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Gene set enrichment analysis
identifies immune subtypes of
kidney renal clear cell carcinoma
with significantly different
molecular and clinical properties
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Background: Kidney renal clear cell carcinoma (KIRC) is the most prevalent renal

malignancy, marked by a high abundance of tumor-infiltrating lymphocytes

(TILs) and an unfavorable prognosis upon metastasis. Numerous studies have

demonstrated that KIRC possesses a tumor microenvironment that is highly

heterogeneous, and this is associated with significant variations in the

effectiveness of most first-line drugs administered to KIRC patients. Therefore,

it is crucial to classify KIRC based on the tumor microenvironment, although

these subtyping techniques are still inadequate.

Methods: By applying gene set enrichment scores of 28 immune signatures, we

conducted a hierarchical clustering of KIRC and determined its immune

subtypes. In addition, we conducted a comprehensive exploration of the

molecular and clinical features of these subtypes, including survival prognosis,

proliferation, stemness, angiogenesis, tumor microenvironment, genome

instability, intratumor heterogeneity, and pathway enrichment.

Results: Through cluster analysis, two immune subtypes of KIRC were identified

and termed Immunity-High (Immunity-H) and Immunity-Low (Immunity-L). This

clustering outcome was consistent in four independent KIRC cohorts. The

subtype Immunity-H exhibited elevated levels of TILs, tumor aneuploidy,

homologous recombination deficiency, stemness, and proliferation potential,

along with a poorer prognosis for survival. Despite this, the Immunity-L subtype

demonstrated elevated intratumor heterogeneity and a stronger angiogenesis

signature in contrast to Immunity-H. According to the results of pathway

enrichment analysis, the Immunity-H subtype was found to be highly enriched

in immunological, oncogenic, and metabolic pathways, whereas the Immunity-L

subtype was highly enriched in angiogenic, neuroactive ligand-receptor

interaction, and PPAR pathways.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1191365/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1191365/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1191365/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1191365/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1191365/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1191365&domain=pdf&date_stamp=2023-06-23
mailto:2185015@zju.edu.cn
mailto:xiaosheng.wang@cpu.edu.cn
https://doi.org/10.3389/fimmu.2023.1191365
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1191365
https://www.frontiersin.org/journals/immunology


Chen et al. 10.3389/fimmu.2023.1191365

Frontiers in Immunology
Conclusions: Based on the enrichment of immune signatures in the tumor

microenvironment, KIRC can be categorized into two immune subtypes. The two

subtypes demonstrate considerably distinct molecular and clinical features. In

KIRC, an increase in immune infiltration is linked to a poor prognosis. Patients

with Immunity-H KIRC may exhibit active responses to PPAR and immune

checkpoint inhibitors, whereas patients with Immunity-L may manifest

favorable responses to anti-angiogenic agents and immune checkpoint

inhibitors. The immunological classification provides molecular insights into

KIRC immunity, as well as clinical implications for the management of this

disease.
KEYWORDS
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Introduction

Kidney renal clear cell carcinoma (KIRC) is the most frequently

encountered histologic subtype of renal cell carcinoma, constituting

roughly 75% of all renal cell carcinomas (1). The main approach for

treating patients with stage I-III KIRC is surgical treatment.

Nevertheless, the recurrence takes place in over 30% of KIRC

patients following partial or complete nephrectomy (2).

Furthermore, an unfavorable prognosis is frequently observed in

patients with metastatic KIRC (3). Immune checkpoint blockade

(ICB) has recently exhibited remarkable therapeutic effectiveness in

several forms of cancer, such as melanoma (4), non-small cell lung

cancer (5), and head and neck cancer (6). It is noteworthy that

despite the fact that KIRC does not possess the usual hallmark of

most immunotherapy-responsive cancers, i.e., high tumor mutation

burden (TMB), ICB treatment has been shown to achieve high

response rates in the treatment of advanced KIRC (7).

Targeted therapy, immunotherapy, or a combination of the

two are the foremost treatment options for metastatic KIRCs (8).

