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Editorial on the Research Topic

Next generation MSC therapy manufacturing, potency and mechanism
of action analysis
Introduction

Mesenchymal stromal/stem cells (MSCs) are non-hematopoietic cells found in

vascularized tissues and organs, that possess profound immunomodulatory and

regenerative properties, which warrant their application in cellular and regenerative

therapy (1–7). Regulatory authorities have already approved MSC therapies for several

clinical conditions, such as Graft-versus-Host Disease (GvHD), Perianal Fistula in Crohn’s

Disease, and Critical Limb Ischemia (6, 7). However, there are still some limitations with

this novel type of cell therapy that need to be understood and addressed, and thus form the

basis for this and other earlier Research Topics (2, 3). These concerns are mainly due to

contradictory results on MSCs’ therapeutic efficacy profile in preclinical models compared

to real-world experience in different clinical indications (7–9). In addition, there are also

some minor safety concerns related to systemic infusion that should not be overlooked (4,

5, 10). However, both efficacy and safety limitations may be overcome through improved
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understanding of MSC product properties, handling, and function

(2, 4, 5, 9, 11–19). Indeed, any remaining limitations with this novel

type of therapy may be largely due to variations in MSC products,

their manufacturing practices, a lack of understanding on their

optimal clinical delivery, their in vivo mechanism of action (MoA),

and the concomitant clinical indications, and in particular the

insufficient clinical potency assessment (4, 5, 9, 11–23). In this

Research Topic, we have collected 13 original research and review

articles that address new strategies for improved manufacturing,

and MoA and potency assessment in clinical trials, for the design of

next-generation MSC therapies with optimal clinical efficacy and

safety Figure 1.
Fresh vs frozen thawed MSCs

Clinical use of cryopreserved “off-the-shelf” MSC products is a

feasible strategy in which cryopreserved cells are thawed near the

bedside and infused immediately into the patients (11). This strategy

has been discussed as a potential confounder of MSC efficacy since

preclinical data have shown a discrepant functionality of MSCs

immediately post thawing (11, 16, 24–31). These prompted insights

on the clinical testing of “fresh MSCs” either derived from actively

growing culture or post thaw culture rescued from cryopreservation.
Frontiers in Immunology 02
Stenger et al. tested the safety of autologous “fresh MSCs” in 11

patients with GvHD (n=4 Acute; n=7 Chronic). Culture rescue was

deployed in a multi-dosing strategy where bone marrow (BM)-MSCs

were expanded and cryobanked from a single BM aspiration.

Subsequently, the cells were thawed and culture rescued for 72

hours prior to infusion. Intravenous (IV) infusions of fresh MSCs

were well tolerated in these patients and no dose associated toxicity

was observed. Three out of four acute GvHD patients displayed

partial to complete responses to freshMSCs. In chronic GvHD, three-

month overall responses were partial (n=5), stable (n=1) and

progressive (n=1). Although this study’s primary endpoint is safety,

the efficacy data, particularly for acute GvHD, are encouraging, since

the responses are equivalent to FDA approved second line treatments

for steroid resistant GvHD. Ekpo et al. put forth an opinion paper on

cryopreservation of cell-based drug delivery systems. The authors

emphasize, when stem cells (ex. MSCs) are utilized as a vehicle for

drug delivery, cryopreservation formulations need to be well

researched, since the cryopreservation process could negatively

impact the functionality of drug formulations and their therapy

efficacy. Fernandez-Santos et al. provided a general guide, including

rules and legislation, for homogenous MSC manufacturing, cell

banks, optimal cryopreservation and post thaw potency

assessments for improved therapy. In support, Willer et al.

demonstrated that pooled human BM-MSCs during cell
FIGURE 1

Next Generation MSC Therapy Manufacturing, MoA and Potency Analysis. Next-generation MSC therapy improvements to safety and efficacy include
among others: 1) Considerations on variations in the MSC source material, e.g. typically including bone marrow (BM), adipose tissue (AT), perinatal
tissue (PT), and induced pluripotent stem cell (iPSC)-derived MSC products; 2) The relevant impact of donor comorbidities, e.g. the role of the body
mass index (BMI), obesity, and the typically associated common comorbidities that are increasing in the population, such as type 2 diabetes (T2D)
and chronic kidney disease (CKD); 3) Improved MSC product manufacturing, e.g. 2D vs. 3D expansion and in particular the anticipation of the degree
of cell expansion and respective loss of potency, but also concomitant safety considerations; 4) Improved clinical delivery of MSC products, e.g.
anticipating the role of cryopreservation and freeze-thawing, but also various cell priming strategies, such as cytokine and mechano-transduction
licensing; and 5) Better understanding of the mechanisms of action (MoA) of MSC products in vitro and particularly in vivo in respective patients and
clinical cohorts with their very own specific requirements and covariates that may confound treatment safety and efficacy; and 6) Coordinated and
relevant safety, efficacy, and potency Assessment with suitable approaches, e.g. the combinatorial assay-matrix-approach, and concomitant potency
screening but also potency and safety improvements.
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manufacturing process minimize product variations and accelerate

