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The protective and pathogenic
role of Th17 cell plasticity and
function in the tumor
microenvironment

Yuanyuan Pan †, Wenjing Yang †, Bo Tang, Xiaobo Wang,
Qi Zhang, Weiping Li and Li Li*

Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, China
At the turn of the century, researchers discovered a unique subtype of T helper

cells that secretes IL-17 and defined it as Th17. The latest study found that Th17

cells play both positive and negative definitive roles in the regulation of antitumor

immune responses. Although the function of Th17 in the tumormicroenvironment

remains poorly understood, more and more studies have shown that this

paradoxical dual role is closely related to the plasticity of Th17 cells in recent

decades. Further understanding of the characteristics of Th17 cells in the tumor

microenvironment could yield novel and useful therapeutic approaches to treat

cancer. In this review, we further present the high plasticity of Th17 cells and the

function of Th17-producing IL-17 in tumor immunity.
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1 Introduction

In terms of tumor immunity, CD8+ T cells, including CTL, directly kill cancer cells and

impair tumor growth, while CD4+ T cells act mainly by stimulating the function of other

immune cells (1–3). Naïve CD4+ T cells(Th0) exposed to distinctly specific cytokine

surroundings have the potential ability to proliferate and effectively differentiate into a

variety of epigenetic states, such as Th17, Th1, Treg, Th9, and T follicular helper cells (4–6),

each with a distinct function and an individual cytokine profile. In the early 21st century,

Park H, Laurie E Harrington, and Annunziato et al. discovered the unique existence of an

IL-17-producing CD4+ T cell subtype which we now term Th17 cells. This is the beginning

of the research on Th17 cells (7–9). Subsequently, Th17 can be converted into other

different subpopulations, mainly Th1 and Treg cells (10–12), but also into Th2 and Tfh

under different conditions (13). To a large extent, Th17 cells demonstrate a considerable

degree of context-dependent plasticity compared to Th1 and Th2 cells which have more

phenotypic stability from the Muranski P’s research findings (11). The observed plasticity

of Th17 cells is asymmetric and it occurs only in the direction of Th17 to Th1, as Th1 cells

cannot easily convert to Th17 cells (11). It was previously thought that Th17 cells can play
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an autoimmune suppressive function by secreting IL-17 to induce

angiogenesis to promote tumor growth (14). And the follow-up

studies demonstrated that Th17 cells can be transdifferentiated into

the Treg phenotype to exert a tumor-promoting role relying on this

flexibility as well (15–17). By summarizing the studies of previous

scholars, we found that this high degree of plasticity is also

imperative for the antitumor activity defined for Th17 cells in the

development of autoimmunity because Th17 cells can even directly

convert to the Th1 phenotype and produce IFN-g to exert anti-

tumor effects. To date, there is a growing body of research

indicating that Th17 cells influence the prognosis of cancer

patients through their high plasticity and the secretion of

inflammatory cytokines like IL-17. In this review, we briefly

outline the differentiation and developmental pathways of Th17,

Th1, and Treg cells, focus on our existing understanding of the

implications of Th17 cell plasticity and functions, and finally

summarize the specific mechanisms by which th17 functions in

the tumor microenvironment.
2 The differentiation process of
CD4+T cells linked to Th17
cell plasticity

CD4+ T cells are both essential regulators of antitumor

immunity and critical protectors against invasion by external

pathogens. Accumulating evidence currently elucidates the

importance of the CD4+ T cell and their polarization status

recognizing tumor antigens and resisting tumor cell proliferation

in response to cancer immunotherapy (18). Luckheeram RV and

colleagues put forward that, after antigen stimulation,

differentiation of the naive precursors is initiated due to the

interaction of TCR and CD4 as co-receptor with antigen-MHC II

complexes presented by professional antigen-presenting cells

(APCs) (19, 20). And continued research determined that the

Naive CD4+T cells are activated when the TCR recognizes a

specific peptide on MHC-II expressed by APCs (21, 22). The

flexible differentiation options of Th0 into an individual

subpopulation of helper T cells depends on cytokines secreted by

APCs and other precursor cells, which induce a network of

downstream signaling pathways that lead to cells’ initial

activation, proliferation, and eventual differentiation of naive cells

into specific effector cells. Different T cell populations that have

been characterized, are tightly involved in several cancers and

inflammatory diseases (23–25). In the paragraphs below we will

characterize the specific differentiation process of naïve CD4+T cells

to Th17, Th1, or Treg cells in detail.
2.1 Th17

As a distinct inflammatory lineage of CD4+ helper T cells, Th17

cells are defined by high levels of IL-17 secretion and secrete IL-

17A, IL-17F, IL-21, IL-22, and CCL20 (26–29). Th17 cells are

dependent on co-stimulation of CD28 and ICOS and are
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characterized by a master transcription regulator, the orphan

