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Inflammation is an immune response that the host organism eliminates threats

from foreign objects or endogenous signals. It plays a key role in the progression,

prognosis as well as therapy of diseases. Chronic inflammatory diseases have

been regarded as the main cause of death worldwide at present, which greatly

affect a vast number of individuals, producing economic and social burdens.

Thus, developing drugs targeting inflammation has become necessary and

attractive in the world. Currently, accumulating evidence suggests that small

leucine-rich proteoglycans (SLRPs) exhibit essential roles in various inflammatory

responses by acting as an anti-inflammatory or pro-inflammatory role in different

scenarios of diseases. Of particular interest was a well-studied member, termed

fibromodulin (FMOD), which has been largely explored in the role of

inflammatory responses in inflammatory-related diseases. In this review,

particular focus is given to the role of FMOD in inflammatory response

including the relationship of FMOD with the complement system and immune

cells, as well as the role of FMOD in the diseases associated with inflammation,

such as skin wounding healing, osteoarthritis (OA), tendinopathy, atherosclerosis,

and heart failure (HF). By conducting this review, we intend to gain insight into

the role of FMOD in inflammation, which may open the way for the development

of new anti-inflammation drugs in the scenarios of different inflammatory-

related diseases.

KEYWORDS
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1 Introduction

Inflammation is a tightly regulated immune response that an organism defends itself

against invading pathogens and responds to tissue injury under aseptic or sterile

conditions. Pathogen-associated molecular patterns (PAMPs), expressed by foreign

intruders such as viruses and bacteria, are recognized by pattern recognition receptors
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(PRRs), leading to an inflammatory response activation (1). In

contrast, the inflammatory responses without pathogen infection

are termed sterile inflammation, while tissue damage leads to the

release of endogenous molecules, including intra- or extracellular

origin, which are referred to as damage-associated molecular

patterns (DAMPs) (2, 3). Both PAMPs and DAMPs could initiate

immune responses by activating classical PRRs, including Toll-like

receptors (TLRs) and multiple germ-line-encoded receptors (2, 4).

Moreover, DAMPs can be sensed by non-PRR DAMP receptors,

such as the receptor of advanced glycation end products (RAGE),

triggering receptors expressed on myeloid cells (TREMs), several G-

protein-coupled receptors (GPCRs), and ion channels (2).

Traditionally, the process of inflammation can be divided into

three phases, including inflammation, normal resolution, and

post-resolution (5). If the process is uncontrolled, it will result in

organ pathology or chronic inflammation including cancers,

osteoarthritis, and cardiovascular (6–8). Indeed, chronic

inflammatory diseases have been the major cause of death in

almost all countries, which greatly affects a large group of the

quality of life of individuals, creating a substantial burden on

society, psychology, and the economy (9–11). Consequently,

developing more effective and specific drugs targeting

inflammation and resolution of inflammation in various

inflammatory diseases has become an urgent demand for doctors

and scientists.

Small Leucine-Rich Proteoglycans (SLRPs) belong to a diverse

family of proteoglycans that are one of the major components of the

extracellular matrix (ECM) and ubiquitously distributed in

connective tissues, which are involved in the matrix organization

and regulation of various cell growth and signaling (12–16). It is

becoming increasingly clear that the SLRPs play critical roles in

inflammatory responses by exhibiting pro-inflammatory or anti-

inflammatory effects, as well as participating in the resolution of

inflammation (17–20). For instance, biglycan-CD44 interaction

could induce autophagy of M1 macrophages, thus increasing anti-

inflammatory M2 macrophage depositions to influence the

inflammatory response in the kidney (21). Additionally, in the

cornea, lumican stimulated the recruitment of macrophages and

polymorphonuclear neutrophils (PMN), accompanied by the

elevated production of the pro-inflammatory cytokines tumor

necrosis factor-a (TNF-a) and Interleukin-1b (IL-1b), which
finally triggered the inflammation and corneal injuries healing

(22). Similarly, another important SLRPs member, FMOD, has

been shown to play a significant role during the inflammatory stage

of diseases, such as the alteration of inflammatory cell infiltration

during skin wound healing, and affecting the macrophage content

and function in atherosclerotic (23, 24).

In this review, we mainly focused on the role of FMOD in

inflammatory responses and diseases associated with inflammation,

which may deepen our knowledge of inflammation during various

inflammatory diseases and provide a new direction for anti-

inflammatory therapies.
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2 The molecular and structural
hallmarks of FMOD

SLRPs are a large family of extracellular proteoglycans

characterized by a core protein consisting of homologous amino

acid residues and variable glycosaminoglycan (GAG) chains

attached to core proteins that is often larger than a trisaccharide.

SLRPs can be classified into five classes based on sequence

homology at both the protein and genomic level, as well as the

chromosomal organization (12, 14). FMOD belongs to the class II

and four asparagine residues in its core protein could serve as

acceptor sequences that can be attached with N-linked keratan

sulfate chains (25, 26), which was originally isolated from bovine

articular cartilage containing 376 amino acid residues with a core

molecular mass of 42 kDa and flanked on both sides by domains

lacking the repeat structure (25). FMOD was expressed in a variety

of connective tissues such as tendons, sclera, serum, skin, etc (27).

The name of FMOD was derived from its function to bind to the

fibrillar types I and II collagens, which results in delayed and

reduced collagen fibrils and modulates the mechanical properties

of these fibrils (28). As a secreted protein, it can be secreted by

various cells, such as fibroblasts, chondrocytes, keratinocytes, and

melanocytes (29–33).

Genetically, FMOD is localized at chromosome 1 (1q32) in

humans, which has a syntenic region in mouse chromosome 1 (34).

