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Psoriasis is a chronic inflammatory skin disease. The histopathological features of

psoriasis include excessive proliferation of keratinocytes and infiltration of

immune cells. The S100 proteins are a group of EF-hand Ca2+-binding

proteins, including S100A2, -A7, -A8/A9, -A12, -A15, which expression levels

are markedly upregulated in psoriatic skin. These proteins exert numerous

functions such as serving as intracellular Ca2+ sensors, transduction of Ca2+

signaling, response to extracellular stimuli, energy metabolism, and regulating

cell proliferation and apoptosis. Evidence shows a crucial role of S100 proteins in

the development and progress of inflammatory diseases, including psoriasis.

S100 proteins can possibly be used as potential therapeutic target and diagnostic

biomarkers. This review focuses on the pathogenic role of S100 proteins

in psoriasis.
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Introduction

Psoriasis is a chronic, adaptive immune-mediated inflammatory skin disease with a

strong genetic predisposition and autoimmune pathogenic features (1–4). Immune-

mediated inflammatory dermatosis is characterized by complex multifactorial etiologies

and is clinically very different from each other despite sharing a chronic inflammatory

background (Table 1). Psoriasis presents a notable burden, with about 0.2 billion people

worldwide suffering from psoriasis. The prevalence of psoriasis varies from country to

country (5, 6). The pathogenesis of psoriasis is attributable to many factors, including

ethnicity, genetics, gene variants, and environment (7, 8).

Psoriasis primarily comprises plaque psoriasis (the common form, approximately 90%

of psoriatic cases are chronic plaque-type psoriasis), guttate psoriasis (after the

streptococcal infection), inverse psoriasis (flexural psoriasis), pustular psoriasis (the rare

and unstable), and erythrodermic psoriasis (systemic inflammation). Histopathologically,

psoriasis is characterized by infiltration of immune cells, epidermal hyperproliferation, and

abnormal keratinocyte (KC) differentiation (9). The recruitment of circulating leukocytes

to the epidermis and the production of pro-inflammatory factors, such as TNF-a, IFN-g,
IL-6, IL-8, IL-23, IL-1b, and IL-17A play a crucial role in the development of psoriasis (10).
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In addition, psoriasis can be accompanied by comorbidities such as

cardiovascular diseases, hyperlipidemia, hypertension, coronary

artery disease, and diabetes (11–16).

Originally, psoriasis was thought to be due to dysregulation of

keratinocyte proliferation (17), increasing evidence indicates a

crucial role of the immune system in the pathogenesis of psoriasis

(18). Psoriasis is caused by chronic interaction between KCs and

activated immune cells (19). One of the most important features of

psoriatic lesions is upregulation of expression levels of KC-

originated antimicrobial peptides and proteins such as S100

protein subfamily, an important multifunctional player in

inflammatory dermatoses (20, 21). The expression and secretion

of S100 protein in keratinocytes, leads to the production of an array

of pro-inflammatory cytokines, promoting dendritic cell

maturation and CD4+ T cell proliferation (22), contributing to

autoimmune system activation and psoriasis pathogenesis.
S100 protein family

The S100 protein family is a type of Ca2+-binding protein

composed of a multigene family of low molecular mass proteins.

The S100 proteins are expressed in a cell- and tissue-specific

manner and engaged in multiple functions in various cell

types and tissues (23, 24). The expression levels of S100 proteins

are altered in various diseases such as cardiomyopathies,

neurodegenerative, inflammatory disorders, and cancers (25–29).

S100 proteins act as calcium sensors that regulate the function and
Frontiers in Immunology 02
subcellular distribution of specific target proteins participating

in a variety of signaling pathways and playing a key role in

diverse cellular processes such as cell proliferation, migration,

differentiation, energy metabolism, apoptosis, etc. (30). In

addition, S100 proteins have an extracellular activity in response

to inflammatory stimuli (30–32).

The S100 protein is the largest subgroup within the superfamily

of calcium-binding EF-hand motif. Genes of the S100 protein

family are encoded in epidermal differentiation complex (EDC)

and located within the cluster on human chromosome 1q21 (33).

