokines (103) and other active anti-microbial peptides (e.g.,

human beta-defensin-1, hBD-1) into the portal microenvironment

(104). Accordingly, these secreted substances have a variable

composition depending on the cellular state of cholangiocytes,

which creates a complicated secretory network that distinguishes

and maintains various cholangiopathies. In general, quiescent

cholangiocytes in the biliary system become activated as a result

of ongoing distress (e.g., targeted BEC injury and/or inflammatory

response caused by broader liver insults). Active cholangiocytes

have different cell cycle fates depending on the nature and duration

of the injury, primarily cell death, growth and senescence (97).

Following an acute insult, injured cholangiocytes undergo cell

death, either programmed (e.g., apoptosis) or non-programmed

(e.g., necrosis). The release of apoptotic bodies or DAMPs can

trigger a local inflammatory response, which aids in the clearance of

cell debris, leading to a time-constrained immune response.
Frontiers in Immunology 05
However, when a moderate injury occurs or persists,

cholangiocytes may re-enter the cell cycle, or engage into an

irreversible cell cycle arrest (termed cellular senescence), both of

which are accompanied by unique secretory patterns. Nevertheless,

several factors, including IL-1b, IL-6, MCP-1, stem cell factor

(SCF), TGF-b1, and PDGF, can be secreted by both proliferative

and senescent cholangiocytes (105). The similarities and differences

of secreted factors from cholangiocytes in proliferative and

senescent states are described in the following sections. To

understand the complexity of cell status-cholangiokine

association, we summarize relevant evidence in Table 1.
Quiescence-associated
secretory phenotypes

The anatomic location of the biliary system makes biliary

epithelium a fundamental barrier against microorganisms mainly

ascending from the duodenum and partially from the portal vein, or

as suggested by recent studies present in the bile (1, 124–126).

Thereby, under physiological conditions, cholangiocytes establish

an intricate cooperative machinery with other hepatocytes and

resident immune cells through direct or paracrine factor-

mediated intercellular communication. This is supported by a

recent study using single-cell RNA-sequencing data of human

liver samples, revealing an up-regulation of genes involved in the

secretion- and inflammation-related pathway in a subset of

cholangiocytes, thereby indicating a crucial role of quiescent

cholangiocyte secretome in maintaining homeostatic liver-biliary

microenvironment. Additionally, it shows the heterogeneity of

quiescent cholangiocyte populations in the liver, suggesting that

cholangiocytes may be in a dynamic physiological state as they

respond to occasional microbial assaults (127).

The majority of the immunoglobulins (Igs) in human bile are

secretory Igs, which significantly maintain liver homeostasis.

Hepatocytes effectively secrete most of the IgA in rodents,

whereas cholangiocytes represent the main source of IgA

secretion in human liver (101). Biliary immunoglobulins,

espec ia l ly IgA, are crucia l innate defenders against

microorganisms in the biliary tract and upper intestine. Quiescent

cholangiocytes also secrete alternative antimicrobial peptides [such

as defensins (104), mucins and mucin-associated trefoil peptides

(TFF) (120), lactoferrin (121) and cathelicidin (122)], contributing

to the basic defense of microorganisms in the biliary tract (128).

In addition to direct immunological defense through the bile,

quiescent cholangiocytes can recruit and/or maintain different

immune cells by expressing immune-modulating proteins on

their surface or by secreting chemokines and cytokines (2). For

instance, the cholangiocytes’ surface protein CD1d, which

resembles the MHC class I molecule, can activate NKT cells by

presenting lipid antigens (129). Cholangiocytes can also activate

mucosal-associated invariant T (MAIT) cells, which are prevalent in

the human liver and locate near bile ducts, by presenting bacterial

antigens via MHC class I-related protein (130). Under normal

circumstances, quiescent cholangiocytes secrete TGF-b2, which is

involved in maintaining periductular connective tissues and is
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TABLE 1 Cell status-associated cholangiokines.

