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Machine learning-based on
cytotoxic T lymphocyte evasion
gene develops a novel signature
to predict prognosis and
immunotherapy responses
for kidney renal clear cell
carcinoma patients

Mei Chen, Zhenyu Nie, Denggao Huang, Yuanhui Gao,
Hui Cao, Linlin Zheng and Shufang Zhang*

Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University,
Haikou, China
Background: Immunotherapy resistance has become a difficult point in treating

kidney renal clear cell carcinoma (KIRC) patients, mainly because of immune

evasion. Currently, there is no effective signature to predict immunotherapy.

Therefore, we usemachine learning algorithms to construct a signature based on

cytotoxic T lymphocyte evasion genes (CTLEGs) to predict the immunotherapy

responses of patients, so as to screen patients effective for immunotherapy.

Methods: In public data sets and our in-house cohort, we used 10 machine

learning algorithms to screen the optimal model with 89 combinations under the

cross-validation framework, and 101 published signatures were collected. The

relationship between the CTLEG signature (CTLEGS) and clinical variables was

analyzed. We analyzed the role of CTLES in other types of cancer by pan-cancer

analysis. The immune cell infiltration and biological characteristics were

evaluated. Moreover, the response to immunotherapy and drug sensitivity of

different risk groups were investigated. The key gene closely related to the

signature was identified by WGCNA. We also conducted cell functional

experiments and clinical tissue validation of key gene.

Results: In public data sets and our in-house cohort, the CTLEGS shows good

prediction performance. The CTLEGS can be regard as an independent risk factor

for KIRC. Compared with 101 published models, our signature shows

considerable superiority. The high-risk group has abundant infiltration of

immunosuppressive cells and high expression of T cell depletion markers,

which are characterized by immunosuppressive phenotype, minimal benefit

from immunotherapy, and resistance to sunitinib and sorafenib. The CTLEGS

was a l so s t r ong l y co r r e l a t ed w i t h immun i t y i n pan-cance r .

Immunohistochemistry verified that T cell depletion marker LAG3 is highly

expressed in high-risk groups in the clinical in-house cohort. The key CTLEG

STAT2 can promote the proliferation, migration and invasion of KIRC cell.
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Conclusions: CTLEGS can accurately predict the prognosis of patients and their

response to immunotherapy. It can provide guidance for the precise treatment of

KIRC and help clinicians identify patients who may benefit from immunotherapy.
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Introduction

Kidney cancer accounts for 4% of newly diagnosed tumors and

2% of deaths; it is more common in men than women (1). Kidney

renal clear cell carcinoma (KIRC) is the main histological subtype of

kidney cancer. KIRC has intratumoral and immune heterogeneity,

thereby posing a major challenge in anticancer therapy and

contributing to clinical differences in patient response to therapy

(2, 3). Targeted drugs are the main treatment for patients with

kidney cancer; however, many patients are resistant to these drugs

(4). Immunocheckpoint inhibitor (ICI) combination therapy has

become the first-line treatment for advanced kidney cancer (5, 6).

Immunotherapy is one of the therapies with the greatest potential

for providing radical treatment opportunities for tumor patients.

Programmed cell death protein 1 (PDCD-1)/programmed death-

ligand 1 (PD-L1) inhibitors, commonly used for KIRC treatment,

improve the clinical outcome of patients; however, not all patients

respond to immunotherapy (7–12). The heterogeneity of the tumor

microenvironment makes patients benefit differently from ICI, and

many patients develop drug resistance (13). Therefore, constructing

a reliable signature for evaluating the immune microenvironment

and predicting the efficacy of immunotherapy in patients is vital.

T cells are the main immune cells of KIRC, and T cells with high

expression of PDCD1 are the depletion phenotype of KIRC (14).

Cytotoxic T lymphocytes (CTLs), also known as CD8+T cells, are

the main cells of anticancer immunity and the main focus of cancer

immunotherapy (15). ICI resistance occurs when the immune

system overactivates CD8+T cells and differentiates them into

terminal depletion phenotype; moreover, the expression of

coinhibitory receptors PDCD1, T cell immunoglobulin and mucin

domain 3 (TIM-3), and lymphocyte-activation gene 3 (LAG3)

increases (16). Many immunotherapies require CD8+T cells to

recognize and kill tumor cells, and immune invasion is the main

reason for ICI resistance (17). CEP55 is an important diagnostic

marker for tumors, such as renal clear cell carcinoma (18) and

intrahepatic cholangiocarcinoma (19). PTPN2 loss can increase

antigen presentation and sensitivity to CD8+T cells, making tumor

cells sensitive to immunotherapy (20). Tumors can evade immune

clearance by regulating the expression and function of TRAF2. Cells

overexpressing TRAF2 have stronger resistance to CD8+T cell

killing, and the combined targeting of TRAF2/cIAP1 increases the

therapeutic effect of immune checkpoint inhibitors (21). JAK1,

JAK2, and B2M are frequently mutated in patients with immune

checkpoint resistance (22). These genes are cytotoxic T lymphocyte-
02
evasion genes (CTLEGs) identified by Lawson et al. (23). At present,

no effective biomarker or model for predicting the response of KIRC

patients to immunotherapy exists. Previous studies only used Lasso

or Cox to construct signatures, and the prediction efficiency of the

signatures was limited (24–26). In the era of big data, machine

learning has become increasingly important in mining and

analyzing high-throughput sequencing data. Therefore, it is

worthwhile to explore how to use machine learning to develop

signatures to predict the prognosis of patients and the response of

immunotherapy in combination with CTLEGs.