The members of the S100 protein family have a similar low

molecular weight of 10-12 kDa and share 10% - 98% similarity in

the amino acid sequences. S100 proteins are typically symmetric

dimers, and each subunit contains two helix-loop-helix EF-hand

motifs that are separated by a flexible hinge region and flanked by

conserved hydrophobic residues at the amino- and carboxy-

terminal ends (34) (Figure 1). The calcium-binding affinity of

S100 proteins is low in the absence of target proteins, but the

affinity is significantly increased by several orders of magnitude in

the presence of specific target proteins (35, 36). The canonical C-

terminal EF-hand motif binds to calcium with 100-fold higher than

the N-terminal non-canonical EF-hand (37).

The 3D structures of S100 protein family have been resolved in

three different states: Ca2+-free apo state, bound to Ca2+ and bound

to its target protein (38). Upon calcium binding, the S100 protein

undergoes a large conformational change that creates a special

target protein recognition site and allows interaction with different

target proteins, including cell surface receptors and other S100
FIGURE 1

Alignment of the amino acid sequences of S100 from homo sapiens. The position of two EF-hands is indicated by black lines and the residues at
positions 1, 3, 5, 7, 9, and 12 for Ca2+-coordination are labeled X, Y, Z, -Y, -X, -Z, respectively. Four a-helical segments, a hinge region, and an
alternative region are indicated by grey boxes. The sequences highlighted in red are discussed in the text.
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proteins (39). Moreover, S100 proteins present as a non-covalent

anti-parallel homo- or heterodimers form, and the target protein

can bind to opposite ends of S100 protein dimer. Thus, S100 protein

dimer is a cross-bridge between two target proteins.

Because of multiple functions of the S100 proteins, many

diseases, including psoriasis, are associated with altered expression

levels of S100 proteins. Recent studies suggest the potential roles of

S100 in keratinocyte proliferation, differentiation, and stress response.

This review will focus on the expression and function of S100

protein-target protein interaction, and the signaling pathways of

each S100 protein in psoriasis.
S100A2

S100A2 (S100 calcium-binding protein A2) is encoded by a

gene located in human chromosome 1q21 (31), which was first

identified as a tumor-suppressor gene by subtractive hybridization

in human mammary epithelial cells (40). The three-dimensional

crystal structure of a cysteine-deficient S100A2 in the calcium-free

form is similar to other S100 proteins. S100A2 contains an N-

terminal specific EF-hand loop by helix I and helix II, and a C-

terminal classical EF-hand motif between helix III and helix IV,

which are linked by a hinge region (41) (Figures 1, 2A, B). In

addition to Ca2+, S100A2 also binds to Zn2+ with higher affinity,

and the binding affinity of S100A2 to calcium is significantly

reduced upon binding to zinc (42). Ca2+- and Zn2+-ions have

opposite effects on the stability of S100A2, with Ca2+ acting as a

protein stabilizer and Zn2+ as a protein destabilizer (43).
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S100A2 is a member of the S100 EF-hand calcium-binding

family found in mammary epithelial cells and other organs or

tissues, including the lungs, kidneys, liver, and prostate gland (44).

S100A2 has distinct functional roles in epithelial tissue of different

origins (45). S100A2 is primarily expressed in the nucleus and

moderately expressed in the cytoplasm of normal human

keratinocytes (46). In the skin, S100A2 is co-localized with

cytokeratin K14, an intermediate filament protein expressed

primarily in basal proliferative KCs. Expression levels of S100A2

are correlated positively with the levels of cytokeratin K14.

Expression levels of S100A2 gene is markedly upregulated in the

involved skin of inflammatory dermatoses such as psoriasis and

atopic dermatitis, and correlate positively with the severity of

inflammatory skin disorders (47).

Many factors can regulate the distribution and expression levels

of S100A2. For example, either oxidative stress or changes in

intracellular Ca2+ levels enhance the translocation of S100A2

from the nucleus to the cytoplasm. Expression levels of the

S100A2 gene can also be upregulated by multiple factors such as

epidermal growth factor (EGF) (48), transforming growth factor b
(TGF-b) (49), and interferon a (50). In keratinocyte cultures, EGF

treatment significantly upregulated the expression levels of S100A2,

while S100A2, but not EGF, is an effector of the regenerative

hyperplasia pathway of epidermal differentiation (51). The

binding of p53 to the binding site at the promoter of S100A2 can

upregulate S100A2 expression (52–54). S100A2 protein is a direct

transcriptional target of p73b and DNp63a, which both are required
for the developmental and differentiation processes of keratinocytes