Cell status Cholangiokines Conditions Ref

Activated

MCP-1/CCL-2 Liver specimens from patients with chronic hepatitis (106)

CXCL-1/2/5/10/12, IL-1b and TGF-b1

CHF mouse model [Pkhd1(del4/del4]-deleted] derived primary cholangiocytes stimulated by
CXCL-1 and -10 (93)

Liver specimens from CHF patients

IL-8, TNF-a PSC liver derived BECs exposed to TLR ligands (Pam3CSK4, LPS) (107)

IL-8

Human primary iBECs (from the non-neoplastic area of surgically resected livers of three
patients with metastatic liver cancer) exposed to LPS and IL-1b and TNF-a

(108)
Liver samples from patients with chronic viral hepatitis/liver cirrhosis/sepsis/extrahepatic biliary

obstruction/fulminant hepatitis/PBC/PSC

Fractalkine
Human cholangiocarcinoma cell line (HuCC-T1) and human intrahepatic BEC line exposed to

LPS and Th1-cytokines (IL-1b, IFN-g and TNF-a)
(109)

Activated
(proliferating)

IL-6 Human primary iBECs exposed to IL-1b and phorbol myristate acetate (85)

TGF-b2
Fibrotic specimens from patients with hepatitis B virus infection or alcohol abuse and rats with

fibrosis secondary to bile duct ligation and scission.
(76)

TGF-b1 and PDGF-BB Mouse-derived iBEC organoids exposed to acetaminophen (110)

Activated
(injured)

IL-18
Mouse liver injury model (DDC diet) derived cholangiocytes exposed by LPS and ATP

(111)
Liver samples from PSC patients

Fractalkine Liver specimens from PBC patients (109)

CCL-2 and Integrin-b6 iBECs dissected from targeted biliary injury mouse model (ihCD59BEC-TG) (112)

Activated
(senescent)

TGF-b Liver specimens from tamoxifen-inducible K19-Mdm2flox/flox tdTomLSL mice (113)

TGF-b1, MCP-1/CCL-2, IL-4, IL-5, IL-6,
IL-7, IL-10 and IFN-g

Liver specimens from PBC mouse model (dnTGF-bRII)
(114)

Bile and liver specimens from PSC patients

CXCL-11, CCL-20 Serum from PBC patients (115)

CCL-2/3/4/5, CX3CL-1, CXCL-1, CXCL-
2, CXCL-10 and CXCL-16

Mouse iBECs exposed to H2O2 and etoposide (116)

IL-6, IL-8, MCP-1/CCL-2, PAI-1
Normal human BECs exposed to LPS

(117)
Liver specimens from PSC patients

MCP-1/CCL-2, CCL20, IL-3, IL-11 and
IL-15

Mouse iBECs exposed to glycochenodeoxycholic acid (118)

TNF-a, IL-1b and MCP-1/CCL-2 Liver specimens from Mdr2-/- mouse model (119)

Quiescent

hBD-1 Human normal liver tissues (104)

Mucins and TFF Human normal liver tissues (120)

Lactoferrin and Lysozyme Human normal liver tissues (121)

Cathelicidin Human normal liver tissues (122)

TGF-b2 Human normal liver tissues (76)

CCL-2, IL-8 and IL-4 Primary iBECs from the non-cancerous liver specimens of one iCCA patient (102)

MCP-1/CCL-2 Human normal liver tissue (106)

IGF-1
Rat normal liver tissues

(123)
Liver samples from PBC patients
F
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markedly up-regulated in the proliferating bile ducts of fibrotic

livers (76). Last but not least, unstimulated primary human

intrahepatic BECs secrete a panel of cytokines/chemokines

in vitro, including IL-8, IL-4 and MCP-1 (102, 106), as

well as insulin-like growth factor-1 (IGF-1) from healthy

cholangiocytes (123).

Conclusively, in the healthy scenario, cholangiocytes mostly

remain quiescent but retain baseline secretion of immunoglobulins,

antimicrobial peptides, TGF-b2, IGF-1, etc., thereby dynamically

maintaining the homeostatic hepatic microenvironment.
Proliferation-associated
secretory phenotypes

When a moderate injury occurs, cholangiocytes can re-

proliferate to compensate for cell loss and repair the injury, which

is aided by the acute inflammatory response. Cholangiocellular

proliferation can be triggered by multiple pathways and stimulus,

including IL-6, hepatocyte growth factor (HGF), estrogen,

acetylcholine, and bile acids, all of which function through

binding to their specific receptors (8). One fundamental feature of

proliferating cholangiocytes is their enhanced secretion of variable

pro-inflammatory cytokines, chemokines, growth factors, defensin,

and other bioactive factors (99). With the timely repair of injury,

inflammation would also resolve, and this scenario represents an

acute inflammatory response without inducing aberrant

hyperproliferation of cholangiocytes (131). However, if the

damage persists to prevails over repair processes, cholangiocytes

abnormally proliferate and induce chronic inflammation through

interaction with various infiltrated immune cells, causing

angiogenesis and fibrotic response in the liver, termed DR (14).