The encoded regions of FMOD are composed of three exons, with a

major central exon encoding nearly all LRRs, which shares overall

homology of 90% in bovine FMOD (35). Previous studies have

shown that sequence variations in the FMOD gene may be related to

the pathogenesis of high myopia in humans (36). Structurally,

FMOD protein can be divided into three main domains,

including the N-terminal, C-terminal, and central domains.

Except for the first 18 amino acids of a signal peptide that would

be cleaved after protein secretion, the remaining N-terminal

domain is the least conserved, which contains a tertiary structure

with two loops formed by disulfide bridges between the four

cysteine residues (25). The C-terminal domain is less conserved,

which has a single loop containing two cysteine residues forming an

intrachain disulfide bond (25). The central domain is the leucine-

rich repeat (LRR) region with repeats of 20–30 amino acids with

high homologous to decorin (25, 37). Besides, FMOD undergoes

several post-translational modifications. For example, nine of ten

N-terminal tyrosines are O-sulfated (38), and Asn127, Asn166,

Asn201, and Asn291 are N-linked glycosylated with four sugar

molecules (NAG-NAG-BMA-FUC) observed in each glycan chain

at the electron density, while whether these glycans would be

extended by keratan sulfate could not be determined from the

electron density (39), which influence the half-life of proteins

secreted into circulation and enhance the rate of secretion of

proteins from cells (40). The crystal structure of FMOD was first

obtained in 2017 (39). Like other LRR proteins, FMOD shows

several hallmarks of the curved solenoid structure: 1) the N-
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terminal cap (LRRNT, 79-106) contains two conserved disulfide

bonds (Cys76-Cys82, Cys80-Cys92) and seals the hydrophobic core

of the LRR region, which is also associated with the strand to the

curved parallel b-sheet that dominates the concave face of FMOD

(39); 2) Following LRRNT, there are 11 LRRs with 20 to 27 residues

in FMOD, which share the consensus sequence LxxLxLxxNxL and

display a long-long-short pattern, as previously seen in decorin (39);

3) Residues 3–6 of each LRR form one b-strand to the concave face

of the curved solenoid and the convex face consists of loops and

turns (37); 4) FMOD also show the characteristic of SLRP classes I,

II or III, termed ‘ear repeat’, which spans from Cys334 in LRR XI to

the b-strand of LRR XII (39) (Figure 1). Interestingly, unlike that

class I SLRPs, such as decorin, forms stable dimers, FMOD was

mainly in monomeric in physiological solution (37). However, the

current crystal structure of FMOD did not contain the disordered

N-terminal structure, which displays a pivotal role in the biological

function of FMOD, such as binding to the collagen (39, 41). It seems

that the disordered N-terminal structure of FMOD is flexible and

variable based on its specific function, which needs to be

further confirmed.

Functionally, FMOD has been shown to interact with collagen

and regulate collagen fibril growth, both in vivo and in vitro (28).

Previous studies have shown that it is bound to collagen fibers

through three proven binding sites, two of which were in the

leucine-rich repeat core structural domain located at LRR7 and

LRR11 (42–44), which inhibited the fibril formation rate (45). The

remaining one was in the tyrosine sulfate domain links to the N-

terminal, which has a high affinity for binding to collagen,

contributing to shortening the fibrinogenesis lag phase and

influencing the arrangement of collagen molecules in the early

fibrillogenesis stage (45). Additionally, FMOD was shown to form a

complex with lysyl oxidase to increase its activity and influence its

site-specific cross-linking with collagen (46, 47). Since

inflammation often results in the degradation of collagen in the
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ECM and improving ECM may be a potential therapeutic strategy

for inflammation disease (48–50), whether FMOD could be a

therapeutic agent for anti-inflammation via regulating collagen

fibrillogenesis remains elusive and needs to be further studied.

Furthermore, FMOD shows the ability to bind to mammal

transforming growth factor b (TGF-b) isoforms with two binding

sites and could slightly bind to latent recombinant TGF-b1 (51).

Considering that TGF-b exerts multi-faceted effects in

inflammation based on various cellular and environmental

contexts, whether FMOD could regulate inflammation in various

inflammatory diseases via regulating TGF-b signaling remains

unclear. Also, the specific binding mode between FMOD and

TGF-b, as well as the molecular mechanism of FMOD regulating

TGF-b signaling in inflammation need to be largely explored.

Interestingly, FMOD was shown to bind to the complement

element C1q, which is important for the regulation of

inflammation, and it will be detailly discussed in the following part.
3 FMOD in inflammatory response

3.1 FMOD and the complement system

The complement system, comprising the soluble and cell

membrane proteins, plays a crucial role in the innate immune

response to defend against pathogens and maintain host

homeostasis (52). Complement proteins act as a recognizer and

transmitter of exogenous and endogenous related danger signals

during immune responses (53, 54), which help microbial

recognition and initiation of phagocytosis and inflammation by

activating the classical, alternative, and lectin pathways (55). The

activation of complement can be divided into four main steps,

including initiation of complement activation (classical, lectin, or

alternative), C3 convertases activation and amplification in which
FIGURE 1

The crystal structure of the FMOD with lacking the disordered N-terminal structure. The structure was retrieved from Protein Data Bank (PDB), ID:
5mx0. FMOD displays typical SLRP structure features with 11 LRR motifs following LRRNT (also could be called LRR I). Three disulfide bonds locate at
Cys76-Cys82, Cys80-Cys92, and Cys334-Cys367. Four potential N-linked glycosylation sites lie on the Asn127, Asn166, Asn201, and Asn291.
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C3 is cleaved to C3a (pro-inflammation) and, C3b (eliminating

microorganisms in a non-inflammatory manner), C5 convertases

activation in which C5 is cleaved to C5a (pro-inflammation) and

C5b (initiating the terminal pathway), and the membrane attack

complex (MAC; C5b–9) formation, finally resulting in cytolysis or

cell activation. These activation fragments bind to their respective

complement receptors to cause various biological responses,

including phagocytosis, immune adherence and removal, cell

migration, tissue regeneration, cell activation, and modulation of

pattern recognition receptor-induced responses (52, 55–57).