(55). Moreover, DNp63a can interact with BRCA1, the breast/
A

B

FIGURE 2

Cartoon representation of the tertiary structure in S100A proteins (PDB ID: 4DUQ, 2WOS, 1XK4, 6ZDY and 2WCF). (A), comparison of the crystal
structure between S100A2, S100A7, S100A8, S100A9, and S100A12. The N-terminal and the C-terminal of S100 proteins indicate N’ and C’. (B), the
primary secondary structure of S100A proteins. The red box indicates the helix 1 at the N-terminal, the Ca2+-binding loop 1, Helix 2a, Helix 2b, Helix
3, Ca2+-binding loop 2, and Helix 4 are indicated by the yellow box, orange box, yellow-orange box, green box, cyan box, and blue box,
respectively. EF-hand regions are colored in grey boxes.
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ovarian cancer susceptibility gene, upregulating S100A2 expression

and enhancing tumor growth (56). Thus, multiple factors can

regulate S100A2-mediated physiological and pathological

reactions (47).

The S100A2 is an important regulator of keratinocyte

differentiation, proliferation and wound healing. Epithelial-

specific S100A2 transgenic mice exhibit increased proliferation

and delayed skin wound repair (57). S100A2 and tumor

suppressor factor p53, an important regulator in the wound

healing process, can form a positive feedback loop to regulate the

wound repair process. Moreover, S100A2 interacts with p53 to

increase its transcriptional activity, and posttranslational

modification of p53 increases its interaction with S100A2 (58).

Electrophoresis and mass spectrometry assays showed a cross-link

formation of S100A2 and S100A4 via copper-mediated oxidation of

cysteine residues, resulting in increases in activation of NF-kB and

secretion of TNF-a (59).

S100A2 interacts with KPNA2, a nucleocytoplasmic transport

protein karyopherin a, to form a cotransport complex,

transporting the tumor-associated transcription factor and

regulating nucleocytoplasmic transport (60). Pulldown and

coimmunoprecipitation assays revealed that the interaction

between S100A2 and Hsp70/Hsp90-organizing protein or kinesin-

light chain through tetratricopeptide domain modulates protein

complex folding and KLC-cargo interaction (61). S100A2 can be

recognized by and interact with erythropoietin, being involved in

the development of tumors and other diseases (62).

RAGE (receptor for advanced glycation end products) is a

member of an immunoglobulin protein family, including the

extracellular part (composed of one variable like V-domain and

two constants like C-type domains), transmembrane spanning

helix, and a cytosolic domain (63). RAGE interacts with

structurally diverse ligands, and plays an important role in

human diseases. Although earlier studies did not show the

interaction between S100A2 and RAGE, recent studies showed a

micromolar affinity and strict calcium-dependent interaction

between S100A2 and RAGE via the V-domain of RAGE (64)

(Figure 3). However, further studies are needed to determine the

functional significance of the interaction between S100A2

and RAGE.
S100A7

S100A7, also called psoriasin, was first found as a protein

overexpressed in psoriasis-involved skin and later identified as a

biomarker of psoriasis-involved skin (65–67). S100A7 is an EF-

hand type calcium-binding protein with a molecular weight of 11.4

kDa localized in the cytoplasm of keratinocytes and distributed at

the cell periphery in terminally differentiated keratinocytes (68).

The three-dimensional crystal structure of S100A7 is typically a

symmetric dimer containing four a helices (69). S100A7 contains

two Ca2+-binding domains: an N-terminal non-canonical EF-hand

domain and a C-terminal canonical EF-hand domain (Figures 1, 2).

The amino acid and carboxyl ends are connected by a hinge region,

which consists of 10-12 amino acid residues, and is crucial for target
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interactions. S100A7 lacks the ability of Ca2+-binding at the amino

acid EF-hand motif, due to the absence of three amino acid residues

and non-conserved substitution at position 12 of the EF-hand loop

region (69). But S100A7 has a zinc-binding site composed of three

histidines and an aspartate residue. The affinity of S100A7 for

calcium is higher than that for zinc (70). Moreover, absence of zinc

induces reorganization of the adjacent empty and distorted EF-

hand loop in S100A7 structure, similar to a Ca2+-binding EF-hand

(71). Contrary to most S100 proteins, S100A7 binding to calcium

does not cause significant conformational changes.