In response to a variety of insults, including infections, cholestasis

and ischemia, quiescent cholangiocytes can be activated (97), and

acquire a hyperproliferative and neuroendocrine-like phenotype with

pro-fibrotic and pro-inflammatory secretome (57). Acting in an

autocrine/paracrine fashion, these released bioactive factors,

including pro-inflammatory cytokines and chemokines (e.g., IL-6,

IL-8, TNF-a and various growth factors), modulate cholangiocyte

biology and direct the prognosis of biliary damage (108, 132–134).

For example, IL-8 and TNF-a levels are substantially elevated in

cholangiocytes from individuals with advanced PSC compared to

those at the early disease stage (107). In the infection scenario,

Helicobacter bilis or fluke products (Opisthorchis viverrini

excretory/secretory products) can activate cholangiocytes to

proliferate and massively secrete IL-6 and IL-8, thereby initiating

innate mucosal immunity against microorganisms (135, 136).

Other chemokines secreted by reactive proliferating

cholangiocytes including fractalkine from injured small bile ducts

of PBC. Fractalkine possesses chemoattractant and cell-adhesive

functions in recruiting intraepithelial monocytes/lymphocytes by

binding to its receptor CX3CR1 (109). Moreover, MCP-1

expression was intensively but not exclusively up-regulated in the

epithelial cells of regenerating bile ducts (106), which contributes to

myofibroblastic trans-differentiation of portal fibroblasts, resulting

in biliary fibrosis and cirrhosis (94).
Frontiers in Immunology 07
Senescence-associated
secretory phenotypes

In a chronic damage scenario or under a susceptible genetic

background, injury-induced inflammation persists and causes

cellular senescence in the biliary epithelium. Senescence can be

induced by various factors, including repetitive replication-related

telomere shortening, oncogene activation or inactivation of tumor

suppressor genes, DNA-damaging interventions, and oxygen

radicals (137). The first unveiled feature of senescence is the

irreversible cell cycle arrest, leading to the limitation of cell

division in vitro (138). With the deepened investigation of

senescence in organisms, more hallmarks of senescence have been

revealed, including intracellular accumulation of dysfunctional

mitochondria, epigenetic alteration, apoptosis resistance,

metabolism changes and secretion of multiple bioactive factors,

so-called senescence-associated secretory phenotypes (SASP) (139).

The initiation of senescence is triggered by DNA damage response

(DDR), resulting in the activation of the p53 and the ERK/ETS1/2

pathways, which ultimately up-regulate the expression of p21CIP1

(also known as CDKN1A) and p16INK4a (also known as CDKN2A),

respectively (140, 141). As cell cycle blockers, the overexpressed

p21CIP1 and p16INK4a prevent cells from entering S phase from the

G1 phase. Moreover, unsolvable DDR activates the retinoblastoma

(Rb) and p53 pathways and promotes the formation of

promyelocytic leukemia nuclear bodies, which ultimately leads to

senescence-associated heterochromatin foci (SAHF) through the

ASF1A and HIRA chaperones (142, 143).

Senescent cholangiocytes are accumulated in patients with PSC

and alcoholic steatohepatitis and are associated with disease

exacerbation (117, 144, 145). Entering senescence enhances

metabolic levels, allowing cholangiocytes to resist apoptosis.

Furthermore, immune cells are responsible to eliminate these

apoptosis-resistant cells to prevent abnormal growth and

oncogenesis (142). Nonetheless, when senescent cells persist due to

an unsuccessful immunologic clearance, these senescent cells may

promote aggressiveness of their neighboring malignant cells (146) or

even acquire a stem cell-like phenotype themselves once being

released from cell cycle withdrawal (147). The significant role of

senescent cells root from not only their cell-autonomous changes but

also their non-cell autonomous traits for inducing neighboring cells

into senescence through their secreted TGF-b, as a bystander effect

(113). The bystander effect was also unveiled in the in vitro N-Ras-

induced senescent cholangiocytes, which promoted cell cycle arrest

and SASP secretion in their surrounding cholangiocytes (117).