Notably, the complement system is tightly regulated by proteins

such as factor H (FH) and factor I (FI) to decay the C3 convertases

or mediate the cleavage of activation fragments (52, 58), thereby

avoiding unexpected complement overactivation. Previous studies

have identified that the complement system plays a key role in the

inflammation of various diseases. For example, targeting C3a-

C3aR/C5a-C5aR axis could control maladaptive immune-

inflammatory consequences of the complement pathways in

severe coronavirus infectious disease 2019 (COVID-19) (59).

Moreover, a previous study showed that MAC-induced

chondrocytes produced more inflammatory and degradative

molecules, which were colocalized with matrix metalloprotease 13
Frontiers in Immunology 04
(MMP-13) and activated extracellular signal-regulated kinase

(ERK) around chondrocytes in human osteoarthritic cartilage,

which plays a critical role in OA synovial fluid in the

pathogenesis of osteoarthritis (60).

During the initiation of the complement system, the classical

pathway can be activated in either an immune complex-dependent

or independent manner, while the alternative pathway is in a

constant state of low-level activation (“Tick-over”), allowing for

immediate response upon microbial challenge (61). Tick-over is the

spontaneous hydrolysis of a labile thioester bond, which converts

C3 to a bioactive form of C3(H2O) in the fluid phase. Then, C3

(H2O) is bound to factor B (FB) (62) and cleaved by factor D (FD)

to form a fluid phase C3 convertases complex, termed C3(H2O)Bb,

which could interact and cleave native C3 molecules to C3a and C3b

(61). FMOD was shown to hold the ability to participate in both the

classical and alternative pathways of complement to regulate the

inflammatory response (Figure 2). For example, FMOD can cause

the deposition of C1q, which is a recognition molecule of the

classical pathway and is mainly produced by immature dendritic

cells, monocytes, and macrophages (63) to recognize immune

complexes or other structures. The N-terminal of FMOD can

directly bind to the globular heads of C1q to activate C1, which
A

B

FIGURE 2

FMOD and the complement system. (A) C1q recognizes immune complexes or FMOD and binds with them; complement inhibitor proteins FH and
C4BP bind with FMOD; FMOD could be cleaved by MMP-13, IL-1, ADAMTS-4, ADAMTS-5, and its fragment binds with C1q. (B) FMOD binds to C1q
resulting in the deposition of C4b and C3b to activate the classical pathway; FMOD activates the alternative pathway; FH acts as a cofactor for FI to
prevent the formation of the C3 and C5 convertases and acceleration of C3b decay; C4BP acts as a cofactor for FI to prevent the formation of the
classical C3 and C5 convertases; FMOD binds with C4BP to avoid the immune evasion of the pathogen and not influence the C4bP function; FMOD
binds with FH to inhibit C5a and C9 depositions but increase iC3b. Created with BioRender.com.
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subsequently results in the deposition of C4b and C3b to initiate the

early steps of the classical pathway (64). Moreover, C3b and C9

deposition were also observed in C1q-deficient serum and factor B-

deficient serum with FMOD administration, which suggests that

FMOD could also activate the alternative complement pathway

(64). In the specific disease setting, the N-terminal fragment of

FMOD was cleaved by inflammatory cytokine or matrix

metalloproteinases (MMPs) and these cleaved fragments could

bind with C1q, leading to the activation of classical pathways to

aggravate the inflammatory response of osteoarthritis (discussed

below) (65–67).

On the other hand, FMOD was found to bind with FH at the

sixth to eighth complement control protein (CCP) domain of FH

(68), while the deglycosylated FMOD showed a higher affinity to

bind to FH than the keratan sulfate-containing form, which

suggests that the binding site for FH on FMOD is localized to the

polypeptide chain and the keratan sulfate causes steric hindrance

for the interaction (64, 68). Interestingly, the binding of FMOD

with FH further inhibited the alternative pathway, causing the lower

release of C5a to directly repress neutrophil adhesion on the joint

endothelium igniting inflammation (69, 70). Increased iC3b release

that can bind with complement receptors to mediate phagocytosis

and inhibit alternative pathway activation (71), and lower

deposition of C9 to prevent excessive host cell damage (64).

Moreover, the FH-related (FHR) proteins like FHR1 and FHR5

could compete with FH for binding to C3b, and support the

assembly of the alternative pathway C3 convertases, thereby

enhancing alternative pathway activation (72, 73). Interestingly,

FHR proteins could disturb the binding between FMOD and FH,

which resulted in the decreased FH cofactor activity and the

increased deposition of C3-fragments, factor B and C5b-9 to

enhance local complement activation and promote inflammation

under pathological conditions (74). Additionally, FMOD was

shown to bind to C4b binding protein (C4BP) at the central core

including CCP8, which is a complement inhibitor that represses the

formation of the classical pathway C3 and C5 convertases (61, 75),

as well as serves as a cofactor for FI, participating in the proteolytic

degradation of C4b and C3b (76), which does not inhibit the activity

of C4BP (77). However, deleting C4BP from serum significantly

enhanced complement activation initiated by FMOD with higher

deposition of C9 (77). Notably, C1q, FH, or C4BP binds to FMOD

at different binding sites, and FMOD is capable of binding and

activating C1q, as well as simultaneously binding to FH and C4BP

(64, 77). Several pathogens likeMoraxella catarrhalis, which caused

acute otitis media in children, as well as stimulated acute

exacerbations in chronic obstructive pulmonary disease patients,

could recruit C4BP from the host to immune evasion (78–80). A

recent study revealed that FMOD could competitively bind to C4BP

to inhibit its binding to the surface of Moraxella catarrhalis,

resulting in increased C3b/iC3b deposition, MAC formation, and

subsequently avoided the immune evasion of the pathogen and

decreased survival of bacterial (81).