Although S100A7 is constitutively expressed at relatively low

levels in normal keratinocytes, its expression levels are dramatically

increased in psoriatic lesions (72), suggesting its key role in

response to inflammatory stimuli (73, 74) and the pathogenesis of

psoriasis (68, 75). The altered expression of S100A7 is associated

with keratinocyte differentiation and poor prognosis of psoriasis.

Moreover, psoriasis-related cytokines and chemokines can

upregulate S100A7 expression in normal and pathological

conditions (76–81). S100A7 can also be produced by circulating

cells, possibly contributing to systemic inflammation and psoriasis-

associated comorbidities (10).

S100A7 exerts many functions, depending on its interaction

with specific target proteins. Early studies suggested that epidermal

fatty acid binding protein (E-FABP) is a candidate interaction target

protein of S100A7 (82, 83). S100A7 and E-FABP form a complex

participating in focal adhesion-related functions. Moreover, the

S100A7/E-FABP complex binds to oleic acid to regulate oleic acid

metabolism and transport. The S100A7/E-FABP complex is also

involved in lipid transport and metabolism during epidermal

barrier formation, and modulation of cell differentiation and

migration in some dermatoses such as psoriasis (31, 68, 84).

Ran-binding protein M (RanBPM), a nucleoporin component

of the nuclear pore complex, is another potential binding partner

for S100A7. Both yeast two-hybrid and co-immunoprecipitation

assays show an interaction of S100A7 with RanBPM, suggesting the

involvement of S100A7/RanBPM complex in nucleocytoplasmic

transport (85). Because expression levels of both nucleoporins Ran-

binding protein 2 (RanBP2) and Ran-GTPase-activating protein 1

(RanGAP1) on the nuclear envelope are upregulated in the

epidermis of psoriatic lesion, adequate expression of these nuclear

envelope proteins is likely a prerequisite for nucleocytoplasmic

transport in keratinocytes of the psoriatic epidermis (86).

Interaction of S100A7 with c-Jun activation domain-binding

protein 1 (Jab1), a multifunctional signaling molecule, increases the

activity of nuclear factor-kB (NF-kB) and phosphor-Akt (87, 88).

The effects of S100A7 on NF-kB and phosphor-Akt pathway are

dependent on the Jab1-binding domain and the interaction with

Jab1 because mutation at the Jab1 binding domain of S100A7 does

not stimulate phosphor-Akt (88). Treatment of keratinocytes with

S100A7 also increases expression levels of both mRNA and protein

of transglutaminase I and III via activation of MAPK signaling

pathway. Moreover, psoriasis-involved skin displays higher

expression levels of transglutaminase and alteration in the

interaction between S100A7 and transglutaminase (89).

S100A7 can activate a variety of intracellular signaling

pathways, and many S100A7 functions depend on the receptor
frontiersin.org
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for advanced glycation end products (RAGE) (90). Interaction of

S100A7 with RAGE activates p38 MAPK (mitogen-activated

protein kinase) and ERK (extracellular signal-regulated kinase)

signaling pathways, leading to production of multiple

inflammatory mediators involved in psoriasis, including IL-1a,
IL-1b, IL-6, IL-8, TNF-a (91, 92) (Figure 3). S100A7 promotes

cell proliferation and suppresses cell differentiation by inhibition of

GATA3/Caspase14 (signal transducer and activator of transcription

3) signaling pathway (93, 94). Moreover, S100A7 can stimulate cell

proliferation and angiogenesis through a RAGE-dependent up-

regulation of endothelial growth factor (95). Recent study showed

that lysine crotonylation at position 49 of S100A7 was suppressed in

psoriatic lesions. Lysine crotonylation affects gene expression and

epigenome, thereby affecting cell function and regulating immune

responses (96, 97). Because of the important role of S100A7 in
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amplifying inflammatory process in psoriatic lesions, S100A7

becomes a potential diagnostic and therapeutic target for psoriasis.
S100A8/S100A9

S100A8 (MRP8) and S100A9 (MRP14) are Ca2+- and Zn2+-

binding proteins, with damage-related molecular patterns (98).

Human S100A8 and S100A9 are composed of 93 and 114 amino

acid residues (Figures 1, 2B), respectively, and S100A9 has an

isoform of 110 amino acid residues. The three-dimensional

structure shows that both S100A8 and S100A9 have two helix-

loop-helix motifs with charged amino acid residues (Figures 2A, B).