In the present study, we used 10 machine learning algorithms,

namely, Lasso, survival support vector machine (survival-SVM),

Ridge, CoxBoost, elastic network (Enet), random survival forest

(RSF), stepwise Cox (StepCox), supervised principal components

(SuperPC), partial least squares regression for Cox (plsRcox), and

generalized boosted regression modeling (GBM), to screen key

CTLEGs in a cross-validation framework. A robust CTLEG

signature (CTLEGS) was developed and validated in three public

databases and a clinical in-house cohort to reveal tumor

microenvironment characteristics, evaluate the CTLEGS’s

response to drugs and immunotherapy, correlate with clinical

features, and perform pan-cancer analyses. Finally, signal

transducer and activator of transcription 2 (STAT2) was choosed

and verified in vitro.
Materials and methods

Patient sources and data processing

The transcriptome data and clinical information of the KIRC

cohort were downloaded from The Cancer Genome Atlas (TCGA)

database (https://portal.gdc.cancer.gov/). The sequencing data and

clinical information of the GSE22541 cohort were downloaded from

the Gene Expression Omnibus (GEO) database (https://

www.ncbi.nlm.nih.gov/geo/). The probes were converted into

gene symbols through gene annotation. The sequencing data and

clinical information of the E-MTAB-1980 cohort were downloaded

from the ArrayExpress database (https://www.ebi.ac.uk/

arrayexpress/). The samples with a survival time greater than 0

were included in the study. Finally, this study included 528 patients

from the TCGA cohort, 101 patients from the E-MTAB-1980

cohort, and 40 samples from the GSE22541 cohort. Basic clinical

characteristics of those cohorts are summarized in Supplementary
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Table 1. The single-cell sequencing data set GSE207493 was

downloaded from the GEO database, including 19 samples. The

“harmony” package was used to eliminate the differences between

samples when the data were integrated. The “Seurat” package was

used for analysis. The cells were annotated as nonhematopoietic

cells, T cells, natural killer (NK) cells, macrophage cells, monocyte

cells, dendritic cells, B cells, and mast cells. The expression and

clinical data of anti-PD-1 therapy patients (CheckMate

010 + 025 + 090) were obtained from published literature (27).

The transcriptomic data and clinical information of pan-cancer

were downloaded from the University of California Santa Cruz

database (https://xena.ucsc.edu/). Clinical Proteomic Tumor

Analysis Consortium (CPTAC, https://proteomics.cancer.gov/

programs/cptac) contains a large amount of proteomic data,

PDC000127 cohort was downloaded from the CPTAC.
Sample collection of the Affiliated Haikou
Hospital of Xiangya Medical College
(AHHXMC) cohort

From September 2016 to September 2022, we collected the

cancer tissues of 80 KIRC patients from AHHXMC. The diagnosis

was confirmed by pathologists. All patients obtained informed

consent and approval from the hospital ethics committee. Overall

survival (OS) time was obtained by follow-up. The clinical

information of patients and the International Metastatic Renal

Cell Carcinoma Database Consortium score of the metastatic

patient are shown in Supplementary Table 1.
Identification of gene clusters

We obtained 182 CTLEGs from published literature (23)

(Supplementary Table 2). The “limma” package was used to screen

the differentially expressed CTLEGs. Univariate Cox regression analysis

was used to screen prognostic genes. Prognostic genes were subjected

to unsupervised clustering analysis using the “ConsensusClusterPlus”

package. The “survival” and “survminer” packages were used to

perform survival analyses.
Assessment of immune cell infiltration

Based on TCGA RNA sequencing data, the infiltration of immune

cells in each group was analyzed by single cell gene set enrichment

analysis (ssGSEA) (28), Microenvironment Cell Populations-counter

(MCPcounter) (29), Estimating the Proportion of Immune and Cancer

cells (EPIC) (30), XCELL (31), CIBERSORT (32), Estimation of

STromal and Immune cells in MAlignant Tumours (ESTIMATE)

(33), Tumor Immune Estimation Resource (TIMER) (34) and

QUANTISEQ (35) algorithms. Drug sensitivity was predicted with

the “pRRophic” package.
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Construction and validation of CTLEGS

TCGA-KIRC was used as the training set, whereas E-MTAB-

1980, GSE22541, and AHHXMC cohorts were used as the testing

set. Under the cross-validation framework, one algorithm was used

to select the prognostic differentially expressed genes (DEGs), and

the other algorithm was used to construct the prognostic signature.

A total of 89 combinations of Lasso, Ridge, Enet, StepCox,

survivalSVM, CoxBoost, SuperPC, plsRcox, RSF, and GBM

filtered the model combination with the highest C-index. Finally,

the “ComplexHeatmap” package was used to draw the heat map to

visualize the evaluation results of the signature. The “timeROC”

package was used to draw the receiver operator curves (ROC) to

evaluate the prediction performance of the signature. The “rms”

package was used to draw a nomogram.
Enrichment analysis

The “clusterProfiler” package was used to conduct GO and

KEGG enrichment analysis on the DEGs between high- and low-

risk groups. “c2. cp. kegg. v7.5.1. symbols. Gmt” was chosed

in GSEA.
Identification of key CTLEGs related to
signature

Based on the TCGA expression data, the “weighted correlation

network analysis (WGCNA)” package was used to construct the

coexpression network, identify the modules related to CTLEGS,

screen the related modules, intersect with the modeling genes, and

obtain the key CTLEG.
Transcriptome sequencing

The RNA of the sample was isolated and purified according to

the instructions of TRIzol (Thermofisher, 15596018). Oligo

magnetic beads (Dynabeads Oligo [dT], Thermo Fisher, USA)

were used to capture the mRNA with PolyA through two rounds

of purification. mRNA fragmentation was conducted under high-

temperature conditions using Magnesium RNA Fragmentation

Module (NEB, USA). The fragmented RNA was synthesized into

cDNA. A dUTP solution (Thermo Fisher, CA, USA) was added to

the double-stranded DNA. The end of the double-stranded DNA

was completed to the flat end. PCR library enrichment was

performed after the connector connection. Finally, Illumina

NovaseqTM 6000 (LC Bio-Technology Co., Ltd. Hangzhou,

China) was used to carry out two-terminal sequencing according

to the standard operation. The sequencing mode was PE150.
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Quantitative real-time PCR