nuclear receptor RORgT, which directs the transcription of the

genes encoding IL-17 (27, 30, 31). Similarly, the other transcription

factor, STAT3, binds to most of the relevant genes playing a crucial

role in the differentiation of CD4+ T cells into Th17 cells (32–34).

Joshua et al. showed that individuals with Job’s syndrome

(HIES) with definite mutations in STAT3 often fail to express the

adequate levels of RORgT and tend to have a concomitant

deficiency of Th17 cells, emphasizing the close association

between STAT3 and Th17 cells (32, 35–37).

Th17 differentiation is highly dependent on the contribution of

the cytokines TGF-b, IL-6, IL-21, and IL-1b (38–42), with

subsequent long-term maintenance of the distinct Th17 lineage

phenotype in the presence of IL-23 (43–45). In 2020, researchers

find that TBK1 produced by intestinal epithelial cells blocked Th17

cell differentiation related to the regulation of IL-1b production,

thereby preventing inflammation and tumorigenesis (46). IL-6, IL-

21, and IL-23 all activate Stat3 and IRF4-dependent expression of

RORgt specifically, which is crucial for Th17 cell differentiation as

previously mentioned (47–52). Interestingly, TGF-b acts to

upregulate IL-23R expression and confers responsiveness to IL-23

in vivo (39). Several earlier studies denied the large role of TGF-b in

human Th17 cell differentiation: in a 2007 study, Sallusto stated that

TGF-b even inhibited Th17 cell polarization (53). However, in

2008, experiments with serum-free cultured human neonatal CD4 T

cells showed that exogenous addition of TGF-b is necessary for

human Th17 cell differentiation (54).To further clarify the role of

TGF-b, Annunziato conducted a further study in 2009. It was noted

that TGF-b has no direct effect on the differentiation of Th17 cells

from their precursors, but can indirectly promote Th17

development by inhibiting T-bet expression and Th1

amplification (55). A recent convincing study demonstrated that

TGF-b promotes Th17 cells to differentiate by reversing SKI-

SMAD4-mediated inhibition of RORgt expression through

inhibition of Rorc gene acetylation (56). Furthermore, TLR2 (a

pattern recognition receptor) signaling in T cells promotes Th17

cell proliferation and upregulates Th17-related genes (IL-17, IL-

17F, IL-21, and CCR6) (57).

Recent studies have revealed that the heterogeneous Th17 cell

subpopulation in humans can be further subdivided into two major

categories based on the differential expression of chemokine

receptors CCR4 and CXCR3: classical immunomodulatory Th17

and non-classical pro-inflammatory Th17. Classical Th17 is

characterized by (CCR4+CXCR3-) indicating high levels of IL-17

and low levels of IFN-g, whereas non-classical Th17 is characterized
by (CCR4-CXCR3, also known as Th17.1 or Th1/Th17) producing

low levels of IL-17 and high amounts of IFN -g, with a phenotype

similar to that of Th1 (13).
2.2 Th1

Till now, activated Th1 cells play an important role in

coordinating the antitumor immune response, particularly in

supporting the normalization of tumor vasculature (12, 13).

Besides, Th1 cells are promoted by the critical cytokines IFN-g
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(via Stat1) and IL-12(via Stat4), which induce the expression of the

transcription factor T-bet and secretion of the signature cytokine

IFN-g protecting the host from intracellular infection (58).

Firstly, STAT1-dependent T-bet, a Th1-specific T box

transcription factor, induces IL-12 receptors followed by

activation of STAT4. It is a key regulator of Th1 differentiation

and IFN-g production (59–61). Secondly, Th1 cell induction is

dependent on IL-12 expression, initiating downstream signaling

cascades that induce IFN-g production by NK cells (62, 63).