The affinity of Ca2+-binding in the C-terminal EF-hand loop is

higher than that in the N-terminal. S100A8 lacks the ability of Ca2+-
FIGURE 3

Regulation of signaling pathways by S100 proteins in psoriasis. Activation of RAGE by S100 proteins released from inflammatory cells can lead to the
activation of the PI3K/AKT, JAK/STAT, and NF-kB pathways, which ultimately activate transcription of pro-inflammatory factors and other pathways
that leads to proliferation and apoptosis. RAGE-mediated signaling can also activate the p38/MAPK signaling pathway in the immune cells, resulting
in the up-regulated of genes involved in cell proliferation and inflammation. S100A8, S100A9 and S100A12 through the TLR4 receptor to activate
NF-kB and MAPK. S100A8/A9 and S100A12 through the CD36 receptor activate the JNK1/2/AP1 signaling pathway and up-regulation of genes
involved in cell inflammatory reactions. S100A2 and p53 can form a positive feedback loop to regulate the wound repair process in keratinocytes.
S100A2 interacts with KPNA2 to form a cotransport complex, regulating nucleocytoplasmic transport in cancer cells, S100A2 interacts with Hsp70/
Hsp90-organizing protein or kinesin-light chain, modulates protein complex folding and KLC-cargo interaction in fibroblasts. In keratinocytes,
S100A7 promotes transport via interaction with E-FABP or RanBPM. In addition, S100A8/A9 reduces skin hyperplasia by inhibiting the production of
IL-17A and IL-17F in the mouse keratinocytes. KLC, Kinesin-light chain; EPO, Erythropoietin; KPNA2, nucleocytoplasmic transport protein
karyopherin a; E-FABP, epidermal fatty acid binding protein; RanBPM, Ran-binding protein M; RAGE, receptor for advanced glycation end products;
TLR4, toll-like receptor 4; CD36, cluster of differentiation 36; PI3K, phosphatidylinositol 3-kinases; JAK, Janus kinase; ERK1/2, extracellular signaling-
related kinase 1/2; JNK1/2, c-Jun N-terminal kinase; AKT, AGC kinase family; STAT, signal transducer and activator of transcription; NF-kB, nuclear
factor kappa B, MAPK, mitogen-activated protein kinase; AP1, activator protein 1; TNF-a, tumor necrosis factor alpha; IL, interleukin.
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binding in the N-terminal EF-hand motif, due to the absence of

Ca2+-coordination necessary amino acid residues. S100A9 is

different from other S100 proteins due to its long, very flexible C-

terminal a-helix extension region (71).

S100A8 and S100A9 are predominantly expressed in myeloid

cells (99, 100), epithelial cells (101), keratinocytes (102), and

endothelial cells (103). S100A8 and S100A9 can form a stable

homodimer or heterodimer by non-covalent bonding in the

absence of calcium. S100A8 and S100A9 tend to form

heterotetramers in the presence of calcium (104). The tetramer

form is exposed to two high-affinity zinc ion binding sites (the

crucial sites for functions) at the interface of the S100A8/S100A9

(calprotectin) complex (105, 106). S100A8 and S100A9 are the most

abundant damage-associated molecular patterns in many

inflammatory diseases. Expression levels of S100A8 and S100A9

are significantly elevated in psoriatic keratinocytes and leukocytes,

and their expression levels correlate positively with the severity of

psoriasis (107). The S100A8/S100A9 is a reliable biomarker for

monitoring inflammatory disease activity (108–110).

S100A8/S100A9 complex plays a prominent role in regulation

of inflammatory processes and immune response, including

modulation of cell signaling transduction, differentiation,

migration, apoptosis, regulation cytoskeleton, and so on (108,

111). S100A8/S100A9 complex promotes the polymerization of

microtubules through direct interaction with tubulin, and

modulates the cytoskeleton during the process of transendothelial

migration (112). S100A8/S100A9 also stimulates neutrophil

microbicidal activity by induction of reactive oxygen

accumulation, resulting in activation of NADPH-oxidase (113).
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S100A8/S100A9-induced increase in NADPH-oxidase activity is

via S100A9 transport of the cofactor arachidonic acid to the

NADPH oxidase complex, and interaction of S100A8 with

cytosolic phox proteins facilitating the enzyme assembly (114).