We extracted RNA from 64 cancer tissues with the

corresponding RNA sequencing data and 16 paired paracancer

tissues. The reagents and procedures used were described in our

previous study (36). The primer sequences used in the present study

are shown in Supplementary Table 3.
Immunohistochemistry (IHC)

The paraffin-embedded tumor tissues of 55 of 80 samples used

for RNA sequencing were collected for IHC. After the paraffin

sections were dewaxed, antigen repair was performed. The sections

were placed in a 3% hydrogen peroxide solution and incubated at

room temperature away from light. The rabbit serum was used to

close at room temperature for 30 min. The sections were diluted

with anti-LAG3 primary antibody (ab209236, Abcam, England,

1:1000) and incubated overnight in a wet box at 4°C. After

decolorization with PBS, the secondary antibody (GB23303,

Servicebio, Wuhan, China, 1:200) was added and incubated at

room temperature for 50 min. DAB was added for color

development. Hematoxylin was re-dyed, and the film was sealed

and photographed under a microscope.
Cell function experiment

769-P and 786-0 were selected for the experiment. Small interfering

RNAs (siRNA) targeted STAT2 was used to transfect cells. Knockdown

efficiency was detected 48 h later. For the clonal formation experiment,

769-P (1500 cells) and 786-0 (1000 cells) were planted in six-well plates

and stained with crystal violet 14 days later. For the Cell Counting Kit-8

(CCK-8) assay, 769-P (3000 cells) and 786-0 (1500 cells) were planted

in 96-well plates. Then they were detected at 0, 24, 48, and 72 h. For the

transwell migration assay, 200 ul serum-free cells were planted in the

upper chamber, and 600 ul complete culture medium was added

outside the lower chamber. After 24 h of culture, crystal violet staining

was conducted, and microscopically photographed. Transwell invasion

assay requires the placement of Matrigel in the upper chamber. For the

wound healing experiment, a 200 ul gun tip was used to make scratches

when the cells were overgrown. The pictures were taken under the

microscope at 0 and 24 h. Detailed steps were described in our previous

study (37).
Statistical analyses

Data processing and statistical analysis were performed in R

4.1.2 and GraphPad Prism 8.0.2. Paired or unpaired t-test and

Wilcoxon test were used to compare the difference between the two

groups. Kaplan-Meier and log-rank test were used to perform

survival analyses. Prognostic CTLEGs were screened by univariate

cox regression analysis. Spearman was used for correlation analysis.

P<0.05 was considered a significant difference.
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Results

Identification of key CTLEGs in the KIRC

Figure 1 is the flow chart of the entire study. In the TCGA-KIRC

cohort, 123 DEGs were identified. Compared with normal tissues,

28 genes were lower expressed in cancer tissues and 95 genes were

higher expressed in cancer tissues (Supplementary Table 4). Then,

66 prognostic DEGs were screened through univariate Cox

regression analysis (Supplementary Table 5; Supplementary

Figure 1A). According to the expression value of key CTLEGs,

the patients were divided into two gene clusters (Supplementary

Figure 1B). PCA analysis found that cluster 1 and cluster 2 patients

can be well separated (Figure 2A). Cluster 1 has a better prognosis

than cluster 2 (Figure 2B). We found that cluster 1 has more

immune cell infiltration than cluster 2 through the TIMER,

CIBERSORT-ABS, QUANTISEQ, and MCPcounter algorithms

(Figure 2C). ssGSEA analysis further confirmed that cluster 1 has

more immune cell infiltration than cluster 2 (Figure 2D). GSEA

indicated that immune-related pathways are mainly enriched in

C1 (Figure 2E).
Construction and validation of CTLEGS

TCGA-KIRC cohort was used as the training set, whereas E-

MTAB-1980, GSE22541, and AHHXMC cohorts were used as the

testing sets. Under the cross-validation framework, 89

combinations of the 10 algorithms were used to screen the

signature with the highest C-index. We found that the

combination of CoxBoost+Lasso has the highest C-index (0.745)

(Figure 3A; Supplementary Table 6). Moreover, CTLEGS included

18 CTLEGs (ATG10, FITM2, JAK1, RBCK1, STAT2, ATG5,

RBM15, RNF31, VPS29, ATP13A1, BCL2L1, CEP55, CREBBP,

DICER1, EMC2, IFNAR1, PCED1B, and SETDB1). A risk score

was calculated for each patient based on the combination of

CoxBoost+Lasso algorithms. On the basis of the median value of

the risk score, we divided the patients into high- and low-risk

groups. The prognosis of patients in the high-risk group is worse

than that of patients in the low-risk group (Figures 3B–E). In

TCGA, E-MTAB-1980, GSE22541, and AHHXMC cohorts, the

areas under the curve (AUCs) are all larger than 0.7 (Figures 3F–

I), indicating that our signature has good predictive efficiency.
Comparison of CTLES and other signatures
in KIRC

In recent years, many signatures have been developed in KIRC.

However, the prediction efficiency is not significant. We collected

101 published signatures (Supplementary Table 7) involving

various biological characteristics, including cuproptosis,

ferroptosis, autophagy, pyroptosis, necroptosis, fatty acid

metabolism, glutamine metabolism, immune checkpoint, Tumor-

infiltrated CD8+ T Cell, IFN-g response, oxidative stress, ERBB
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signaling pathway, basement membrane, and alternative splicing. In

TCGA, E-MTAB-1980, GSE22541, and AHHXMC cohorts, we

developed CTLEGS with good prediction performance in almost

all models (Figure 4).
Correlation analysis between signature and
clinical variables

In the TCGA cohort, the higher the TNM stage of the patients

is, the higher the risk score is (Figures 5A–D). In the AHHXMC

cohort, the risk score of males is higher than that of females

(Figure 5E). The higher the N, M, and grade are, the higher the

risk score is (Figures 5F–H). These results indicated that CTLEGS

was positively correlated with the malignant degree of patients.