Collectively, the multifaced effects of FMOD on the

complement system may suggest its critical role in the delicate

regulation of complement activation under physiological

conditions. When the balance is destroyed in the pathological
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state, FMOD may exert pro or anti-inflammatory effects in the

different scenarios of diseases, and the interaction of FMOD and

complement may prevent the immune evasion of the pathogen,

which is worth being deeply explored in the future.
3.2 FMOD and immune cell

The acute inflammatory response is a complex but highly

coordinated process involving molecular, cellular, and

physiological alterations (5). After an injury, the necrotic cells

initiate DAMPs and PAMPs which are recognized by innate

receptors on tissue-resident cells to produce various inflammatory

mediators such as complement, chemokines, and cytokines, then

recruiting leukocytes including neutrophils, macrophages, and

dendritic cells (DCs) to trigger inflammatory responses at the

injury site (5, 82).

Within 24 hours of the injury, neutrophils are quickly attracted

to the wound site and fight off invasive pathogens through a variety

of antimicrobial reactions, such as phagocytosis, toxic granules,

oxidative burst, and neutrophil extracellular traps (83–85).

However, the consistent existence of neutrophils at the injury site

was detrimental to proper tissue repair by secreting proteases

including MMPs to degrade ECM components, resulting in

excessive inflammatory responses, finally causing impaired

healing and chronic wound formation (86).

After 48-72 hours, the number of macrophages reaches a peak at

the injury site (87), which plays critical roles in pro-inflammation,

resolution of inflammation, and tissue reorganization (88). Naive

macrophages can be differentiated in response to external stimulation

to M1 or M2 macrophages, each of which has distinct functions that

M1- phenotype macrophages induce pro-inflammatory cytokines and

chemokines to eliminate pathogens, while the M2-phenotype

macrophages diminish the inflammatory response, and promote

tissue repair and healing by producing anti-inflammatory molecules,

collagen, and elastin precursors (89, 90). Recently, FMOD has been

shown to involve in macrophage differentiation and polarization via

regulating the TGFb signal pathway. FMOD was found to be cleaved

by MMP-8 to increase the bioavailability of TGF-b1 to induce the M2-

phenotype macrophages differentiation and polarization (91).

Furthermore, the expression and activation of FMOD could be

regulated by Notch1 haploinsufficiency, which repressed the

expression of TGF-b2 to reduce the expression of various genes

associated with M2 polarization (92). Moreover, FMOD was

associated with macrophage content and function in the

apolipoprotein E (ApoE)/FMOD-null mice with atherosclerosis,

which influences the content of macrophage in different areas and

the ability of macrophage uptaking lipid or secreting anti-inflammation

factors in plaque (discussed below) (93).

With cytokine or chemokine production, monocyte precursors

upon infection or injury differentiate into dendritic cells (DCs)

which are professional antigen-presenting cells (APCs) that are

critical for the initiation of immune response and act as a bridge

between innate and adaptive immunity (94). Plasmacytoid DCs

(pDCs), a subset of DCs, has been shown to orchestrate the

beneficial immunoregulatory interaction among commensal
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microbial molecules to regulate T cell to produce IL-10 through

innate and adaptive immune (95). A recent study found that the

absence of FMOD led to the increases of pDCs to produce more

type I IFN and activate the effector T cells, which induced a stronger

inflammatory response and destroyed the epithelial barrier in a

mouse model of dextran sodium sulfate (DSS) -induced acute colitis

(96). Additionally, FMOD has been found to affect the function of

immune cells to influence inflammatory reactions in several

autoimmune diseases like systemic lupus erythematosus. In the

study of induced lupus erythematosus in mice with different

pigments, compared with white fmod +/+ mice, the black fmod+/+

produced low levels of FMOD, while white fmod -/- mice developed

more severe inflammation accompanied by increased numbers of

DCs (97), which indicate that FMOD may be involved in the

inflammation of lupus erythematosus by regulating the expansion

of inflammatory DCs.

Together, the above results indicate that FMOD may affect the

functions of multiple immune cells such as DCs and macrophages

during inflammation in various diseases. However, whether and

how FMOD is engaged in the regulation of other immune cells’

activities remains unclear. On the other hand, it seems that the

hallmark of FMOD regulating TGFb1 signaling is mostly the key

factor that decides the effects of FMOD on the activities of the

immune cells during inflammatory responses, while the specific

mechanisms need to be elucidated in various immune cells and

inflammatory processes in the future.
4 FMOD and diseases associated
with inflammation

4.1 FMOD and skin wound healing

Cutaneous wound healing is a complex process comprising

various immune and structural cells, which secret various cytokines,

chemokines, and growth factors to orchestrate the phases of healing

(98). The classical physiological process of wound healing can be

divided into four steps: hemostasis, inflammation, proliferation, and

remolding (99). In normal skin wound healing, the inflammation

responses usually continue for 2–5 days and gradually resolve once

the harmful stimuli have been removed (100). However, over-

inflammation always leads to a persistent inflammation phase and

delaying wound healing, finally resulting in chronic inflammation

wounds or hypertrophic scars formation (101). The over-

inflammation is accompanied by the prolonged infiltration of

pro-inflammatory immune cells such as neutrophils and

monocytes, as well as the failed phenotypic conversion of

macrophage from a proinflammatory to an anti-inflammatory

(98, 99). Besides, the ability of macrophages to clear dead

neutrophils is limited, thus producing many inflammatory

mediators to trigger inflammation responses (102). Therefore,

adjusting the polarization of macrophages, inhibiting pro-

inflammatory factors, and anti-inflammatory cytokines treatment,

have been thought to be promising therapies for skin wound

management (98).
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Although FMOD knock-out mice did not exhibit apparent

defects in the skin (103), a wider distribution of collagen fibril

diameters and enlarged interfibrillar spaces between collagen

fibrils was observed (104). Importantly, previous studies have

identified FMOD as a biologically significant mediator of skin

wound healing, including regulating various fibroblast activities,

angiogenesis, and inflammation, which is associated with scarless

skin wound healing and skin fibrosis (15, 105–109). For example,

loss of FMOD delayed skin wound healing, and led to scar

formation in the fetal wounds, while restoration of FMOD

could rescue the phenotype with scarless wound healing (107).