Overexpression of S100A8/S100A9 induces cellular apoptosis

(115), increases the production of pro-inflammatory cytokines

and adhesion molecules, and enhances leukocyte adhesion and

migration (116, 117). In addition, S100A8/S100A9 complex exerts

bactericidal effects (118).

The role of S100A8 and S100A9 in the development of

inflammation has been well demonstrated in murine models. For

example, S100A8 deficiency induces a severe phenotype of

psoriasis-like cutaneous inflammation, and rapid synchronous

early resorption of the mouse embryo (119). Thus, S100A8 is an

indispensable gene for mouse survival. Surprisingly, S100A9-

deficient mice show slight decreases in the response of

neutrophils to stimulation with chemoattractant (120) and slight

aggravation of psoriasis symptoms compared with control mice

(121), indicating functional differences between S100A8 and

S100A9. In general, knock-out of the S100A8 or S100A9 leads to

skin hyperplasia and aggravation of psoriatic symptoms in mouse

models (121–123). S100A8 and S100A9 negatively regulate

psoriatic skin inflammatory responses in mouse models.

Combined with previous studies, it is suggested that S100A8 and

S100A9 have both pro- and anti-inflammatory dualistic

biological functions.

Several targets for S100A8/S100A9 have been identified,

including Toll-like receptor 4 (TLR4) and myeloid differentiation

factor 2 (MD 2). S100A8 interacts with TLR4-MD2 complex,
TABLE 1 Immune-mediated inflammatory skin diseases.

Disease Type Prevalence Inducing
factors Distribution Clinical Features

Psoriasis Plaque, guttate,
inverse, pustular,
erythrodermic
psoriasis

At any age, affecting 2-4% of
the worldwide population

Ethnicity,
genetics,
environment

Scalp, elbows, knees,
lumbosacral area,
body folds

Scaling papules and plaques,well-circumscribed,
circular, red papules or plaques with a grey or
silvery-white, dry scale, relapsing

Atopic
dermatitis

IgE-high, extrinsic,
and IgE-normal,
intrinsic subtypes

Affects approximately 5-20%
of children and 1-3% of adults

Genetics,
barrier
dysfunction
Abnormal
immunity,
Environment

Scalp, elbows, knees,
body folds, head,
face

Persistent itching, allergy, eczematous lesions,
relapsing

Hidradenitis
suppurativa

Stage I, stage II, stage
III

Mainly in the young and
middle-aged women, 1% of
the general population

Tobacco
smoking,
obesity,
psoriasis,

Axillary, inguinal,
perineal, pubic
anogenital regions

Deep-seated nodules, abscesses, fistulae, sinus
tracts, lesion recurrence, fibrotic

Bullous
diseases

Pemphigus and
pemphigoid

Primarily the elderly,
dramatically increasing
incidence rates in recent
decades

Genetics,
drugs, viruses,
environment

Limbs, buttocks,
sacral region, neck,
face, scalp

Flaccid blisters and erosions, erosions heal with
crusting and scaling, pruritic eruption

vitiligo Nonsegmental and
segmental vitiligo

0.5-2% of the population
worldwide

Genetic,
metabolic,
oxidative
stress,
Immune
responses
environment

Distal extremities,
abdomen, trunk,
scalp, face

Selective loss of melanocytes, nonscaly, chalky-
white macules.
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enhancing inflammatory response in target cells (122) (Figure 3).

Activation of TLR4 signaling pathway via S100A8/S100A9 appears

to be crucial for inflammatory cascade response and systemic

autoimmunity (123). In addition, S100A8/S100A9 complex

interacts with p67phox and Rac2, increasing NADPH oxidase

activity (114). S100A8/S100A9 complex is also involved in

transcellular eicosanoid metabolism via interaction with scavenger

receptor CD36 (124). Moreover, S100A8/S100A9 complex binds to

endothelial cells via the S100A9 subunit interacting chiefly with

heparin and heparan sulfate proteoglycans (125), contributing to

the immobilization of the myeloid cell-derived S100A8/S100A9

complex on endothelium in human inflammatory diseases.