Interestingly, it has been shown that cells such as Treg cells,

which secrete the cytokine IL-10, regulate the life cycle of Th1

cells by preventing DCs from secreting IL-12 (64). And Interferon-

gamma (IFN-g), a major mediator of inflammation and tissue

injury, is a fundamental product of activated Th1 cells. Although

the particulars are not yet clear, there is convincing evidence

provided that Th1-derived IFN-g may control tumor vasculature

through its anti-proliferative effect on endothelial cells and prevent

tumor recurrence by keeping tumors in a state of ischemia (65). In

addition, Salmonella enterica (Se) or Influenza A virus (IAV) can

also influence the life cycle of Th1 cells (61).
2.3 Treg

Regulatory T (Treg) cells, a specialized immunosuppressive

lineage, play a crucial role in the induction of tumor-specific

immune tolerance (66–70). The antitumor response in B-Cell

Non-Hodgkin’s Lymphoma is inhibited by intra-tumor Treg (71).

It is also certain that Treg cells play a vital role in autoimmune

diseases, infectious diseases, and organ transplantation (72–75).

Similar to differentiation of the Th17 lineage, the development

of Treg cells is mediated by selective cytokine signals. Treg cells

exert their rapid suppressive effects by secreting inhibitory

cytokines such as IL-10 and TGF-b or by inhibitory checkpoint

molecules such as TIGIT and CTLA-4 (26, 76, 77). In vivo,

developing Treg cells also rely on the expression of IL-2, IL-15,

and TGF-b (77, 78). In addition, in recent years, a few research has

shown that Treg cells maintain immune homeostasis and support

tissue function with the expression of the lineage-specifying

transcription factor Foxp3 (66, 79–81). After induction of TCR

stimulation, the Foxp3 shapes the identity of regulatory T cells by

fine-tuning the activity of other major chromatin remodeling TFs

such as TCF1 and modulates related gene expression (79, 82–85).

Treg cell epigenetic alterations such as hypomethylation of specific

DNA regions are also critical in the Treg cell specification process

(86). Thus, therapeutic strategies implementing epigenetic

regulatory drugs and gene editing technologies are expected to

significantly impact Treg cells to exert antitumor effects (69, 87–89).
3 Role of Th17 in the tumor
microenvironment

Recent studies have revealed that Th17 cells infiltrate many

types of tumors, such as B cell (non-Hodgkin) cancer, breast cancer,
Frontiers in Immunology 03
colon cancer, gastric cancer, hepatocellular cancer, melanoma,

myeloma, ovarian cancer, pancreatic cancer, and so on,

depending on the chemokine receptor interactions (10, 17, 71,

90–98). As demonstrated by the studies of Meng and Yang, Th17

cells retain a high degree of plasticity, allowing for conversion to

other lineages under precise stimulation or pathogenic conditions

(71, 99). Because of this, we hypothesized that the high plasticity of

Th17 cells may contribute to the complex dual function shaping the

tumor environment.

In addition, data from Joseph Fabre confirmed the association

of IL-17 with the different tumor environments (100). IL-17 is a

family of pro-inflammatory cytokines produced by Th17 cells,

which contains six cytokines (IL-17A to IL-17F) that are linked to

five receptors (IL-17RA through IL-17RE) (14, 101–108).

Activation of IL-17 and IL-17F genes by cytokine signaling

appears to be functionally linked to histone H3 hyperacetylation

(106). Despite the growing evidence for the pathogenic role of IL-17

in cancer, the underlying molecular and cellular mechanisms are

still not fully understood. Targeting IL-17 signaling may be helpful

in a variety of diseases and cancers (109–111). Here we also discuss

the function of the IL-17 depending on cell or tumor type and

cytokine properties in the microenvironment, focusing on the

balance between the pathogenic and protective roles of IL-17 in

antitumor immunity and tumorigenesis.
3.1 Tumor-promoting functions of Th17

3.1.1 Pro-tumor functions of IL-17
Several independent studies have demonstrated that IL-17 is

highly expressed in peripheral blood, malignant ascites fluid, and

liver, stomach, colon, pancreas, breast, lung, and ovarian tumor

tissues, and positively correlates with malignancy aggressiveness

(17, 91, 94, 95, 97, 112–121). The mechanisms that we believe could

achieve the oncogenic effects of IL-17 have been listed below.