Senescent cholangiocytes can be found in mouse PBC samples

at the early disease stage, resulting from the over-activation of the

Sct/SR pathway and its induced TGF-b1 secretion, which triggered

cytokine-induced senescence in an autocrine manner. SASP from

these senescent cholangiocytes activates Kupffer cells and HSCs in a

paracrine manner, leading to local inflammation and liver fibrosis

(114). Moreover, clinical evidence also indicated an unneglected

role of SASP from cholangiocytes in various cholangiopathies. For

instance, C-X-C motif chemokine ligand-11 (CXCL-11) and CCL-

20 from senescent cholangiocytes showed predictive value in

detecting ursodeoxycholic acid (UDCA) non-responsive PBC
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patients (115). Further in vitro study revealed that oxidative stress-

and DNA damage-induced senescent BECs exhibited stronger

secretion of chemokines (CCL-2/3/4/5, CX3CL-1, CXCL-1,

CXCL-2, CXCL-10, and CXCL-16), thereby attracting monocyte/

macrophage-like RAW264.7 cells, which suggested that the

influence of senescent cholangiocytes on the pathogenesis of PBC

was likely achieved by their environmental modulation (116).

Furthermore, elevated secretion of pro-inflammatory factors [IL-

6, IL-8, CCL-2, plasminogen activator inhibitor-1 (PAI-1)] was

evident in senescent cholangiocytes in PSC (117). More evidence

showed that CCL-2, CCL-20, IL-3, IL-11 and IL-15 were

upregulated in senescent BECs as SASP (118).Even though

senescent cholangiocytes are not well understood in BA,

intrahepatic bile duct-derived organoids exhibited reduced

cholangiocyte proliferation after receiving acetaminophen

treatment, while enhancing the secretion of TGF-b1 and PDGF-

BB, which indicated a possible role of senescence in this regard

(110). The pro-inflammatory factors from SASP label senescent

cholangiocytes as harmful actors involving in disease progression,

which opens the door for senescence-targeted therapy, such as

TGF-inhibition and senolytics, in the treatment of senescent

cholangiocytes-related bile duct disorders. For example, genetic or

pharmacological (Fisetin) elimination of cholangiocyte senescence

reduced the release of inflammatory markers (TNF-a, IL-1 and

MCP-1) and alleviated fibrosis in the progression of PSC (119).

Besides the canonical secretion of cholangiokines,

cholangiocytes were reported to possibly release extracellular

vesicles (EVs) containing IL-13Ra1 into the serum of PSC

patients (148). Higher protein levels of Cystatin-S, IL-13Ra1,

CD83, IL-1b and EMAP-2 were found in these serum EVs.

However, whether and how these EVs are released by

cholangiocytes are unclear due to the lack of EVs-tracing

evidence. Furthermore, another study revealed that LPS-induced

or PSC patient-derived senescent cholangiocytes can also release

EVs, which contain multiple growth factors, including EGF, while

containing low levels of cytokine/chemokine (149).

In summary, the secretory phenotypes of cholangiocytes are

dynamically modified by intrinsic evolutionary factors during the

life course of cholangiocytes, and by extrinsic microenvironmental

factors engaging with cholangiocytes. Regarding the complexity of

the cholangiocyte secretome, temporospatial regulation and cellular

context must be taken into account when deciphering the role of

cholangiocytes and other cell types in cholangiopathies.
Influences of cholangiokines on the
hepatic environment

During liver injuries, biliary cells are susceptibly disturbed by

both exogenous and endogenous stimulus, leading to cell damage.

Thus, persistent damage and dysfunction in cholangiocytes trigger

immune cell accumulation and inflammatory reaction, which cause

variable pathological consequences, including excessive deposition

of scar tissue in portal areas and biliary cirrhosis. This complex

response triggered by immune cells, mesenchymal cells, and

activated cholangiocytes is termed as DR (14). DR is orchestrated
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by a finely tuned interplay between proliferation, differentiation and

trans-differentiation of cholangiocytes, hepatocytes and HPCs,

ulteriorly fueling fibrogenesis and inflammation. Generally, in

hepatobiliary diseases, DR refers to similar manifestations,

including cholestasis, proliferation, inflammation, fibrosis, and

eventually carcinogenesis (150). Nonetheless, the nature of DR

remains obscure. As discussed in previous sections, cholangiocyte

phenotype alterations (e.g., SASP, proliferation) during DR can

drive cholangiocellular proliferation and inflammation by secreting

cholangiokines, which further favors DR progression. Coinciding

with current opinions, cholangiocytes are considered as not only

reactors but also potential initiators in DR (14, 151, 152). In this

context, cholangiokines may play crucial roles in different liver/bile

duct pathological models by modulating complex cellular

interactions, which will be discussed in detail in the following

sections (Figure 2).
Liver regeneration

The liver has a remarkable capacity to regenerate due to the

persistent occurrence of hepatocyte self-renewal. While the

facultative stemization of hepatocytes has been assumed as the

main origin of liver regeneration for centuries, cholangiocyte

proliferation and trans-differentiation appear to be a recently

recognized mechanism to enhance the liver regenerative

capacity (22).