Furthermore, FMOD acts as an activity regulator precisely

regulating TGFb activity to elicit fetal-like cellular and

molecular phenotypes during adult skin wound healing (109).

Furthermore, recombinant FMOD administration could promote

cutaneous wound healing in various preclinical animal models,

such as mice, rats, and pigs (15). Excitedly, a synthesized FMOD-

derived peptide did not raise any safety concerns in a human

phase I clinical trial, and it is now being tested in a phase II

c l i n i c a l t r i a l f o r m an a g i n g s k i n wound h e a l i n g

(Clinicaltrials.gov: NCT03880058).

FMOD may have the biological effect of alleviating

inflammatory responses in the process of skin wound healing.

Previous studies showed that the wound healing with FMOD-null

mice exhibited delayed wound closure and increased scar size (23,

110). Notably, During the inflammatory stage of wound healing,

FMOD-null mice exhibited more inflammatory cells in the

wounds, including neutrophils, monocytes, and macrophages,

which were characterized by the earlier appearance of

macrophages after injury. Moreover, the level of type I TGF-b
receptor was increased in the single inflammatory cell during the

inflammatory phase and FMOD-null wounds exhibited higher

sensitivity to TGF-b (23). Furthermore, the increased TGFb1
signals were detected in migrating epidermis and granulation

tissue of FMOD-null wounds at the early stage, which is

consistent with the appearance of macrophages, while the Peak

TGFb1 expression of ECM was associated with fibroblasts density

rather than inflammatory cells in FMOD-null wounds (23).

Importantly, macrophages have been shown to induce

granulation tissue and myofibroblast differentiation during the

early stage of the repair response, and early-stage macrophage

depletion significantly reduced granulation tissue formation,

impaired epithelialization, and scar formation (111), which

suggests FMOD may regulate macrophages function to

influence the progress of inflammation stage and the transition

from inflammation to reconstruction during skin wound healing.

On the other hand, TGF-b1 was mainly secreted by macrophages

during wound healing (112), while FMOD could regulate

macrophage polarization in vitro, which was found to delicately

regulate TGFb activity to elicit fetal-like skin wound healing

(109). Consequently, a tight relationship may exist among

FMOD, macrophages, and TGFb1 during skin wound healing,

while the specific mechanism of how these elements collaborate

or restrict each other to participate in the regulation of the

inflammation process during skin wound healing needs to be

further explored.
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4.2 FMOD and osteoarthritis

Osteoarthritis (OA) is the most common form of arthritis which

exhibits typical structural changes including cartilage degradation,

subchondral bone remodeling, osteophyte formation, and changes

in the synovium and joint capsule (113). With the continuous

deepening of the understanding of OA, it has been regarded as an

inflammatory disorder but not only a degenerative illness (114,

115). In OA, chondrocytes, synoviocytes, and synovial fibroblasts

are the source of pro-inflammatory cytokines and matrix-degrading

enzymes, while infrapatellar fat pad (IFP) is a site of inflammatory

mediators to contain considerable amounts of immune cells such as

macrophages and T cells (116), which causes a persistent

inflammatory response to change the anatomical and

physiological functions of the joint by affecting cell signaling

pathways, gene expression, and joint tissue (117, 118). Currently,

therapies for osteoarthritis are limited to symptom-relieving drugs

and total knee arthroplasty for severe cases, while drugs targeting

the underlying biological causes of osteoarthritis are not available in

the market (117). Therefore, it is important to identify the

development and progression of osteoarthritis, which may benefit

further developing a novel OA therapy.

Recent studies have identified that FMOD plays a vital role in

the progression of osteoarthritis. FMOD-null mice exhibited a

higher incidence of osteoarthritis in knee joints, which occurred

at 36 weeks in the articular cartilage, subchondral bone, ligaments,

and menisci (119), while the ECM and type II fibrils were not

altered in the articular cartilage (119). Since biglycan (BGN) and

FMOD display a complementary role in various physiological and

pathological processes, the mice with the absence of Bgn and Fmod

successively developed gait impairment, ectopic tendon ossification,

and severe premature osteoarthritis including cartilage

degeneration and damage at an early stage (between 1 and 2

months), and its progression was very rapid (complete erosion of

the articular cartilage between 3 and 6 months) (120). Notably, the

collagen fibrils in the articular cartilage of the FMOD-deficient mice

were also not different from those observed in the WT cartilage

(120), which suggests that the osteoarthritis was not caused by

collagen defects in the articular cartilage of FMOD null mice. A

similar phenomenon was detected in the temporomandibular joint

(TMJ) of Fmod and Bgn double-knockout mice, which developed

OA in the TMJ after 6 months and TMJ was extremely destroyed

after 18 months (121). Interestingly, the cell proliferation observed

in chondrocyte clusters was increased at an early stage. However,

cell proliferation was decreased at the onset of OA (121). In

addition, in bgn-/-; fmod-/- mandibular condylar chondrocyte

(MCCs), TGF-b1 signal transduction was increased to enhance

chondrogenesis, collagen II and aggrecan at an early age (122). With

aging, the overactive TGFb1 increases MMPs and degrades ECM,

resulting in collagen II and cartilage degradation (122). This

suggests a more delicate and complicated regulatory network that

FMOD is involved in during the pathogenesis of OA, and there

needs more research to identify the relationship between FMOD,

TGFb1 and chondrocytes during the progression of OA.
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Additionally, FMOD was thought to act as a barrier preventing

cell adhesion and protecting the joint. Neutrophil has been shown

to secret pro-inflammatory mediators and elastase, which regulates

the transport of other leukocyte subsets, increases the collagen II

binding with the antibody on the articular cartilage, and cleaves

cartilage surface matrix including FMOD to promote cartilage

damage (115, 123, 124). On the contrary, the complete FMOD

can inhibit polymorphous-clear neutrophil (PMN) adhesion (125),

and partially reconstruct the surface of elastase-digested cartilage to

prevent sustainable cartilage damage (126).