Li evaluates more than 40 HCC specimens by IHC staining and

finds that IL-17A levels are significantly higher in HCC specimens

that have metastasized than in non-metastasized HCC primary

specimens (120). That is, the high frequency of IL-17A-positive cells

in tumor tissues is correlated with metastasis and poor prognosis of

hepatocellular carcinoma (HCC). Further studies reveal that this

correlation is since IL-17A can significantly promote cell migration

rate by activating nuclear factor-kB (NF-kB) transcription factors

and upregulating matrix metalloproteinase 2 (MMP2) and 9

(MMP9) (120, 122). In a recent article, Gu et al. argued that IL-

17 promotes HCC invasion and migration via Akt-dependent IL-6/

STAT3 activation and subsequently upregulates its downstream

targets IL-8, MMP2, and VEGF (112). IL-17 enhances VEGF and

CD31 expression, stimulates the transcription of angiopoietin-2,

and promotes tumor growth strongly with high microvessel density

(MVD) (80, 89-91). In addition, since EMT plays an important role

in tumor metastasis, IL-17-induced EMT promotes lung cancer cell

migration and invasion through NF-kB-mediated upregulation of

ZEB1 (123, 124).

Another possible mechanism leading to cancer malignancy is

that IL-17 promotes cancer stem-like cells (CSLCs) tumorigenic
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potential. For example, in ovarian tumors, it was found that IL-17

producing cells are located in the niche near the tumor stem cells

and IL-17 promotes self-renewal of CD133(+) CSLCs mediated by

NF-kB and p38 MAPK signaling pathway (113). IL-17 contributes

to the initiation and progression of pancreatic interepithelial

neoplasia (PanIN) by increasing the activation of NF-kB and

MAPK and the expression of DCLK1 and ALDH1A1 (a marker

of embryonic stem cells) (118). IL-17A exerts its pro-tumorigenic

activity through IL-17RA which is involved in activating ERK, p38

MAPK, and NF-kB signaling (115). This signals directly promotes

the development of early tumor in the mice with a COX2P-NLS Cre

recombinase transgene and a loxP-targeted APC allele (115, 125). In

Multiple myeloma (MM), IL-17 activates the oncogenic p65

transcription factor, which directly represses the miR-192 gene by

binding to the miR-192 promoter and also induced EMT and

inhibits cell adhesion to fibronectin and collagen I, promoting cell

migration (126). More recently, it was shown that Th17 and IL-17

also accelerate endogenously arising lung tumors proliferation and

angiogenesis in part by transducing NF-kB and ERK signaling to

induce the expression of G-CSF, Bv8, and VEGF, among others

(17). Myeloid derived suppressor cells (MDSC) as an immature

form of myeloid cells mostly identified as CD11b and Gr-1 double

positive cells in mice are commonly considered that can suppress

immunity by arginase-1 (Arg-1), MMP9, and S100A8/A9 in tumor

microenvironment (127–130). The researchers discovered that IL-

17 is required for the development of MDSC and IL-17R−/− tumor

bearing mice expressed lower levels of arginase-1 (Arg-1), MMP9,

and S100A8/A9 (127). In IL-17R-deficient mice, MDSC cells

decreased as CD8 T cells increased (127). Coincidentally, in a

mouse model of lung cancer, in which an oncogenic form of K-

ras (K-ras(G12D)), Seon found that Th17 cells preferentially

accumulate in tumor tissue and increased Th17 associate with

inflammation-promoted lung cancer by recruiting Gr-1CD11b

myeloid cells, reducing cytotoxic CD8 T activity and promoting

Th17 cell-mediated inflammation (17, 127).

3.1.2 Plasticity of Th17 and Treg
As the constitutive ratio of Tregs and Th17 cells is modified in

the tumor microenvironment, human Th17 cells exhibit substantial

developmental plasticity and differentiate into Treg cells, an

immuno supp r e s s i v e s ub s e t i nfi l t r a t i n g t h e t umo r

microenvironment (69, 131). The reduction of Treg cells in

tumors is associated with a marked increase in survival (72).