A line of evidence suggests the involvement of NF-kB signaling

pathway in the action of S100A8 and S100A9. First, S100A8/

S100A9 promotes tumor cell growth through the activation

of the NF-kB signaling pathway in a RAGE-dependent

manner (126), while S100A8/S100A9 can interact with RAGE

(127). Second, amplification of pro-inflammatory cytokine

response in macrophages by S100A8/S100A9 complex is via

activation of MAPK and NF-kB signaling (128). Third, oxidative

and carbonyl stresses can induce production of CML-motified (Nϵ-

carboxymethyllysine) S100A8/S100A9. The latter binds to RAGE,

leading to an increase in NF-kB-dependent pro-inflammatory gene

expression, suggesting that CML-S100A8/S100A9 generated in

inflammatory lesions can elicit a RAGE-dependent inflammatory

response (129). Additionally, carboxylated glycans promotes the
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binding of S100A8/S100A9 to RAGE, resulting in activation of NF-

kB signaling and cell proliferation (130) (Figure 3).
S100A12

S100A12, also named calgranulin C or EN-RAGE, is a pro-

inflammatory protein, mainly expressed in keratinocytes of various

inflammatory dermatoses (131, 132). In the psoriatic epidermis,

S100A12 is expressed in the suprabasal epidermal layers (133), and

its expression levels correlate positively with psoriasis severity (134).

S100A12 has also been identified in neutrophils, macrophages, and

lymphocytes, and functions as an innate immune defense against

microorganisms. S100A12 can translocate from the cytosol to the

membrane upon calcium activation.

S100A12 belongs to the S100 proteins family of EF-hand Ca2+-

binding proteins, and its nucleotide sequence is localized within the

epidermal differentiation complex on human chromosome 1q21. The

predicted size of S100A12 is 92 amino acid residues with a molecular

weight of 10.6 kDa (135) (Figures 1, 2B). The crystal structure of

S100A12 reveals that monomeric subunits have four a-helices and two
EF-hand motifs linked by a hinge domain (136, 137) (Figures 2A, B).

The N-terminal domain of the target-binding site has two residues, Glu

5 and Glu 9, that are the most highly conserved in S100 proteins (136).

The crystal structure of Zn2+ or Ca2+/Cu2+-bound S100A12

shows that Zn2+ and Cu2+ share the same binding site. The type of
TABLE 2 S100 proteins in psoriasis: interacting partners and associated functions.

Proteins Target proteins Functions

S100A2 P53 Promotes p53 transcription and post-translation modification, regulates wound repair

KPNA2 Regulating nucleocytoplasmic transport

Hsp70/Hsp90-organizing protein Modulating protein folding

Kinesin-light chain Promoting cargo transportation

Erythropoietin Involved in the development of tumors

RAGE Not reported

S100A7 E-FABP Participating in focal adhesion-related functions, regulating material metabolism and transport

RanBPM Involved in nucleocytoplasmic transport

Jab1 Activates NF-kB and AKT, modulating progression and survival

RAGE Activates p38 MAPK and ERK, stimulating cell proliferation and angiogenesis

S100A8/S100A9 Tubulin Promotes polymerization of microtubules

P67phox/Rac2 Activates NADPH-oxidase, stimulating neutrophil microbicidal activity

TLR4 Enhancing inflammatory cascade response in cells

RAGE Activates NF-kB and MAPK, promoting cell growth

S100A12 RAGE Activates NF-kB and ERK, regulating cell proliferation and inflammatory responses

Phospholipid bilayers Involved in monocytes migration

TLR4 Modulating inflammatory response and migration of monocytes

CD36 Promotes the interaction of S100A12 with CacyBP/SIP

S100A15 Gi protein-coupled receptor Not reported
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ion binding to S100A12 determines its biological function (138).

Binding of S100A12 to Cu2+ probably is essential in early immune

reactions. Intracellular S100A12 is an anti-parallel homodimer form

in the presence of zinc- and calcium- ions (138–142). Extracellular

S100A12 is either a homodimer or hexamer form, with cytokine-

like features.

Several mechanisms are involved in the action of S100A12.

Interaction of S100A2 with target proteins regulates a variety of

cellular processes and is linked to certain autoimmune responses

(143). S100A12 recruits both mast cells and monocytes to

inflammatory sites by its flexible hinge region during early

inflammatory stages (144–146). Interaction of calcium-activated

S100A12 with RAGE promotes cell proliferation and pro-

inflammatory responses (147–149). The binding of S100A12 to the

RAGE V domain increases cellular inflammatory response to oxidative

stress (150) and participates in the pathogenesis of psoriasis (Figure 3).