Fundamentally, HGF and ligands of epidermal growth factor

receptor (EGFR), viewed as ‘complete mitogens’, can induce

hepatocyte proliferation, even in cultures without serum

supplement (153). In terms of liver regeneration, EGF,

amphiregulin (AREG), TGF-a and heparin-binding EGF-like

growth factor (HB-EGF) are more relevant to hepatocellular

proliferation by binding to EGFR (22). Uriarte et al. discovered

an increased secretion of HGF from HGF-19-treated murine

cholangiocytes (154). In the Mdr2-/- mouse model, senescent

cholangiocytes were found enriched with multiple growth factors,

including EGF (149). Zhao et al. used cholangiocytes with Cul3

(known as a tumor suppressor) gene deficiency to show that

cancerous cholangiocytes are prone to secrete AREG (155).

Moreover, another study indicated that cancerous cholangiocytes

upregulated HSC-based HB-EGF upon TGF-b secretion (156). In

addition, TNFs and IL-6 are known as ‘auxiliary mitogens’. A

delayed liver regeneration was recorded in mice with genetic TNF

receptor 1/2 (TNFR1/2)-deficiency (157) Simultaneously, IL-6-

deficient mice showed reduced activation of hepatocellular

STAT3, which is a determinant in promoting proliferation (158).

Interestingly, cytokines discussed above (e.g., TNF-a, IL-6) have

been known as a fundamental part of cholangiocyte SASP (105).

Other than supportive functions in hepatocellular proliferation,

activated cholangiocytes conduct a ‘self-rescuing’ program to

sustain their own proliferation and survival. During this ‘self-

rescuing’ procedure, cholangiocellular proliferation is initiated not

only by genetic/epigenetic alterations but also by autocrine/

paracrine cytokines. As described previously, IL-8 levels increase

in PSC patients’ bile. In addition, IL-8 caused cell proliferation
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when added to primary human cholangiocyte cultures (28). The bile

component TC protects cholangiocytes against injury. In mouse

BDL models, TC administration can enhance VEGF-A and VEGF-

C, which are key regulators of biliary proliferation during

cholestasis (159, 160). Gigliozzi et al. demonstrated that

cholangiocytes secrete NGF, which stimulated the proliferation of

cholangiocytes via protein kinase B (AKT)- and ERK1/2-dependent

mechanisms. In vivo, NGF neutralization decreased the proliferative

capacity of BECs in post-BDL rats (47). More interestingly, we

reported that the secretion of CCL-2 by injured cholangiocytes

attracts monocytes, which in turn upregulate integrin-b6 and favor

cholangiocyte proliferation. This study proposed a novel concept

regarding cholangiocyte-associated cellular crosstalk during liver

injury (112, 161). Taken together, bile duct repair is driven by

stimulatory and inhibitory, autocrine or paracrine secretory factors

originating from cholangiocytes. Promisingly, variable cells may be

involved in the complex regulation of such regenerative processes.
Inflammation

Inflammation is a fundamental orchestrator of BEC response to

liver injury. As discussed above, inflammatory factors effectively

influence the cholangiocyte secretory programs. In turn,

cholangiocytes with active secretory phenotypes regulate immune

cell accumulation and polarization.

Cholangiocytes are capable of sensing exogenous stimuli,

including PAMPs and DAMPs, via TLRs and the downstream

signal pathways. Upon sensing these stimuli, signaling cascades

mainly involving NF-kB, mitogen-activated protein kinase (MAPK)

and inflammasome, are rapidly activated (102, 111). Consequently,
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a broad spectrum of proinflammatory cytokines (e.g., IL-1b, IL-8,
IL-6, MCP-1, TNF-a, INF-g and TGF-b) and chemokines (e.g.,

CXCL-1, -8 and -16), is released by cholangiocytes (2, 162, 163).