Yang et al. found that Foxp3 expression in Treg cells obtained

by in vitro induced differentiation was consistently increased by

stimulation with TGF-b alone; however, in the presence of TGF-b,
IL-6 alone or combination with IL-1 and IL-23 significantly

downregulated Foxp3 expression and increased IL-17 production

(132). In vitro experiments by Jian Ye’s group confirms this idea:

first, they obtained a Th17 subpopulation by stimulating TILs from

ovarian and colon cancers with a CD3 monoclonal antibody as well

as IL-2; and then, they used flow cytometry to detect the results after

amplifying this subpopulation three times and found a significant

increase in the FOXP3+ cell subtype with an obvious decrease in the

IL-17+ cells, a differentiation that is dependent on TCR stimulation
Frontiers in Immunology 04
(133, 134). These experiments evidenced that Th17 and Treg are

capable of interconversion in vitro.

In biopsy specimens from B-Cell Non-Hodgkin’s lymphoma,

malignant B cells induce Foxp3 expression, promote Treg

development , and lead to suppress ion of Th17 cel ls

differentiation, thereby establishing a profoundly inhibitory tumor

microenvironment (71). This implies that there is an intimate

re l a t ionsh ip be tween Th17 and Treg in the tumor

microenvironment.Th17 cells are a source of tumor-induced Treg

cells in tumor-bearing mice (135). ID8A ovarian cancer and MC38

colorectal cancer cells were injected intraperitoneally in IL-

17ACreR26RReYFP fate reporter mice which allow the visualization

of cells that had activated the IL-17 program irrespective of current

production of this cytokine, and then researchers calculated the cells

from tumor-bearing mice by flow cytometry (135, 136). The study

found that a considerable proportion of eYFP+ cells(which

represent IL17 producing cells) begin expressing Foxp3 and the

percentages of Foxp3+CD4+ T cells(ex-Th17) gradually increases,

while the percentage of eYFP+Foxp3neg cells (‘true’ Th17 cells)

declines at the later time points (135). In addition, the percentage of

tumor-associated Foxp3 cells is significantly reduced in

RORgnegID8 tumor-bearing mice (135). Stephanie Downs-Canner

et al. suggested that Th17 cell transdifferentiation serves as an

important pathway of Treg cell emergence in the tumor

microenvironment. Recent articles have discovered that HIF-1a
regulates the downstream Th17 genes by directly inducing RORgt
transcription to promote Th17 differentiation. Eric V Dang further

found that Foxp3 is very sensitive to hypoxia and HIF-1a inhibits

Treg differentiation through the glycolytic pathway, allowing Foxp3

protein to be degraded (47, 137). There is increasing evidence that

tumor-infiltrating Th17 cells can also differentiate into Tregs due to

alter epigenetics and reprogram gene expression profiles, including

lineage-specific transcriptional factors and cytokine genes (71, 133).

Immunosuppressive Treg cells are associated with advanced

invasion and prognostic exacerbation of malignancies in tumor

microenvironment as they inhibit the killing of tumor cells by

antigen specific CD8+ T cells. Sadna Budhu et al. used ex vivo three-

dimensional collagen-fibrin gel cultures of isolated B16 melanoma

to qualitatively measure inhibition. Tumor cells displayed resistance

to killing by activated antigen-specific CD8+ T cells, and this

resistance was dependent on the binding of TGF-b above resident

Treg cells in mice (138). Chen BJ et al. showed that Treg cells

ultimately allow tumor escape by rendering T cells dysregulation

and by their own immunosuppression (73). Therefore, shifting the

balance of Th17/Treg towards Th17 may be beneficial for patients

with aggressive tumors (135, 138, 139). The impact of Th17 cell

plasticity in the tumor microenvironment is shown in Figure 1.

3.1.3 CD39 and CD73 define the adenosine
production of Th17

Recent studies have confirmed that Th17 cells might also make

a difference in immunosuppressive functions through

ectonucleotidases CD39 and CD73 to suppress T cell proliferation

and cytokine production, causing pro-tumorigenic functions (140–

144). The specific possible mechanism is that the enzyme CD39
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cleaves ATP or ADP to AMP; meanwhile, CD73 converts AMP to

adenosine, the final immunosuppressive molecule (145). Adenosine

inhibits both NK and CD8+ T cells mainly by A2A adenosine

receptor signaling, promoting tumor immune evasion and escape

(146). Chalmin (2012) validated that in vitro Th17 cells generate

with the cytokines IL-6 and TGF-b expressed CD39 and CD73, and

convert ADP to adenosine, leading to suppression of CD4+ and

CD8+ T cell effector functions and subsequent promotion of tumor

malignancy (144). In 2014, Aiping Bai’s group presented their novel

findings that dual expression of CD39 and CD161 better defines the

Th17 profile of human CD4+ T cells, which modulates human Th17

responsiveness by altering the biological activity of acid

sphingomyelinase (ASM) and activating downstream signals

(including STAT3 and mTOR), as seen in patients with Crohn’s

disease (147–149).