Despite this, the current treatment methods are effective only for a

subset of KIRC patients (9). Accordingly, there is an urgent

necessity to optimize immunotherapeutic and targeted

therapeutic strategies for KIRC patients. A significant hurdle to

the clinical treatment of KIRC is posed by the highly

heterogeneous tumor microenvironment, as demonstrated by

various studies (10, 11). Several parameters have been examined

to anticipate treatment responses among KIRC patients, including

mismatch repair defects (12), systemic immunoinflammatory

index (13), Fuhrman grading (14), and levels of tumor-

infiltrating lymphocytes (TILs) (15). Most solid tumors have a

significant association between immunotherapy responses and

TMB, PD-L1 expression, and TILs levels (16–18). Nevertheless,

these parameters may not be applicable to KIRC as this form of

cancer is typically characterized by low TMB (19). Furthermore,

the CheckMate025 trial has demonstrated that response rates to
02
the Nabumab monotherapy against PD-1 does not correlate with

PD-1 expression (20). Despite the negative association of CD8+ T

cells’ abundance with survival prognosis in KIRC patients (15), the

high level of TILs could indicate that KIRC is a feasible candidate

for immunotherapy. Thus, the subtyping of KIRC based on the

immune microenvironment could potentially have significant

implications for the diagnosis, prognosis, and treatment of this

disease. To this end, we conducted a clustering analysis of KIRC

based on the enrichment levels of 28 immune signatures and

identified its immune subtypes. We conducted additional analysis

on a range of molecular and clinical features associated with these

subtypes. It is expected that the immune-specific subtyping of

KIRC will provide valuable insights into the biology of cancer and

clinical implications for its management.
Methods

Datasets

Gene expression profiles of 537 KIRC patients were

downloaded from The Cancer Genome Atlas (TCGA), along with

their clinical data from the cBioPortal for Cancer Genomics

(https://www.cbioportal.org/). From the genomic data commons

(GDC) data portal (https://portal.gdc.cancer.gov/), we downloaded

profiles of somatic mutations (“maf” file) and somatic copy number

alterations (SCNAs) (“SNP6” files) for the 537 TCGA-KIRC

patients. Furthermore, we acquired gene expression profiles and

clinical data for three KIRC cohorts from the NCBI gene expression

omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/), with

accession ID GSE29609, GSE40435, and GSE73731. The datasets

are summarized in Supplementary Table S1. Prior to performing

subsequent analyses, we conducted normalization of all RNA

sequencing (RNA-seq) gene expression values through log2(TPM

+1) transformation.
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Gene set enrichment analysis

We used the single-sample gene set enrichment analysis

(ssGSEA) (21, 22) to score the enrichment levels of immune

signatures, biological processes, and DNA repair pathways,

including 28 immune cell types, exhausted CD8+ T cells,

proliferation, stemness, angiogenesis, and pathways of mismatch

repair, base excision repair, homology-dependent recombination,

and DNA replication, based on the expression profiles of their

marker or pathway genes. The marker genes of the immune

signatures and biological processes were obtained from several

publications (23–27), and the DNA repair pathways’ genes were

downloaded from KEGG (28), as shown in Supplementary

Table S2.
Clustering analysis

We hierarchically clustered KIRC to identify its immune

subtypes based on the enrichment scores of 28 immune cell types.

These immune cells included CD56bright natural killer (NK) cells,

effector memory CD4 T cells, eosinophil, CD56dim NK cells, type 17

T helper cells, activated B cells, monocytes, memory B cells,

activated CD4 T cells, type 2 T helper cells, plasmacytoid

dendritic cells, neutrophils, macrophages, effector memory CD8 T

cells, myeloid-derived suppressor cells (MDSC), immature B cells, T

follicular helper cells, NK cells, immature dendritic cells, mast cells,

type 1 T helper cells, activated dendritic cells, central memory CD4

T cells, gamma delta T cells, central memory CD8 T cells, regulatory

T cells, activated CD8 T cells, and NK T cells (27). Before clustering,

we normalized the ssGSEA scores by z-score and transformed them

into distance matrices by the R function “dist” with the parameter

method ”Euclidean.” We performed hierarchical clustering using

the function “hclust” in the R package “Stats” with the parameters:

method = ”ward.D2” and members = NULL.
Principal component analysis

We performed PCA of the TCGA-KIRC cohort based on their

ssGSEA scores of the 28 immune signatures and the immune

subtype labels of the samples. This analysis was performed with

the R package “FactoMineR” to downscale the 28 features into two

principal components.
Evaluation of immune cell infiltration
levels, tumor purity, and stromal
content in KIRC