Moreover, the fragmentation of FMOD may affect the ability of

its binding with collagen and active complement which are both

involved in the progression of osteoarthritis. The MMPs have been

shown to participate in the balance between anabolism and

catabolism in articular cartilage (127), while MMP-13 is the key

enzyme in the cleavage of collagen II and plays an essential role in

cartilage destruction in OA (128). It has been demonstrated that

MMPs including MMP-13, a disintegrin and metalloproteinase

with thrombospondin motif-4 (ADAMTS-4), and ADAMTS-5

can cleave FMOD (67), and the cleaved N-terminus of FMOD is

similar to the fragment obtained by interleukin-1 (IL-1) treatment

(65, 66). However, the purified intact FMOD could not be cleaved

by IL-1 and MMP-13 (65). This suggests that cleavage of

fibromodulin occurred at the site where the molecule is bound to

collagen fibrils, while following FMOD cleaved, the fibrillar network

was altered to lead to the exposure of sites which was subsequently

confirmed by the cleaved type II collagen fibers (65, 66).On the

other hand, complements have been found in significantly increased

abundance in OA synovial fluid (129) and play a key role in OA

synovial fluid in the pathogenesis of osteoarthritis (60). Notably, the

pulverized osteoarthritic cartilage from human has higher

expression of FMOD and higher deposition of MAC, while

FMOD was present at higher concentrations in osteoarthritic

compared to healthy synovial fluid (60). In addition, sublytic

MAC increased the multiple gene expression of chondrocytes

implicated in osteoarthritis including MMPs, ADAMTSs, and

inflammatory cytokines, and it was colocalized with MMP-13 and

activated extracellular signal-regulated kinase (ERK) (60). However,

at present, there is no further research to explore the relationship

among FMOD, chondrocytes, MAC, and MMPs in OA.

Furthermore, The site of FMOD binding with C1q can be

competitively bound to the NC4 domain of cartilage-specific

collagen type IX collagen to inhibit complement activation to

reduce the degradation of collagen II and the excessive

inflammatory response (130). Since FMOD can directly bind with

C1q, FH, and C4BP at different binding sites to regulate the

complement system, whether FMOD could regulate the

progression of OA by mediating complement system needs to be

further elucidated.

In conclusion, the FMOD and its fragment may exhibit multiple

functions such as collagen binding, complement activation, and

TGF-b1 signaling regulation to influence the progression of OA.

However, more research is needed to explore the specific

mechanism of FMOD and its fragments in the regulation of

inflammation during OA progression, especially the specific
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1191787
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhao et al. 10.3389/fimmu.2023.1191787
relationship among FMOD, collagen II, and MMPs in OA, which

may pave the way to develop an FMOD-related agent for OA

management or a new diagnostic biomarker in the progress

of osteoarthritis.
4.3 FMOD and tendinopathy

Tendon is composed of highly arranged collagen fibers and

other ECM components, including oligomeric matrix protein,

elastin fibrils, and SLRPs (131). Once tendon injury occurs, the

natural healing ability of tendons is rather limited due to

hypocellularity and hypovascularity (132). Similar to skin wound

healing, tendon healing processes can be divided into three phases,

including inflammation, proliferation, and remodeling phases

(133). The inflammation in tendinopathy contains three distinct

cellular compartments (stromal, immune-sensing, and infiltrating

compartments), each contributing to a complex condition of

inflammatory responses affecting tendon homeostasis (134, 135).

The failed resolution of an inflammatory response in tendons leads

to chronic persistent disease that is one of the hallmarks of

tendinopathy (136). Thus, the balance of immune-stromal and

cell-matrix interactions may play an important role in the

resolution of tendon inflammation (134).

FMOD, as a key regulator of tendon strength and fibril

maturation, has been shown to participate in tendinopathy

pathogenesis (137). FMOD deficiency mice exhibited an altered

morphological phenotype in the tail tendon with fewer and

abnormal collagen fiber bundles, despite it could be partly

rescued by an increase of lumican (LUM) (138). Furthermore,

compared with WT mice, the absence of Lum and Fmod led to

extreme tendon weakness, while the deficiency of FMOD alone

resulted in a significant reduction in tendon stiffness (139). Similar

phenotypes were observed in the deficiency of BGN and FMOD

mice, including alteration of collagen fibrils and weak tendons

(120). Importantly, overexpression of FMOD could enhance

tendon healing in vivo and in vitro (140). In addition, FMOD/

gHA‐hydrogel was shown to significantly promote tendon healing

histologically, mechanically, and functionally (141). However, the

specific role of FMOD in the regulation of inflammation during

tendon wound healing remains unclear.

Tendon stem/progenitor cells(TSPCs) were identified in 2007

(142). It has been shown to have the ability of multi-differentiation

potency to differentiate into tenocytes as well as non-tenocytes,

including adipocytes, chondrocytes, and osteocytes (143, 144).