Univariate and multivariate Cox regression analyses indicated that

age, stage, and CTLES were independent risk predictors of patients

(Figures 5I, J). In order to improve clinical application, we

combined risk with common clinical features to construct a

nomogram (Supplementary Figure 2). The AUCs of 1, 3, and 5

years reached 0.868, 0.822, and 0.845, respectively (Figure 5K). The

nomogram can predict the prognosis of patients and further

improve the predictive performance of CTLEGS.
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Pan-cancer analysis of the signature

We analyzed the predictive performance of the CTLES through

pan-cancer analysis to test the universality and validity of the

signature. Univariate Cox analysis indicated that the CTLES was

still predictive of PFS and DSS of KIRC, which were risk factors for

patients (Figures 6A–D). The CTLES still has good predictive power

for other types of renal cell carcinoma, such as kidney

chromophobe (KICH) and kidney renal papillary cell carcinoma

(KIRP). In addition, we found that the CTLES has a good predictive

performance on other types of tumors. It is also an unfavorable

prognostic factor in most tumors, including OS, disease-free

survival (DFS), disease-specific survival (DSS), and progression-

free survival (PFS), such as adrenocortical carcinoma (ACC), acute

myeloid leukemia, etc. K-M analysis indicated that the prognosis of

patients in the high-risk group was worse than that of patients in the

low-risk group (Supplementary Figure 3). With R>0.3 and P<0.05

as screening standards, the CTLES was strongly correlated with

immunity in many cancers based on the estimate and CIBERSORT

algorithms (Supplementary Figures 4; 5). CTLEGS was correlated

with the tumor mutation burden (TMB) of 18 types of tumors

(Figure 6E). All were positively correlated except for acute myeloid

leukemia. A strong correlation with microsatellite instability (MSI)
FIGURE 1

Flowchart of cytotoxic T lymphocyte-evasion genes signature for predicting prognosis and immunotherapy response in KIRC patients. CTLEGs,
cytotoxic T lymphocyte evasion genes; KIRC, kidney renal clear cell carcinoma; DEGs, differentially expressed genes; TCGA, The Cancer Genome
Atlas; survival-SVM, survival support vector machine; Enet, elastic network; plsRcox, partial least squares regression for Cox; RSF, random survival
forest; SuperPC, supervised principal components; GBM, generalized boosted regression modeling; StepCox, stepwise Cox; K-M, Kaplan-Meier;
ROC, receiver operator curve; CTLEGS, cytotoxic T lymphocyte evasion gene signature; AHHXMC, Affiliated Haikou Hospital of Xiangya Medical
College; ssGSEA, single cell gene set enrichment analysis; TIMER, Tumor Immune Estimation Resource; EPIC, Estimating the Proportion of Immune
and Cancer cells; MCPcounter, Microenvironment Cell Populations-counter; TMB, tumor mutation burden; TIDE, Tumor Immune Dysfunction and
Exclusion.
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existed in 12 types of tumors (Figure 6F). CTLEGS was negatively

correlated with MSI in KIRC.
Characteristics of immune cell infiltration
and biological characteristics of the
CTLEGS

A total of 608 DEGs (Supplementary Table 8) between high-

and low-risk groups were obtained with the “limma” package and

performed GO and KEGG enrichment analyses. DEGs were mainly

enriched in immune-related pathways, such as complex coagulation

cascades, cytokine–cytokine receptor interaction, and interleukin

(IL)-17 signaling pathway (Figure 7A; Supplementary Figure 6A).

This finding suggests that CTLEGS was closely related to immunity.

GSEA was further carried out. The results indicated that the

immune- and drug-related pathways were mainly enriched in the

high-risk group, such as additive and coagulation cascades, cytokine

receptor interaction, drug metabolism, and cytochrome P450.

Metabolism-related pathways were mainly enriched in the low-

risk group, such as butanoate metabolism, propanoate metabolism,
Frontiers in Immunology 06
and pyruvate metabolism, etc. (Figures 7B, C). Interestingly, there

were significant differences in immune type between the different

groups (P=0.001, Figure 7D). We further analyzed the single-cell

sequencing data set GSE207493 to study the expression level of

CTLEGs in different cells. We integrated 19 KIRC samples and

obtained 161327 cel l s . The cel l s were annotated as

nonhematopoietic cells, T cells, NK cells, macrophage cells,

monocyte cells, dendritic cells, B cells, and mast cells

(Supplementary Figure 6B). Among them, JAK1 was highly

expressed in all types of cells, and most of the CTLEGs were

highly expressed in macrophages (Figure 7E; Supplementary

Figure 7). The immune and estimate scores of the high-risk

groups were higher than those of the low-risk groups according

to the estimate algorithm (Figures 7F, G). ssGSEA indicated that

risk score was positively correlated with most immune cells, such as

aDCs, CD8+T cells, macrophages, T follicular helper (Tfh) cells,

Th1 cells, Tfh2 cells, TIL, and Treg (Figure 7H). The risk score was

positively correlated with immune checkpoint, cytolytic activity,

and type 1 interferon response; but there was a negative correlation

with type 2 interferon response (Figure 7H). On the basis of the

seven algorithms of TIMER, CIBERSORT, CIBERSORT-ABS,
B

C

D E

A

FIGURE 2

Identification of key CTLEGs. (A) Three-dimensional PCA analysis of gene cluster. (B) K-M survival analysis between cluster 1 and cluster 2. (C)
Immune cell infiltration between different subtypes based on TIMER, CIBERSORT-ABS, QUANTISEQ, and MCPcounter algorithms. (D) The immune
cell infiltration among different clusters was analyzed by the ssGSEA algorithm. (E) GSEA between different subtypes. CTLEGs, cytotoxic T
lymphocyte evasion genes; PCA, principal component analysis; MCPcounter, Microenvironment Cell Populations-counter; ssGSEA, single cell gene
set enrichment analysis; GSEA, gene set enrichment analysis. * Means P < 0.05; ** Means P < 0.01; *** Means P < 0.001.
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QUANTISEQ, MCP counter, XCELL, and EPIC, we found that the