Investigations of the liver immune landscape revealed that, the

recruited leukocytes are the leading responders in the immune

response towards bile duct alterations (2, 164). The first single-cell

analysis of liver samples from PSC patients indicates a strong

dynamism of T cells, among which naive CD4+ T cells are prone

to develop into T-helper (Th) 17 cells (165). Th17 cell accumulation

has also been observed in the liver biopsies of PBC patients,

specifically around the activated or injured intrahepatic BECs (75,

166). Reactive cholangiocytes regulate Th17 cell differentiation by

IL-6 and IL-1b (167). In addition, fractalkine/CX3CL1 and CXCL1

are released by reactive cholangiocytes, which further recruit

monocytes and T cells (109, 131, 168, 169). In response to biliary

injury, injured or senescent cholangiocytes dramatically release

TNF-a and IL-6 (105, 134). TNF-a not only activates naïve and

effector T cells, but also induces apoptosis of highly activated

effector T cells, further determining the scale of the pathogenic or

protective conventional T-cell pool (170). Meanwhile, IL-6 is not

only a key player in regulating the Th17/Treg balance, but also

exerts paracrine functions to promote terminal differentiation of B

cells and their subsequent secretion of immunoglobulins (171, 172).

Another important part of the liver’s innate immunity is the

hepatic myeloid cells, which execute crucial roles in either driving

liver injury or repairing hepatic malfunction in liver diseases, such

as cholangiopathies (161, 173, 174). We have revealed the

cholangiocyte-monocyte crosstalk using an acute biliary cell

injury mouse model. We found that the injured cholangiocytes

can promote the accumulation of CCR2+ monocyte-derived

macrophages (MoMFs) and alter bile acid metabolism, while the
FIGURE 2

Phenotype-depending secretion and functionality of cholangiokines. Cholangiocytes convert to a major source of functional cytokines in addition to
hepatocytes and immune cells. Cholangiokines exert perpetual influences on the hepatic environment. Quiescence-associated cholangiokines maintain
liver homeostasis, whereas cholangiokines released by cholangiocytes at their activated statuses (e.g., proliferation, senescence and injury) mediate
hepatocellular proliferation, fibrogenesis, DR and inflammation, which eventually cause hepatic carcinogenesis. IL, interleukin; CCL, chemokine (C-C
motif) ligand; EGF, epidermal growth factor; IgA, immunoglobulin A; TGF-b, transforming growth factor-b; IGF-1, insulin-like growth factor 1; IFN-g,
Interferon gamma; TFF, trefoil factor; CXCL, chemokine (C-X-C motif) ligand; AREG, amphiregulin; HB-EGF, heparin-binding-EGF; FGF-19, fibroblast
growth factor-19; TNF-a, tumor necrosis factor-a; VEGF, vascular endothelial growth factor, PDGF-BB, platelet-derived growth factor; CTGF,
connective tissue growth factor; NGF, nerve growth factor; MIP-3a, macrophage inflammatory protein-3a; MMP, matrix metallopeptidase.
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MoMFs provide important factors for cholangiocytes to proliferate

and restore biliary function (112). Furthermore, we have learned

from the liver samples of PSC patients and the ex vivo experiments

that, secretion of CCL-20 and CCL-2 from human primary

cholangiocytes favors monocyte infiltration (175). Additionally,

Mip-3a/CCL-20 can be released by the activated cholangiocytes to

induce the chemoattraction of immature dendritic cells by its

binding to CC chemokine receptor 6 (CCR6) (73). To sum up,

cholangiokines play a crucial role in hepatic immunomodulation.

However, a more precise understanding of cholangiocyte-driven

inflammation is necessary.
Fibrosis

In response to an injury, DR is driven by cholangiocyte

proliferation and their secretome, participating in the complex

regulation of portal inflammation and fibrogenesis (14).

Inflammation generates signals that attract liver mesenchymal

cells to bile ducts and portal areas. This process is considered to

be the primary stage of biliary or portal fibrosis. In this context,

interaction between reactive ductular cells and myofibroblast cells,

so-called epithelial–mesenchymal crosstalk, is a constant key

modulator in liver fibrogenesis, the process of which also involves

several profibrogenic factors (e.g., IL-6, TGF-b1/2, CCL-2 and

PDGF-B) (76, 94, 95).