Besides, TSPCs participate in the regulation of inflammation

during the healing of acute tendon injuries (145). TSPCs seeded

in knitted silk-collagen sponge scaffolds promoted regeneration of

the rotator cuff in a rabbit model by inducing tenogenic

differentiation and secreting anti-inflammatory cytokines that

prevented immunological rejection (146). Notably, FMOD and

BGN are two critical components in the TSPCs niche, which

controls the self-renewal and differentiation of TSPCs (142).

Furthermore, In double -knockout of Bgn and Fmod mice, TSPCs

proliferated faster, formed larger colonies, and formed bone-like

tissues in addition to tendon-like tissues compared with wild-type
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mice which formed only tendon-like tissues. This difference may be

mediated by modulating bone morphogenic protein (BMP) activity,

which is a part of the large TGFb signaling pathway (142, 147, 148).

A recent study found that in the early inflammatory process of

tendon repair, the increased inflammatory cytokines, including IL-

6, IL-10, and IL-1b that promoted the proliferation and migration

of tendon cells, were observed accompanied by reduced FMOD and

lumican expression, which resulted in the inhibition of TSPCs

differentiation to influence the healing in the tendon (149–151),

but whether the reduced FMOD and lumican expression are related

to the excessive inflammatory responses needs to be further studied.

Interestingly, both in vitro and in vivo studies showed that FMOD

can improve tenocytes migration and collagen matrix organization

by modulating TGFb (51, 140) and connective tissue growth factor

(CTGF), while a recent study has shown that CTGF-enriched

CD146+ TPSCs reduced pro-inflammatory M1 macrophages in

the early healing phase and expressed anti-inflammatory IL-10 and

TIMP-3 via JNK/signal transducer and activator of transcription 3

(STAT3) signal (152). Whether FMOD participates in this process

by regulating CTGF signaling during the inflammation phase in

tendon healing needs to be further studied.

In conclusion, FMOD not only influences the ECM remodeling

during tendon reconstruction by regulating the arrangement and

maturation of fibers but also may influence the activity of TSPCs

during the inflammatory phase of tendon healing, thereby affecting

tendon injury healing. However, there needs to confirm the

molecular mechanisms of FMOD in the inflammatory phase and

the ECM remodeling phase during tendon wound healing, e.g.

whether FMOD regulates TSPCs activity during the inflammatory

phase through TGFb1, thus allowing a better transition from the

inflammatory phase to the tendon remodeling phase, finally

promoting poor tendon healing.
4.4 FMOD and atherosclerosis

Atherosclerosis is a well-coordinated pathological process

involving the entering and accumulation of atherogenic

lipoproteins in the sub-endothelium and subsequent deposition of

extracellular matrix, inflammatory cells, smooth muscle cells,

necrotic cellular debris, and neo-vasculature with intraplaque

hemorrhage, leading to the formation of an atherosclerotic plaque

(153, 154). Advanced atherosclerotic plaque can encroach upon the

arterial lumen and impede blood flow. Once the plaque disrupts and

provokes the formation of a thrombus, it will occlude the lumen

leading to tissue ischemia (155). Lipids and the inflammatory

response play an important role in the initiation, progression, and

destabilization of atherosclerotic plaques (154). Plaque rupture is

generally attributed to collagen depletion in the fibrous cap of the

plaque resulting from matrix degradation by MMPs, which are

secreted by inflammatory cells, predominantly macrophages, in the

plaque (156). Consequently, anti-inflammatory interventions have

been thought to be able to forestall atherosclerotic complications.

Particularly, the NLRP3 inflammasome as well as the downstream

cytokines IL-1b, IL-18, and IL-6 are attractive candidate targets to

be interfered with (8). However, interfering with the inflammatory
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pathways may also damage the host defenses. Due to this fact,

promoting the resolution of inflammation without impairing

defenses may be one possible avenue, such as reducing leukocyte

infiltration and the production of pro-inflammatory mediators, or

increasing the containment and phagocytosis of cellular debris and

apoptotic cells (8).

Recently, FMOD has been found to act as a risk factor for

atherosclerosis. FMOD expression was upregulated and localized at

the area of macrophage-like cells in atherosclerotic aortas of ApoE/

LDL deficient mice (157). Moreover, FMOD was detected in carotid

atherosclerotic plaques from symptomatic and asymptomatic

patients, while FMOD expression was significantly higher in

plaques obtained from patients with diabetes and in those with an

increased incidence of postoperative neurological events (24).

Furthermore, the expression of FMOD was found to be positively

correlated with the expression of the pro-inflammatory cytokines

including macrophage inflammatory protein 1b (MIP-1b) and

soluble CD40 Ligand (s-CD40L), as well as the expression of

vascular endothelial growth factor (VEGF), while FMOD

expression had an inverse association with IL-10 expression in

human plaques (24). Moreover, in ApoE-null/FMOD-null mice,

plaque size was decreased accompanied by reduced lipid

accumulation and macrophage content in plaque (93), while the

RAW264.7 macrophages have less lipid accumulation, as well as

increased IL-6 and IL-10 production on FMOD-deficient ECM

(93). Notably, the proliferation of smooth muscle cells (SMCs) and

macrophages were detected in low and oscillatory shear stress

carotid lesions (93), while the SMCs could contribute to arterial

inflammation by being transformed into macrophage-like or

fibroblast-like cells in plaque (8). Consequently, it is indicated

that FMOD may influence atherosclerotic plaque development by

regulating the function of macrophages and SMCs, which suggests

that FMOD may be a potential target for atherosclerosis

treatment. However, more research is needed to further confirm

the role of FMOD in the regulation of inflammation during

atherosclerosis development.
4.5 FMOD and heart failure

Heart failure (HF) is a disorder associated with low-grade

immune activation and inflammation, which progresses

accompanied by pressure overload of the heart to lead to cardiac

remodeling (158). Cardiac remodeling comprises cardiomyocyte

hypertrophic growth, extracellular matrix alterations, and

inflammatory responses (159). After myocardium injury, the

inflammatory response induced by the innate immune system

upregulates a portfolio of cytoprotective responses that provide

the heart with a short-term adaptation to increased stress

(physiological inflammation) (160, 161). Pro-inflammatory

cytokines (such as IL-1b and IL-6), chemokines, DAMPs,

complement systems, and immune cells such as macrophages

play important roles in this process (162, 163). Once the

inflammatory response becomes dysregulated and results in

chronic inflammation, it will lead to left ventricular (LV)

dysfunction and LV remodeling, gradually causing HF (164).
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Currently, approaches targeting inflammation in patients with HF

can be broadly divided into targeted anti-cytokine therapies, anti-

inflammatory therapies, immunomodulatory therapies, and

strategies targeting autoimmune responses (165).