high-risk group had more immune cell infiltration than the low-risk

group (Figure 7I).
Predictive value of the CTLEGS in
immunotherapy response

Immunotherapy has become increasingly crucial in KIRC. We

further explored the predictive value of CTLEGS in immunotherapy

response. The patients were stratified according to risk and TMB.

Patients with a high risk and TMB had the worst prognosis

(Figure 8A). The dysfunction in the high-risk group was higher

than that in the low-risk group (Figure 8B). CTLEGs belong to

immune evasion genes. We further analyzed the immune evasion of
Frontiers in Immunology 07
different risk groups. The Tumor Immune Dysfunction and

Exclusion (TIDE) of the high-risk group was higher than that of

the low-risk group (Figure 8C). In the CheckMate immunotherapy

cohort, high-risk patients benefited slightly from immunotherapy,

and their prognosis was worse than the prognosis of low-risk

patients (Figures 8D, E). In the GSE199107 data set, the risk score

was high in the IFN-g treatment group (Supplementary Figure 8)

and low in the PD-L1 knockdown group (Figure 8F). We found

from the TCGA cohort that the risk score was positively correlated

with most chemokines and immune checkpoints (Figure 8G). In the

AHHXMC cohort, the risk score was also positively correlated with

most immune checkpoints (Figure 8H). PDCD1, CTLA-4, TIGIT,

LAG3, TNFRSF9, and CD27 are T cell depletion markers. The risk

score was most correlated with the T cell degradation marker LAG3.

As a new-generation immune checkpoint, LAG3 is expected to
B C

D E

F G

H I

A

FIGURE 3

Construction and validation of CTLEGS. (A) C-indexs in different cohorts based on 10 machine learning algorithms. (B–E) K-M survival curves in
different cohorts. (F–I) The ROC curves predict the performance of the signature in different cohorts. CTLEGS, cytotoxic T lymphocyte evasion gene
signature; K-M, Kaplan-Meier; ROC, receiver operator curve; TCGA, The Cancer Genome Atlas; AHHXMC, Affiliated Haikou Hospital of Xiangya
Medical College.
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become a promising target in tumor immune therapy (38).

Therefore, we further verified the correlation between the risk

score and LAG3 at the protein level with IHC. We also found

that the LAG3 protein level was higher in high-risk patients than in

the low-risk patients (Figure 8I). These results indicated that the

patients in the high-risk group presented immunosuppressive

phenotype and slightly benefited from immunotherapy. CTLEGS

possessed strong predictive ability in immunotherapy.
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Efficacy of CTLEGS in predicting drug
sensitivity

The risk score of sorafenib-resistant cell lines A498 and 786-0 was

high, indicating that patients in the high-risk group were resistant to

sorafenib (Figures 9A, B). The data from the Genomics of drug

sensitivity in cancer (GDSC) database was analyzed with the

“pRRophetic” package. The results indicated that the half maximal
B C DA

FIGURE 4

Comparisons of prognostic signatures in KIRC. (A–D) Comparison of C-index of signatures in TCGA, E-MTAB-1980, GSE22541, and AHHXMC
cohorts. KIRC, kidney renal clear cell carcinoma; TCGA, The Cancer Genome Atlas; AHHXMC, Affiliated Haikou Hospital of Xiangya Medical College.
* Means P < 0.05; ** Means P < 0.01; *** Means P < 0.001; **** Means P < 0.0001.
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inhibitory concentration (IC50) values of pazopanib, rapamycin,

ruxolitinib, gemcitabine, saracatinib, and sunitinib were high in the

high-risk group, and the risk score was positively correlated with IC50

(Figures 9C–H). This finding indicated that the patients in the high-

risk group were resistant to pazopanib, rapamycin, ruxolitinib,

gemcitabine, saracatinib, and sunitinib. However, the IC50 of

crizotinib in the high-risk group was low, indicating that the patients

in the high-risk group were sensitive to crizotinib (Figure 9I). These

results showed that CTLEGS could provide guidance for the

personalized treatment of KIRC patients.
Key genes related to CTLEGS were
screened and verified in vitro

WGCNA was used to identify the key genes closely related to

CTLEGS. Power value 8 was selected for subsequent analysis, and a

total of 25 modules were obtained (Supplementary Figures 9A, B).