effective wound healing in the animal model. This “decision-making

approach” identified the preferable use of fresh MSCs over readily

thawed MSCs and the significance of repeated delivery for future

clinical wound healing studies. Accomplishment of sustained efficacy

of MSCs is imminent in moving forward and thus inclusion of the

“Freeze-Thawing” confounder in the cell manufacturing needs to be

taken into consideration.
Potency metrics of MSCs

Potency analysis is now often mandatory for determining

MSCs’ release criteria as cellular therapeutics in advanced clinical

trials and marketing approval depending on the regional regulatory

requirements (32). Considering the complex MoA and the

involvement of more than one single effector molecule/pathway

associated with MSCs’ functionality, a “combinatorial-potency-

assay-matrix” approach to define MSC potency has recently been

proposed by the International Society for Cell Therapy (ISCT) (22,

30). Robb et al. developed an innovative, sensitive and quantitative

assay matrix strategy to define putative critical quality attributes of

adipose tissue (AT)-derived AT-MSCs and to distinguish some

critical processing parameters and the impact of donor

heterogeneity. This strategy included combinatorial analysis of

AT-MSCs’ morphometrics, gene and protein multiplex, and

functionality, such as macrophage polarization and angiogenic

fitness. This multivariate assay-matrix-strategy identified panels of

putative critical quality attributes for immunomodulatory and

angiogenesis fitness (with minimum and maximum value ranges),

which can be used to screen culture conditions and potential donors

for optimal MSC potency. Wiese et al. deployed a robust and

standardized potency assay to identify tissue specific effector

molecules on MSCs. Umbilical cord (UC)- and BM-derived MSCs

were compared with and without exogenous cytokine activation for

the enumeration and quantification of effector genes and soluble

analytes as a surrogate measure of potency, to correlate them in the

future with functional clinical outcomes (positive/negative). This

cytokine activation strategy attenuated heterogeneity of

unstimulated MSC populations and thus can inform a more

standardized potency assay.
Augmentation of MSC’s potency

First generation clinical trials largely employed MSCs in their

non-activated “resting stage”, while preclinical studies provided

pathway to inform on second generation clinical trials with

augmented potency involving not only primed/activated/

preconditioned MSCs (33), but also their products such as

exosomes and extracellular vesicles (EVs) (34). Hackel et al.

compared the immunoregulatory properties of unstimulated and

cytokine-cocktail-licensed/primed MSCs and their EVs, to obtain
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more robust therapeutic responses in vivo. EVs derived from

cytokine-cocktail-primed MSCs displayed enhanced therapeutic

efficacy in the animal model of GvHD, which was abrogated with

the blockade of PD1-PDL1/PDL2 pathway. This strategy provided

insights that EVs from primedMSCs can be used therapeutically with

augmented potency. In contrast to cytokine mediated priming,

Skibber et al. deployed a mechano-transduction strategy with

distinct biomechanical cue named Wall Shear Stress (WSS) to

enhance MSC potency. The WSS-conditioning did not affect MSCs’

viability and identity, but enhanced their immunomodulatory

potency. This mechanotransduction mediated priming is an

exciting step forward, since it can be easily translated to enhance

MSCs’ potency. Boland et al. reviewed the challenges of employing

resting MSCs in patients with comorbidities, such as obesity, since

obese microenvironment alters the immunomodulatory functions of

MSCs (35). The authors propose that “one size fits all” strategy may

not work when considering diverse comorbidities. Utilizing such an

approach may not only mitigate the potency of MSCs, but also

compromise patient safety due to the thromboembolic nature of

obesity and its associated cardiovascular comorbidities (2, 4–6, 10, 14,

15, 19, 36, 37). Consistent with other studies, the authors propose that

clinical studies should consider priming of MSCs and anti-

thrombotic prophylaxis for patients with obesity and metabolic

disorders, to lower any apparent risk of severe thromboembolic

events (e.g. venous or pulmonary thromboembolism), which is a

well-known potential side-effect of MSC infusion undertaken without

the necessary precautions or awareness (2, 4–6, 10, 13–15, 19, 36, 37).
Reprogramming and genetic
manipulation of MSCs