However, the poor understanding of the biology of persistent

inflammation during chronic LV remodeling emphasizes the

compelling need to conduct advanced translational efforts in this

field to benefit the development of biological drugs (164). Emerging

evidence shows that inflammation is essential in HF pathogenesis

and leads to ECM remolding, in which FMOD may play a critical

role. the chemokine CXCL13 was found to be involved in cardiac

remodeling during HF via activating CXCR5 on myocardial

fibroblasts and inducing the expression of SLRPs through the

ERK1/2 pathway (166). In the CXCR5 knockout mice, a CXCL13

receptor (167), the mortality and severe left ventricles dilatation

were increased during a follow-up of 80 days after aortic banding

accompanied by decreased SLRPs expression, including FMOD and

lumican (166). Besides, in clinical and experimental heart failure

studies, compared with normal patients and mice, FMOD

expression was 3-10-fold upregulated in the hearts of heart failure

patients and mice, while increased FMOD expression was found in

both cardiomyocytes and cardiac fibroblasts by NF-kB stimulation

(168). Moreover, upon aortic banding, the left ventricles of FMOD-

KO mice altered the infiltration of leukocytes, which may lead to

increased cardiomyocyte size and hypertrophic phenotype (168).

In conclusion, previous studies have suggested that FMOD may

play an important role in the inflammatory response and ECM

remodeling during heart failure. Accordingly, it may be a potential

biomarker as L. Adamo (164) suggested that more biomarkers were

used to identify a population of patients with heart failure who would

benefit from targeted anti-inflammatory strategies. However, the

specific role of FMOD in the inflammation of heart failure needs to

be further clarified.
5 Conclusion

FMOD has been extensively studied to participate in a variety of

disease processes including angiogenesis, fibrosis, and tumors. In

this review, we focus on the role of FMOD in inflammatory

responses and diseases associated with inflammation, which aims

to convince the reader that FMOD not only exhibits expression

variations in the inflammatory response of diseases but more

importantly, it plays a causal or maker role in the regulation of

inflammation during various disease processes (Table 1). For

example, it can activate inner immunity by binding with the

complement system. In addition, it may influence the activity of

immune cells such as macrophages by interacting with the TGFb
signal pathway during the progression of diseases like wound

healing. Moreover, it may be a biomarker in the chronic

inflammation of heart failure. Current studies strongly suggest

that FMOD exhibits the potential ability as the treatment agent

for skin or tendon wound healing, and OA management, However,

there still lacking the deeply explored studies on the specific role of

FMOD in other inflammation-associated diseases, such as

atherosclerosis. Also, the specific mechanisms of FMOD involved
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in the regulation of inflammation during the pathogenesis of these

diseases need to be further clarified, such as whether it influences

the activity of cells in the inflammatory phase to affect extracellular

matrix reconstitution in skin wound and tendon healing, which

may benefit doctors and scientists to develop a new generation of

therapeutic strategies for inflammatory diseases.
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TABLE 1 The role of FMOD in the various inflammatory diseases.

Disease Model Biological effect References

Skin wound
healing

fmod-/- mice delayed wound closure and increased scar size; Elevated inflammatory cell infiltration including macrophages
(23, 110)

Osteoarthritis fmod -/- mice a higher incidence of osteoarthritis in knee joints (119)

bgn-/-;fmod-/-
mice

gait impairment, ectopic tendon ossification, and severe premature osteoarthritis; Accelerated OA onset and
development; Influenced the proliferation of MCCs and ECM by TGFb1 in TMJ

(120–122)

Bovine cartilage
slices

FMOD inhibited polymorphic clear neutrophil (PMN) adhesion;
(125)

Human samples The higher expression of FMOD was accompanied by increased deposition of MAC in pulverized osteoarthritic
cartilage; FMOD was present at higher concentrations in osteoarthritic compared to healthy synovial fluid.

(60)

Tendinopathy Tendon wound
healing mice

FMOD enhanced tendon healing in vivo and in vitro
(140)

Tendon-derived
progenitor cells

The lower expression of FMOD was accompanied by increased inflammatory cytokines, including IL-6, IL-10,
and IL-1b; inhibited tendon-derived stem cells(TDSCs) differentiation.

(149–151)

Atherosclerosis In ApoE/LDL-
null mice

FMOD expression was upregulated and localized at the area of macrophage-like cells
(157)

Human samples Increased postoperative neurological events; Increased expression of the pro-inflammatory cytokines, including
MIP-1b, s-CD40L, and VEGF; decreased IL-10 production.

(24)

In ApoE-null/
FMOD-null
mice

Decreased plaque accompanied by reduced lipid accumulation and macrophage content; less lipid accumulation,
as well as increased IL-6 and IL-10 production; Increased SMCs and macrophages in low and oscillatory shear
stress carotid lesions

(24)

Heart failure In clinical and
experimental
studies

The higher expression of FMOD was associated with NF-kB stimulation; Altered infiltration of leukocytes in
FMOD-KO mice (168)
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