Magenta, dark orange, and cyan modules with correlation

coefficients higher than 0.25 were chosen (Supplementary

Figure 9C). The genes in the modules intersected with 18

CTLEGs in the signature (Figure 10A). CEP55 and STAT2 were

identified. Chen et al. (39) proved that CEP55 can promote the

malignant biological behavior of renal cancer cells. Thus, we
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selected STAT2 for in vitro verification. STAT2 expression was

upregulated in the KIRC in both paired and unpaired tissues

(Figures 10B, C). In the PDC000127 cohort, the protein

expression level of STAT2 was higher in cancer tissue compared

to normal tissue (Figure 10D). After transfection of 769-P and 786-

0 cells with siSTAT2, the STAT2 mRNA expression level was

significantly decreased (P<0.0001, Figure 10E). Colony formation

and CCK8 assays showed that the cell proliferation ability was

significantly reduced after the knockdown of STAT2 (Figures 10F,

G). Transwell and wound-healing experiments showed that the

migration ability of cells decreased after STAT2 knockdown, and

the invasion ability weakened (Figures 10H, I). These results

indicated that as a critical CTLEG for model construction, STAT2

plays a carcinogenic role in KIRC. In addition, we found that the

immune cell infiltration characteristics of STAT2 were consistent

with those of CTLEGS. According to ssGSEA, TIMER,

CIBERSORT, CIBERSORT-ABS, QUANTISEQ, MCP counter,

XCELL, and EPIC algorithms, the STAT2 high expression group

showed more immune cell infiltration than low expression group

(Figures 11A, B). STAT2 expression is positively correlated with

most immune checkpoints and chemokines (Figure 11C).

Compared with the STAT2 high expression group, the low

expression group had lower TIDE (Figure 11D), which means

that the possibility of immune evasion is less. PD-1 inhibitors
B C D

E F G H

I J K

A

FIGURE 5

Correlation analysis between signature and clinical variables. (A–D) Risk scores in different TNM stages in the TCGA cohort. (E–H) Risk score in
gender, N, M, and grade in the AHHXMC cohort. (I–J) Univariate and multivariate analyses of the predictive value of risk score and clinical variables
in KIRC. (K) The AUCs of the nomogram. TNM, tumor, lymph node, metastases; TCGA, The Cancer Genome Atlas; AHHXMC, Affiliated Haikou
Hospital of Xiangya Medical College; KIRC, kidney renal clear cell carcinoma; AUCs, areas under the curves.
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showed no difference in STAT2 high and low expression groups

(Figure 11E), but STAT2 low expression groups were sensitive to

CTLA4 inhibitors (Figure 11F).
Discussion

Renal cancer is a highly immunogenic tumor that mediates

immun e d y s f u n c t i o n t h r o u g h t h e i nfi l t r a t i o n o f

immunosuppressive cells into the microenvironment. ICI may
Frontiers in Immunology 10
benefit patients, but it may not be effective for all (40). Many

patients develop drug resistance after receiving immunotherapy,

ma in ly because o f the he te rogene i ty o f the tumor

microenvironment (41, 42). Therefore, reliable biomarkers or

signature for stratifying patients is urgently needed to help

clinicians identify patients who may benefit from immunotherapy

and guide patients to immunotherapy accurately.

In the present study, the patients were divided into clusters 1

and 2 according to 66 prognostic DEGs. Cluster 1 has a better

prognosis than cluster 2. We used TCGA-KIRC as the training set
B

C D

E F

A

FIGURE 6

The predictive value of CTLEGS in pan-cancer prognosis. (A-D) The predictive performance of CTLEGS on the overall survival, PFS, DFS and DSS of
pan-cancer. (E, F) Correlation analysis between CTLEGS and TMB and MSI in pan-cancer. CTLEGS, cytotoxic T lymphocyte evasion gene signature;
DFS: disease-free survival; DSS: disease-specific survival; PFS: progression-free survival; TMB, tumor mutation burden; MSI, microsatellite instability. *
Means P < 0.05; ** Means P < 0.01; *** Means P < 0.001.
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and the E-MTAB-1980, GSE22541, and AHHXMC cohorts as the

testing set. In the cross-validation framework, 89 combinations of

Lasso, Ridge, Enet, StepCox, survival-SVM, CoxBoost, SuperPC,

plsRcox, RSF, and GBM were used to select the signature with the

highest C-index. CoxBoost+Lasso is the optimal model, and the C-
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index of each cohort is greater than 0.7. Combining different

algorithms can reduce variable dimensions and make the

signature simple and reliable. Compared to models constructed

solely using a single algorithm (43, 44), our signature is more

robust. The signature we constructed has high prediction accuracy
B
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E
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FIGURE 7

Characteristics of immune cell infiltration in high- and low-risk groups. (A) KEGG analyses of DEGs in different risk groups. (B, C) GSEA in different
risk groups. (D) The relationship between risk score and immune subtypes. (E) The expression level of the key CTLEGs in different types of cells. (F,
G) The difference between immune and estimate scores in the high-risk group based on the estimate algorithm. (H) The characteristics of immune
cell infiltration in high- and low-risk groups were analyzed by the ssGSEA algorithm. (I) The characteristics of immune cell infiltration in high- and
low-risk groups were analyzed with TIMER, CIBERSORT, CIBERSORT-ABS, QUANTISEQ, MCP counter, XCELL, and EPIC algorithms. KEGG, Kyoto
Encyclopedia of Genes and Genomes; DEGs, differentially expressed genes; GSEA, gene set enrichment analysis; CTLEGs, cytotoxic T lymphocyte
evasion genes; ssGSEA, single cell gene set enrichment analysis; TIMER, Tumor Immune Estimation Resource; MCPcounter, Microenvironment Cell
Populations-counter. EPIC, Estimating the Proportion of Immune and Cancer cells; TCGA, The Cancer Genome Atlas; aDCs, activated dendritic cells;
CCR, chemokine receptor; iDCs, immature dendritic cells; NK, natural killer; pDCs, plasmacytoid dendritic cells; Tfh, T follicular helper; Th1, T helper
type 1; Th2, T helper type 2; TIL, tumor-infiltrating lymphocyte; IFN, interferon.
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in both public data sets and clinical in-house cohort. We collected

101 signatures in KIRC involving various biological pathways.