However, it was noted that CD73 and CD39 expression was

downregulated and exerted anti-tumor immunity when small

molecule RORt agonists were applied to induce Th17

differentiation; this experimental result seems to be contradictory

with the aforementioned conclusion that Th17 promotes tumors

through CD73 and CD39 (150). Th17 exerts pro-tumor effects

based on CD39 and CD73 dependent on the conditions of Th17

differentiation. At high concentrations of TGF-b, transcription
factor GFi-1 is down-regulated while expression of exonucleases

CD73 and CD39 is increased, followed by increased adenosine

production, leading to a diminished antitumor effector function

(144). However, in the presence of low concentrations of TGFbwith
IL-6 and IL-1b, the generated Th17 cells expressed lower levels of

CD73 and better antitumor activity (151); Not coincidentally, the

application of small-molecule RORt agonists resulted in decreased
Frontiers in Immunology 05
expression of both CD39 and CD73, th17 which in turn exerted

anti-tumor immune effects, regardless of TGF-b concentration

(150). In addition, this complex dual role could also be due to the

alteration of the balance between th17 and treg under various

culture conditions. Most human Treg cells express CD73 with

CD39 and exert immunosuppressive effects, and increased Treg

infiltration in the tumor microenvironment enhances adenosine-

increased mediated immunosuppression. In studies applying

RORyT agonists, Treg cell differentiation was inhibited which

further affected CD73 & CD39 expression. Interestingly, the

differentiation of Th1 cells was not inhibited in this experiment

and the expression level of T-bet, the main transcription factor of

th1 cells, was extremely similar to RORgT and exerted an anti-

tumor immune effect.
3.2 Tumor-protective functions of Th17

It has been shown that the proportion of Th17 cells is decreased

in the malignant tumor environment compared to the benign

tumor (26, 152, 153).

As evidenced by mouse experiments in vitro, enhancing Th17

cell differentiation by the application of RORg agonist can increase

the expression of the signature 17-type cytokines IL-17A, IL-17F,

IL-22, and GM-CSF, and reduce the expression of PD-L1 (150).

And then further increase the expression of co-stimulatory

receptors, which may provide superior antitumor activity and

represent a promising immunotherapeutic approach for the

treatment of cancer (150, 154). In other words, Th17 cells affect
FIGURE 1

The impact of Th17 cell plasticity in the tumor microenvironment: On the one hand, Th17 cells promote Treg cell polarization leading to enhanced
antitumor immunosuppression; on the other hand, Th17 cells are also converted to the Th1 phenotype and produce IFN-g to exert antitumor effects.
In addition, inflammatory hallmark cytokines such as IL-17 produced by Th17 cells are significantly associated with tumor metastasis and prognosis.
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the prognosis of patients and may even play a powerful role in anti-

tumor immunity (90, 155).

3.2.1 Anti-tumor functions of IL-17
While it has been reported that IL-17 promote tumor

progression and metastasis by increasing inflammatory

angiogenesis, other investigators have pointed out that IL-17 exert

antitumor effects by modulating adaptive immune responses via

recruiting T lymphocytes, enhancing NK cell activity, and

promoting the generation and activation of CTLs (156–162).

For instance, a 50-year-old man with a history of mild psoriasis

and Crohn ’s disease was treated with a PD-1 blocker

(pembrolizumab) for metastatic colon cancer. There was a

significant 50% reduction of CEA level in the first two rounds of

treatment. However, after the third cycle of pembrolizumab, the

patient developed a severe psoriatic rash covering 75% of the body,

along with abdominal pain and increased stool frequency. To

address the skin manifestations, the patient was treated with an

IL-17A blocker (secukinumab) for the treatment of psoriasis (163).