Although MSCs are considered more-than-minimally-

manipulated cell therapy products by regulatory authorities,

advances are necessary to reprogram and genetically manipulate

MSCs for the management of certain illness. Balina-Sanchez et al.

demonstrated the feasibility of reprogramming and generating

induced pluripotent stem cell (iPSC)-derived MSCs from urine

epithelial cells of pediatric patients with brain tumor. This study

also showed that these reprogrammed MSC populations from brain

tumor patients are equivalent to healthy controls in their

immunomodulatory functions. This brings insights on the utility

of non-invasive technology to manufacture MSCs for the

investigational clinical use in pediatric patients. Ramamurthy

et al. detailed challenges and drawbacks of gene editing/addition

strategies to produce FVIII in placenta derived MSCs. Although

reporter genes can be efficiently inserted to the specific locus

utilizing CRISPR/CAS9 strategy, transgene of FVIII could not be

knocked in due to the size limitation. Transgene or CRISPR/CAS9

introduction using plasmids upregulates several proinflammatory

Toll Like Receptors and stress responses in endoplasmic reticulum

which can intervene MSCs’ functionality. These raise caution when

utilizing gene addition strategies on human MSCs.
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MSC therapy for COVID 19 and
mechanism of action

MSC’s beneficial lung homing, immunosuppressive and

regenerative properties have attracted their use to mitigate acute

respiratory distress syndrome (ARDS) resulting from coronavirus-

induced disease-2019 (COVID-19) (6, 10, 38). Gregoire et al. tested

the safety and efficacy of IV infusions of BM-MSCs in eight patients

with severe COVID-19 who were admitted in intensive care unit.

No adverse effect related to MSC infusion was observed in these

patients. Retrospect comparison with the matched patient controls

has demonstrated that survival is significantly higher for patients

receiving MSC therapy. In contrast to Stenger et al., this clinical trial

utilized immediately thawed MSCs, which is a feasible strategy in

medical emergency management situations. However, preclinical

data also has demonstrated that cytokine priming strategies and

other cryopreservation optimization strategies can be deployed to

attenuate the cellular injury associated with freeze thawing (11, 16,

27, 31, 39, 40). Adoption of these strategies in cell manufacturing

and clinical utilization would further enhance the efficacy of MSCs

for clinical emergency management. Nevertheless, the MoA of

MSCs in executing anti-inflammation and immunoregulation in

mitigating the severity of COVID-19 akin to ARDS is yet to be

understood (2, 10, 41). Indeed, the MoA of MSCs upon infusion

into patients is highly complex, and this knowledge is still

developing (5, 10, 41), though at least three major MoAs has been

proposed including differentiation into mesodermal tissues,

modulation of immune cells, and in particular the polarization of

macrophages with efferocytosis of apoptotic MSCs (23, 42, 43),

although in vivo engraftment and differentiation of MSCs is only

transient and very minimal at least in part due to triggering of the

Instant Blood-Mediated Inflammatory Reaction (IBMIR) and the

concomitant rapid destruction of the majority of the infused cells (4,

5, 12–16, 27, 39); Indeed, typically >80% of the therapeutic cells

are lost within the first 24 hours post infusion. Zheng et al. provided

key insights on the MoA of MSCs involving efferocytosis, a

phenomenon in which apoptotic debris is cleared by phagocytes

and maintain or restore homeostasis (8, 31, 43). They discussed the

role of resident and migratory phagocytic cells of the secondary

lymphoid organs in mediating MSCs’ therapeutic effect. The role of

efferocytosis and associated phagocytes in the secondary lymphoid

organs in mediating MSCs’ therapeutic effect in COVID needs

further investigation.
Conclusion

The horizon for the use of next generation engineered MSCs

appears bright with both genetic and non-genetic engineering

strategies emerging. Together with quantitative approaches to
Frontiers in Immunology 04
fully and carefully characterize MSC potency attributes, the

editors of this series are optimistic that the next generation MSCs

will be more efficacious in clinical trial outcomes and bridge the gap

to clinical and commercial success.
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