These models are rarely applied in clinical practice and rarely

verified by external data sets; alternatively, the validation

performance of the external data sets is poor (45–48). The
Frontiers in Immunology 12
generalization and applicability of these signatures are poor. Our

signature in each cohort has the best prediction performance in

almost all models. We used one algorithm to select variables and

another algorithm to construct the prognostic signature and obtain

the optimal signature, which has good robustness and adaptability.
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FIGURE 8

Predictive value of CTLEGS in immunotherapy response. (A) Survival differences among patients stratified by risk and TMB. (B) Dysfunction of high-
and low-risk groups. (C) TIDE of high- and low-risk groups. (D) Risk scores between clinical benefit and no clinical benefit. (E) K-M survival curves of
high- and low-risk groups in the CheckMate cohort. (F) Change in risk score after knocking down PD-L1. (G) Correlation analysis of the risk score
with immune checkpoints and chemokines in the TCGA cohort. (H) Correlation analysis of the risk score with immune checkpoints in the AHHXMC
cohort. (I) The difference in the protein expression levels of the LAG3 of different risk groups in the AHHXMC cohort. CTLEGS, cytotoxic T
lymphocyte evasion gene signature; TMB, tumor mutation burden; TIDE, Tumor Immune Dysfunction and Exclusion; K-M, Kaplan-Meier; PD-L1,
programmed death-ligand 1; TCGA, The Cancer Genome Atlas; AHHXMC, Affiliated Haikou Hospital of Xiangya Medical College; LAG3, lymphocyte-
activation gene 3; TMB, tumor mutation burden; TIDE, Tumor Immune Dysfunction and Exclusion; PD-1, programmed cell death protein 1; CB,
clinical benefit; NCB, no clinical benefit. ** Means P < 0.01; *** Means P < 0.001.
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The nomogram can provide personalized prognostic information to

the patient and assist the clinician to develop an effective treatment

plan for the patient (49, 50). In our study, the nomogram combined

with clinical features could further improve the predictive ability of

the signature. High risk is associated with high TNM and grade,

thereby showing aggressive biological behavior. In addition, the

signature was a poor prognostic factor for most tumors and closely

related to the immunity of pan-cancer.

The immune microenvironment has become an important part

of immunotherapy (51). Understanding the heterogeneity of the

immune microenvironment plays a vital role in the precise

immunotherapy of patients. Single-cell sequencing, based on

single cell level analysis, can solve the problem of cell

heterogeneity. As an important technical means of tumor

microenvironment research, it is increasingly widely used (52,
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53). In our study, single-cell sequencing indicated that most of

the CTLEGs were highly expressed in macrophages, and JAK1 was

highly expressed in all types of cells. Elevated levels of JAK1 protein

are beneficial for the formation of immunosuppressive

microenvironment in renal cell carcinoma (54). SETDB1

amplification in tumors is associated with immune rejection and

immune checkpoint inhibitor resistance (55). Significant differences

in the immune typing between the high- and low-risk groups

existed. Immune-related pathways were mainly enriched in the

high-risk group. The infiltration of immunosuppressive cells, such

as CD8+T cells, Treg cells, macrophages, monocyte, plasmacytoid

dendritic cells, and Tfh cells, in high-risk groups, was high

according to various algorithms. Unlike other tumors, CD8+ T

cells exhibited high infiltration in KIRC, which was associated with

poor prognosis (56). The high infiltration of macrophages was
B C

D E

F G

H I

A

FIGURE 9

The analysis between risk score and drug sensitivity. (A, B) Risk score in sorafenib-resistant cell lines A498 and 786-0. (C–I) IC50 of pazopanib,
rapamycin, ruxolitinib, gemcitabine, saracatinib, sunitinib, and crizotinib in different risk groups. IC50, half-maximal inhibitory concentration.
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related to the poor prognosis of KIRC (57). Research showed that

targeted macrophages may become a promising treatment for

patients (58). Treg cells can escape immune surveillance by

expressing coinhibitory molecules CTLA4, PD1, LAG3, TIM3,

and TIGIT (59). These results suggested that high-risk groups

exhibited an immunosuppressive microenvironment. An

immunosuppressive microenvironment is an important

mechanism of tumor immune invasion. We also found that high-
Frontiers in Immunology 14
risk patients have higher TIDE. One mechanism of immune evasion

is that the tumor is in a state of dysfunction despite the high CTLs

infiltration; another mechanism is that immunosuppressive factors

can remove T cells infiltrating the tumors. Therefore, Peng et al.

(60) integrated two immune escape mechanisms to develop the

TIDE score, which is more effective in predicting the response of

patients to immunotherapy than PD-L1. The risk score is negatively

correlated with type 2 interferon response, which is involved in
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FIGURE 10

Cell function experiment of STAT2 in KIRC. (A) The Venn diagram of the key gene from WGCNA and CTLEGs from the signature. (B, C) The mRNA
expression level of STAT2 in KIRC tissues. (D) The protein expression level of STAT2 in KIRC tissues. (E) The knockdown efficiency of STAT2 in KIRC
cells. (F, G) The effect of STAT2 knockdown on cell proliferation was detected by colony formation and CCK8 assays. (H) Transwell was used to
detect the knockdown effect of STAT2 on cell migration and invasion. (I) A wound-healing experiment was used to detect the knockdown effect of
STAT2 on cell migration. STAT2, signal transducer and activator of transcription 2; KIRC, kidney renal clear cell carcinoma; WGCNA, weighted
correlation network analysis; CTLEGs, cytotoxic T lymphocyte evasion genes; CCK8, Cell Counting Kit-8. * Means P < 0.05; ** Means P < 0.01; ***
Means P < 0.001; **** Means P < 0.0001.
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antitumor immunity. These findings indicated poor antitumor

immunity in high-risk patients.