Although IL-17 blockade improved psoriasis symptoms and

gastrointestinal pain, antitumor activity decreased as serum CEA

returned to pre-treatment levels (164). In 2009, Ilona et al.

inoculated mice with colon cancer MC38 cells line and found that

IL-17-deficient mice had low level of tumor-infiltrating IFN-g T

cells and enhanced tumor growth and subcutaneous and pulmonary

metastasis compared to normal wild-type mice (165). And Chen

concluded that low amounts of intertumoral IL-17 expression may

indicate a poor prognosis for patients with gastric adenocarcinoma

(157). Similar results were also obtained in esophageal squamous

cell carcinoma (ESCC): the density of IL-17+ cells was inversely

correlated with tumor invasion, and the level of IL-17+ cells was

positively correlated with the density of CD8+ cytotoxic T

lymphocytes (CTLs), CD57+ natural killer (NK) cells and

dendritic cells (DCs) by recent studies (156, 166, 167). The levels

of IL-17+ TIL and other immune cells involved in antitumor effects,
Frontiers in Immunology 06
such as CTL, were evaluated in 181 ESCC patients using

immunohistochemical methods (167). The results shows that IL-

17 induces ESCC tumor cells to produce inflammatory chemokines

like CXCL9, CXCL10, and CCL2, CCL20, which are respectively

associated with the migration of T cells, NK cells, and DCs (167).

The paradoxical effects of IL-17 produced by Th17 cells are

illustrated in Figure 2.

3.2.2 Plasticity of Th17 and Th1
Th17 cells in tumor immunity not only promote the activation

of cytotoxic T cells, but also even directly convert to T helper type 1

lineage leading to the production of IFN-g (10, 168). IFN-g plays a
key role in autoimmune diseases and tumor-protective functions

through direct anti-proliferation, pro-apoptosis, and anti-

angiogenesis functions (64, 169, 170).

IL-17 producing Th17 cells can switch to effectors with similar

characteristics to Th1 cells (known as ex-Th17 or non-classical Th1

cells), which support the ability of antitumor or immunity (11, 170–

172). New research shows that the percentage of RORgt cells is

similar to that of cells expressing T-bet in tumor-infiltrating

lymphocytes (TILs) from different tumor types, such as breast

cancer and ovarian cancer (150). In vitro experiments have

suggested that in the presence of low levels or total absence of

TGF-b, IL-12 and IL-23 cytokines induce conversion of Th17 cells

to the Th1 phenotype; while sufficient TGF-b retains Th17

phenotype is retained (12, 63). Interestingly, other researches

show that by activating stat4, IL-12 and IL-23 convert Th17

precursors into the Th1-type phenotype, because of their

functions of STAT4 activation (63). Furthermore, Meng revealed

that Dendritic cells (DCs) expressing Notch ligand DLL4 can

promote Th1 and Th17 differentiation by directly activating the

transcription factors T-bet and RORg (99). Moreover, th17-derived

cells (ex-Th17 or non-classical Th1 cells) distinguish from classical

Th1 cells via unique surface markers, including CD161, CCR6, and

IL-17RE (26, 171, 173). Basdeo SA et al. found that these non-
FIGURE 2

Paradoxical effects of IL-17 produced by Th17 cells: IL-17 secretes angiogenic factors and increases matrix metalloproteinase expression to promote tumor
cell proliferation and invasion. Interestingly, IL-17 can also enhance tumor cell apoptosis by recruiting immune cells such as NK cells and CTL cells.
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classical Th1 cells express significantly higher anti-apoptotic Bcl-2

implying better survivability, and secrete more TNF, IL-2, GM-CSF,

and IFN-g (174).
3.2.3 The recruitment and activation of
immunity cells

Th17 cells also drive antitumor immune responses by recruiting

immune cells to the tumor, particularly by activating effector

CD8+T cells. It was reported that Th17 cells stimulated CD8+

cytotoxic T lymphocytes (CTL) responses via IL-2 and pMHC I

and the deterioration of OVA-expressing B16 melanoma can be

avoided by this pathway (168, 175). What’s more, Th17 cells were

able to stimulate the expression of chemoattractants CCL2 and

CCL20 in lung tumor microenvironments and promote the

recruitment of various inflammatory leukocytes (DCs, CD4+, and

CD8+T cells).It has been shown that Plasmacytoid dendritic cells

(pDC) activated by CpG-activated and antigen presentation

induced the differentiation and development of Th17 cells,

producing large amounts of other inflammatory cytokines such as

IFN-g (176, 177). When pDCs are deficient in MHC II expression,

the frequency of infiltrating Th17 in tumor tissue is reduced and the

Th17 response is defective, leading to a decrease in the recruitment

of immunity cells such as CTL, which ultimately leads to tumor

growth (178).