Moreover, S100A12 interacts with phospholipid bilayers by specific

lipid and divalent ions in physiological responses (149), suggesting that

it is involved in signaling events, such as migration of monocytes,

located in the cell membrane (151). S100A12 binds more closely to

negatively charged lipids in the presence of Ca2+ or Zn2+, both of which

can change the conformation and enhance the thermal stability of

S100A12 protein, further enhancing protein-membrane interaction

(152). Furthermore, interaction of S100A12 with TLR4 activates

TLR4 signaling pathway (Figure 3), resulting in enhanced

inflammatory response and migration of monocytes (153).

Additionally, interaction of S100A12 with CacyBP/SIP (Calcyclin

binding protein/Siah-1 interacting protein) is via the CD36 (a class B

scavenger) receptor (154, 155). Notably, RAGE upregulates while TLR4

downregulates the expression levels of CD36 (156, 157).

S100A12 exhibits pro-inflammatory cytokine-like activities and

antimicrobial activity (139, 158, 159). The antimicrobial activity of

S100A12 is mainly attributed to its ability to chelate metal ions

during the nutritional immunity process (160–163). The binding of

S100A12 to TLR4 activates TLR4 signaling pathway, and increases

the expression levels of pro-inflammatory cytokines (164, 165).

Carboxylated glycans on the V-domain of RAGE enhances its

binding to S100A12, subsequently activating NF-kB/ERK
signaling pathway (164, 166) and upregulating pro-inflammatory

molecules (165). Thus, interaction of S100A12 with its specific

target proteins increases pro-inflammatory immune response and

induces inflammation (143).
S100A15

S100A15, also called koebnerisin or S100A7A, is recently identified

as a member of the S100 protein family, and its amino acid sequences

are 93% identical to S100A7 (167), suggesting the similarity of

functions between S100A15 and S100A7. S100A15 protein is

predictively composed of 101/104 amino acid residues, in which 13-

48 residues contain the N-terminal non-canonical EF-hand domain,

and 50-85 residues contain the canonical C-terminal EF-hand motif

(168) (Figure 1). Interestingly, S100A15 is different from other S100

proteins because of its lack of acidic amino acids and the increased

basic amino acids in the C-terminal (167).
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The S100A15 gene has an alternative splicing site and two

mRNA isoforms, i.e., the long isoform S100A15-L (104 amino

acids) and the short isoform S100A15-S (101 amino acids) with

exon 1 being spliced out (10, 90, 169). S100A15-L and S100A15-S

variants are differentially expressed in normal, non-lesional and

lesional skin of psoriasis. More S100A15-L than S100A15-S isoform

is expressed in the skin. In comparison to normal individuals,

expression levels of S100A15 are upregulated in both the

uninvolved and involved skin of psoriatic subjects, with a more

prominent upregulation in the involved skin.

S100A15 is an antimicrobial peptide and can increase the

production and secretion of immunotropic cytokines such as

TNF-a, IL-6, and IL-8 in keratinocytes, leading to the

development of cutaneous inflammation (21, 170). S100A15

directly acts as a chemoattractant, promoting the infiltration of

inflammatory cells and amplifying the pro-inflammatory cascade in

the skin. Moreover, S100A15 act as a danger-associated molecular

pattern or an alarmin factor by priming immune cells to produce

pro-inflammatory mediators (168).

In contrast to S100A7, S100A15 is not able to either bind to Jab1 or

interact with RAGE to activate respective signaling pathways. But it can

interact with an as-yet-unknown Gi protein-coupled receptor. So far,

little is known about the roles of S100A15 in multiple pathways

involved in cell proliferation, migration and inflammation.
Conclusions

The S100 protein family consists of a series of homologous

proteins that are involved in a wide range of intracellular processes,

including inflammatory responses. The expression levels of several

S100 proteins, such as S100A2, S100A7, S100A8/S100A9, S100A12,

and S100A15, are significantly up-regulated in psoriasis-involved

skin. The S100 protein family interacts with specific target proteins

to regulate cell proliferation, differentiation, migration, signal

transduction, apoptosis, energy metastasis, and more (Table 2). In

addition, S100 protein family plays an important pathogenic role in

inflammatory diseases such as psoriasis, and can be used as a

potential biomarker to estimate the prognosis and severity of

diseases. However, whether the S100 protein family can be used

as drug target in the management of psoriasis and possibly other

inflammatory dermatoses remains to be explored.
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