During biliary fibrosis, proliferating BECs represent a

predominant source of the profibrogenic connective tissue growth

factor (CTGF) besides HSCs (176, 177). According to a recent

study, reactive cholangiocytes secrete TGF-b depending on the

Mothers against decapentaplegic homolog 3 (SMAD3) and lysine

Acetyltransferases 2A (KAT2A). Pharmacological inhibition of

Kat2a protein or cholangiocyte-selective deletion of Kat2a gene

was protective in mouse models of biliary fibrosis (178). BECs can

regulate the proliferation and myofibroblastic trans-differentiation

of HSCs to provoke the portal fibrosis by the CCL-2-based

paracrine (94). TGF-b1 and TGF-b2 were found upregulated in

cholangiocytes during chronic liver diseases, suggesting their

implication in biliary hyperplasia and fibrogenesis (76). Likewise,

IL-8 secreted by the activated cholangiocytes can stimulate the

production of profibrotic genes, suggesting that IL-8 may be

involved in the pathogenesis of cholangiopathies (28). Grappone

et al. suggested that PDGF-B chains can be produced by

cholangiocytes during chronic cholestasis (179). Recently,

Moncsek et al. disclosed that senescent cholangiocytes promoted

the activation of quiescent mesenchymal cells in a PDGF-dependent

manner (180). Another latest study has demonstrated that biliary

NF-kB-inducing kinase (NIK) could trigger DR. While the ablation

of NIK significantly decreased the expression of Il-1b, Il-4, Il-6,
iNos, Tnfa, Mcp1 and Tgfb1, thereby attenuating liver fibrosis (25).

What’s more, Liu et al. reported that cholangiocyte-derived

exosomal H19 plays a critical role in the progression of

cholestatic liver fibrosis by promoting the differentiation and

activation of HSCs (181). Integrin avb6 acts as not only a crucial

mediator but also a therapeutic target in liver fibrosis (182, 183).

Moreover, genetic suppression of Itgb6 (a gene encoding integrin
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avb6) in the mouse models of biliary injury is therapeutically

relevant to the attenuation of DR and biliary fibrosis (184, 185).

Pi et al. have revealed that CTGF and integrin avb6 regulate biliary
cell activation and fibrosis, probably through the secretion of

fibronectin and TGF-b1 (176). In conclusion, activated

cholangiocytes and their cholangiokines might be promising

therapeutic targets for ameliorating liver fibrosis.
Carcinogenesis

Primary liver cancers, including hepatocellular carcinoma

(HCC) and CCA are a tremendous burden to global health, but

their pathomechanisms are only partially understood (137, 186).

From a short-term perspective, cholangiokines contribute to

hyperplasia, inflammation and fibrogenesis of the hepatic portal

areas. In the long run, cholangiokines may eventually fuel the

malignant transformation of hepatic cells through continuous

autocrine and paracrine stimulation.

IL-6 has been determined by several studies as not only a key

driver but also a promising therapeutic target for liver cancers (187–

189). IL-6 levels are highly presented in the serum and bile of CCA

patients and culture medium of CCA cell lines (190). Recent studies

concluded that HCC and intrahepatic CCA (iCCA) are significantly

driven by IL-6 and its associated inflammatory processes (191, 192).

IL-6 promotes the survival of transformed cholangiocytes through

different pathways. In particular, the IL-6-activated p38 pathway

determines cell proliferation by mediating p21WAF1/CIP1 and p44/

p42 MAPK (193). Even more intriguingly, single-cell analysis of

iCCA patient specimens showed that CCA-derived exosomal miR-

9-5p elicited a high secretory possibility of IL-6 in cancer-associated

fibroblasts to promote tumor progression, suggesting broader roles

of cholangiocyte- derived IL-6 in the tumor microenvironment

(TME) (194).

EGF administration can provoke CCA progression by

triggering epithelial-mesenchymal transition (EMT). In addition,

the upregulation of TGF-a favors the proliferative levels of HCC

cells (195). EGF and TGF-a regulate cell proliferation and

differentiation by binding EGFR (196). Earlier studies also

revealed a positive correlation between EGFR inhibition and HCC

suppression (197, 198). Inoue et al. characterized that blocking

EGFR by vandetanib in liver cancer models yielded a significantly

reduced tumor vessel density and tumor growth, while enhancing

tumor cell apoptosis and survival prolongation with reduced

number of intrahepatic metastases (199). Moreover, it has been

well elucidated that hepatic myofibroblasts promote malignancy

progression in CCA patients through their HB-EGF-induced

activation (156, 200), which is consistent with the fact that

myofibroblasts are also prone to trigger the cholangiocyte-

secreted PDGF-B (201).