Correlation analysis indicated that the risk score was positively

correlated with most immune checkpoints and chemokines, among

which PDCD1, CTLA-4, TIGIT, LAG3, TNFRSF9, and CD27 were

T cell depletion markers. In the AHHXMC cohort, the correlation

between LAG3 and risk score was the strongest in T cell depletion
Frontiers in Immunology 15
markers. LAG3, a coinhibitory receptor expressed in the activated

CD4+ and CD8+T cells and in depleted CD8+T cells, has become

one of the most promising and potential targets in cancer treatment

(61–65). IHC further confirmed that the level of LAG3 protein was

higher in high-risk patients than in low-risk patients. CXCL13 is a

B-lymphocyte chemokine, and CXCL13+CD8+T cells are closely

related to immune evasion and poor prognosis (66). The risk score
B
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FIGURE 11

The role of STAT2 in immunity and immunotherapy. (A) Correlation analysis between STAT2 and immune cells was analyzed by the ssGSEA
algorithm. (B) The characteristics of immune cell infiltration in STAT2 high- and low-expression groups were analyzed with TIMER, CIBERSORT,
CIBERSORT-ABS, QUANTISEQ, MCP counter, XCELL, and EPIC algorithms. (C) Correlation analysis of STAT2 with immune checkpoints and
chemokines in the TCGA cohort. (D) TIDE of STST2 high- and low-expression groups. (E, F) Differences in PD-1 and CTLA4 inhibitor responses
between high and low STAT2 expression groups. STAT2, signal transducer and activator of transcription 2; ssGSEA, single cell gene set enrichment
analysis; TIMER, Tumor Immune Estimation Resource; MCPcounter, Microenvironment Cell Populations-counter. EPIC, Estimating the Proportion of
Immune and Cancer cells; TCGA, The Cancer Genome Atlas; TIDE, Tumor Immune Dysfunction and Exclusion; PD-1, programmed cell death
protein 1; CTLA4, cytotoxic T-lymphocyte antigen-4; aDCs, activated dendritic cells; CCR, chemokine receptor; iDCs, immature dendritic cells; NK,
natural killer; pDCs, plasmacytoid dendritic cells; Tfh, T follicular helper; Th1, T helper type 1; Th2, T helper type 2; TIL, tumor-infiltrating
lymphocyte; IFN, interferon. *** Means P < 0.001.
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increased after treatment with IFN-g. IFN-mediated upregulation of

immune checkpoints can promote immune evasion, which is

related to the adverse reactions of renal cancer patients to ICB

(67). In the CheckMate immunotherapy cohort, high-risk patients

benefited slightly from immunotherapy. They also have a poor

prognosis. Therefore, we suspected that the high-risk group

benefitted slightly from immunotherapy because of immune

evasion. In addition, the high-risk group was closely related to

drug-related pathways. Drug sensitivity analysis indicated that the

high-risk group was resistant to many drugs, such as pazopanib,

rapamycin, ruxolitinib, gemcitabine, saracatinib, and sunitinib.

These results showed that CTLEGS can provide precise treatment

for patients.

WGCNA was used to identify the genes closely related to

CTLEGS. These genes intersected with the 18 genes of the

CTLEGS. STAT2 was selected for further research. STAT2 plays

an important role in the immune response of the body, participating

in the activation of immune cells and the production of

inflammatory factors (68). STAT2 promotes tumor immune

escape by upregulating PD-L1 expression (69). The JAK/STAT

pathway involved by STAT2 can affect the tumor immune

microenvironment (70). JAK/STAT pathway is also involved in

the malignant progression of the tumor. GINS2 inhibits lung cancer

progression by inhibiting the STAT signal pathway (71). TRIM66

promotes the malignant biological behavior of prostate cancer

through JAK/STAT pathway (72). Consistent with these studies,

we found that the high expression group of STAT2 is more likely to

immune evasion. STAT2 may play a carcinogenic role in KIRC, and

can be a potential therapeutic target for KIRC.

Our study still has some limitations. First, the predictive

performance of CTLEGS should be validated in other

immunotherapy cohorts. Second, the sample was investigated in a

single-center retrospective study, which needs to be further verified

in a prospective multicenter cohort in the future. Third, the role of

STAT2 in the immune microenvironment of KIRC and the

mechanism of immune evasion still need to be further studied.
Conclusions

We used machine learning to develop a robust CTLEGS that

reveals tumor microenvironment characteristics and effectively

predicts immunotherapy response. Thus, this signature can

provide guidance for precise therapy of KIRC. The key gene

STAT2 played a carcinogenic role in KIRC.
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SUPPLEMENTARY FIGURE 1

CTLEGs clusters analyses in KIRC. (A) DEGs were screened through univariate

Cox regression analysis. (B) The patients were divided into two gene clusters.
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SUPPLEMENTARY FIGURE 2

Nomogram combined risk with common clinical features.

SUPPLEMENTARY FIGURE 3

M analyses in pan-cancer.

SUPPLEMENTARY FIGURE 4

Correlation analyses of CTLES and immunity in pan-cancer based on
estimate algorithm.

SUPPLEMENTARY FIGURE 5

Correlation analyses of CTLES and immunity in pan-cancer based on
CIBERSORT algorithm.

SUPPLEMENTARY FIGURE 6

Enrichment analyses of DEGs and UMAP plot of single cells. (A) Enrichment

analyses of DEGs. (B) UMAP plot of single cells.
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SUPPLEMENTARY FIGURE 7

Distribution and expression patterns of CTLEGs in single cells.

SUPPLEMENTARY FIGURE 8

Changes in risk score after interferon treatment.

SUPPLEMENTARY FIGURE 9

WGCNA was used to identify the key genes closely related to CTLEGS. (A)
Screening of soft threshold. (B) Hierarchical clustering dendrogram of 25
modules. (C) Heatmap of correlations between modules and risk core.

SUPPLEMENTARY TABLE 2

182 CTLEGs from published literature.

SUPPLEMENTARY TABLE 8

608 DEGs between high- and low-risk groups.
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