Further understanding of the characteristics of Th17 cells in the

tumor microenvironment could generate new therapeutic

approaches for cancer treatment. In contrast to Th1 cells, Th17

cells do not exhibit senescence or apoptosis and maintain potent

anti-tumor efficacy in vivo (179). Th17 cells offer promise for the

next generation of ACT trials because of their stability and

persistence (179).
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It was found that Th17 cells transform into Th1 or Treg cell

subtypes under certain conditions, and there are at least two

balances in the microenvironment. One is the Treg/Th17 balance:

the presence of TGF-b, IL-23, and IL-6 maintain the Th17

phenotype, while TGF-b alone allows a shift in differentiation

toward the Treg phenotype (67). The other is the Th1/Th17

balance: IL-12 and IL-23 induce the conversion of Th17 cells to a

Th1 cells phenotype in the absence of TGF-b. These two balances

are in opposition to each other, shaping the effect of Th17 on

tumors. Th17 cells may inhibit T cell proliferation and cytokine

production through CD39 and CD73, or promote differentiation of

Treg cells, resulting in altered immunosuppressive functions.

However, Th17 cells may also promote the activation of cytotoxic

T cells or convert to the Th1 phenotype and produce antitumor

effects of IFN-g in tumor immunity. Given the role of protumoral

Treg and antitumoral Th1 on tumors, we believe that further

understanding of the high plasticity of Th17 cells may yield new

therapeutic approaches to treat cancer (180).

In addition, this two-fold effect also depends on IL-17. IL-17 is

significantly correlated with tumor development as well as

prognosis, and the relationship between prognosis and IL-17

expression level differed among tumor types (181). On the one

hand, IL-17 serves to promote tumor cell proliferation or invasion

and inhibit tumor cell apoptosis by secreting angiogenic factors and

increasing the expression of matrix metalloproteinases (including

MMP-2 and MMP-9). On the other hand, IL-17 enhances apoptosis

and decreases tumor growth by promoting the activation of NK

cells and CTL cells, recruiting neutrophils, NK cells, and CD8+ T

cells (182). The effects of Th17 cells are concluded in Table 1.
TABLE 1 The pro and anti-tumor effects of Th17 cells.

Mediator Mechanism Reference

Pro-tumor IL-
17

Akt-dependent IL-6/STAT3 upregulates IL-8, MMP2 and VEGF (112)

IL-
17

VEGF, CD31, angiopoietin-2 high micro-vessel density (79, 87, 90,
91)

IL-
17

NF-kB-mediated upregulation of ZEB1 IL-17-induced EMT (123, 124)

IL-
17

NF-kB, p38 MAPK promotes self-renewal of CD133(+) CSLCs (113)

IL-
17

arginase-1 (Arg-1), MMP9, and S100A8/
A9

promotes the development of MDSC (127)

Treg CD8+T cell T cell dysregulation and autoimmune suppression (135, 138,
139)

Th17 CD73 CD39 inhibiting NK and CD8+ T cells (145, 146)

Anti-
tumor

IL-
17

CXCL9, CXCL10, CCL2, CCL20 associated with the migration of T cells, NK cells, and DCs (156, 166,
167)

Th1 INF-g,TNF, IL-2, GM-CSF anti-proliferation, pro-apoptosis, and anti-angiogenesis functions (10, 168, 174)

Th17 IL-2 and pMHC I stimulated CD8+ cytotoxic T lymphocytes (CTL) responses (168, 175)

(Continued)
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Since the molecular mechanisms by which Th17 cells function

in tumors remain unclear, we believe that further understanding of

the relevant mechanisms will facilitate the exploration of novel

effective therapeutic approaches and ultimately improve the

prognosis of cancer patients.
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