TGF-b and its related signaling cascades play a central role in

inflammation, fibrogenesis and immunomodulation in the TME of

liver cancers (202, 203). A recent study indicated a positive feedback

loop of TGF-b and LIN28B in CCA metastasis (204). TGF-b has

also been found to promote the progression of CCA and HCC by

interacting with non-coding RNAs (205–208). More strikingly,
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TGF-b exerts immunoregulatory functions in HCC, mainly via

suppressing T cells (202, 209). Interestingly, the blockade of TGF-b-
induced activated dendritic cells enhances the lethal effects of T cells

in CCA (210). Thus, TGF-b potentially disturbs immunotherapies

in liver cancers, which makes it a promising target to attenuate

immunotherapy resistance. Besides, TGF-b was also found to

regulate monocyte/macrophages in liver cancers. Yan et al.

reported that TGF-b fosters the expression of T cell

immunoglobulin domain and mucin domain-3 (TIM-3/CD366)

on monocytes, which augments the infiltration of tumor-

associated macrophages in HCC (211). Ning et al. demonstrated

that the induction of imbalanced TGF-b1/BMP-7 pathways in HCC

cells could significantly reinforce the aggressiveness and stemness of

HCC cells (212).

Novel observations indicate that VEGF is a master factor in

l ymphang i o g e n e s i s a n d t h e immun e r e s p on s e t o

cholangiocarcinoma (84). The secretion of VEGFs, angiopoietin-

1/2, PDGF and TGF-b from tumor cells or other cell types robustly

modulate the TME, which is a critical component of tumor biology

(213). The VEGF-A secretion by CCA cells can be mediated by

other factors including IGF-1, its receptor IGFR as well as the

estrogen receptor (ER) family (214, 215). Furthermore, estrogens

induce the proliferation of CCA cells by VEGF/VEGFR2 mediation

(216). VEGF-A, on the other hand, induces cholangiokines,

including matrix metalloproteinase (MMP)-7 and -9, from CCA

cells, which contribute to the significant remodeling of extracellular

matrix (ECM) and the extensive tumor metastasis (217).

Notably, TNF-a plays contradictory roles in liver cancers.

Commonly known as a participant in maintaining homeostasis of

cancer immunobiology, TNF-a unveils its ‘dark side’ to provoke

chronic inflammation, EMT and angiogenesis, which may fuel the

aggressiveness of cancers (218). Interestingly, high-dose

administration of TNF-a inhibits neovascularization in mice,

whereas low –dosed TNF-a promotes angiogenesis by increasing

the expression of VEGF, VEGFR, IL-8 and basic FGF (219).

Another study underlined that TNF-a strengthened the migration

behaviors of CCA cells by upregulating their EMT markers,

including ZEB2, vimentin and S100A4. Moreover, TNF-a has

been shown to induce TGFB overexpression, which eventually

promotes cancer cells to migrate (220). Yuan et al. described a

novel phenomenon that TNFs favor cholangiocellular proliferation,

differentiation and transformation due to the induced chronic

mitochondrial dysfunction and the accumulation of reactive

oxygen species (ROS). This finding enriches the research

directions of TNF-a meditation in CCA (221). Even though

cholangiokines can hardly be concluded as a robust oncogenic

secretome based on our current knowledge, various tumor-

promoting cytokines secreted by cholangiocytes have been

evidenced to regulate TME.
Conclusions and future perspectives

Although the quantitative contribution of cholangiocytes to the

total liver mass and the hepatic secretome appears modest,
Frontiers in Immunology 11
cholangiocytes play essential roles in a vast array of disease-related

mechanisms and shape the portal area microenvironment. Sensitized

by various injuries, stimuli or immune disturbances, cholangiocytes

release cholangiokines, which broadly participate in liver

immunology, inflammation, fibrogenesis and malignant

transformation. Particularly, cholangiokines are gaining recognition

for their involvement in cholangiopathies and primary liver cancers.

Of note, better characterization of the cholangiokines may provide an

in-depth understanding of cholangiocyte-driven pathophysiological

processes. Nonetheless, the paracrine and autocrine nature of

cholangiokines poses some technical challenges, as their functions

need to be interpreted in the spatiotemporal context of the hepatic

microenvironment. Even though the practicability of cholangiokines

as diagnostic/prognostic markers is still hidden in fog, emerging

biotechnics can incarnate wind to achieve it. Recently, several novel

approaches, such as multiplex immunostaining, imaging mass

cytometry and spatially resolved single-cell sequencing, have

emerged for in situ liver studies, which shed light on differential

spatial heterogeneity of the hepatic parenchymal and immune cells

(164, 222–224). Furthermore, by tying up the single-cell spatial or

newly developed single-cell Stereo-sequencing methods (225),

pathomechanisms of cholangiokines associated with time phases,

zonation and functionality are anticipated to be soon and

decently determined.
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