The ESTIMATE algorithm (29) was used to evaluate the

immune cell infiltration levels (immune scores), tumor purity,

and stromal content (stromal scores) for each KIRC sample.

ESTIMATE (29) assesses these parameters based on the

expression profiles of associated genes.
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Survival analysis

We utilized the Kaplan–Meier method (30) to compare the

survival time between different groups of cancer patients. Kaplan–

Meier curves were plotted to show the survival rates. A total of two

survival endpoints were analyzed, including overall survival (OS)

and disease-free survival (DFS). The log-rank test was used to

evaluate the significance of survival time differences with a

threshold of P < 0.05. The survival analyses were performed in

the TCGA-KIRC and GSE29609 datasets, where related data

were available.
Evaluation of TMB, tumor aneuploidy, and
homologous recombination deficiency

A tumor’s TMB was defined as its total count of somatic

mutations. We employed the ABSOLUTE algorithm (31) to assess

the ploidy score representing the tumor aneuploidy level for each

TCGA-KIRC sample, with the input of “SNP6” files. The HRD

scores in 9,125 TCGA cancer samples were defined based on HRD

loss of heterozygosity, large-scale state transitions, and the number

of telomeric allelic imbalances (32). We extracted the results of

HRD scores in TCGA-KIRC from the data.
Evaluation of intratumor heterogeneity
in KIRC

The ITH levels were evaluated by the DITHER algorithm (33),

which measures ITH based on the entropy of alterations in somatic

mutations and copy numbers in tumors.
Pathway analysis

We performed pathway enrichment analysis to identify KEGG

pathways enriched in the KIRC immune subtypes by GSEA (34)

with a threshold of adjusted P-values (false discovery rate (FDR)) <

0.05. GSEA output the enriched pathways in an immune subtype

based on the input of the significantly upregulated genes in this

subtype versus another subtype. The significantly upregulated genes

were identified using a threshold of two-tailed Student’s t test FDR <

0.05 and fold change of mean gene expression levels > 1.5. In

addition, we used the weighted gene co-expression network analysis

(WGCNA) (35) to identify gene modules and significantly related

GO traits enriched in the subtypes. The WGCNA analysis was

carried out using the R package “WGCNA” (version 1.68).
Class prediction

We predicted the KIRC immune subtypes based on the ssGSEA

scores of the immune signatures by the Random Forest (RF)

algorithm (36). The number of trees in the RF was set as 500, and
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the predictors were the 28 immune signatures. The accuracy and

weighted F-score were reported as the prediction performance. The

RF algorithm was implemented with the “randomForest”

R package.
Statistical analysis

In comparisons of two classes of normally-distributed data,

such as gene expression levels, we used the two-tailed Student’s t

test. We used the one-tailed Mann- Whitney U test to compare two

classes of non-normally distributed data, such as TIL levels in

pathological sections, ssGSEA scores, ITH scores, TMB, and HRD

scores. Fisher’s exact test was utilized to analyze the association

between two categorical variables. To adjust for P-values in multiple

tests, FDRs were calculated using the Benjamini-Hochberg method

(37). We performed all statistical analyses with the R programming

language (version 3.6.1).
Results

Clustering analysis identifies two immune
subtypes of KIRC

Based on the enrichment scores of 28 immune cell types (27),

hierarchical clustering identified two subtypes of KIRC consistently in

the four transcriptome datasets (TCGA-KIRC, GSE29609, GSE40435,

and GSE73731) (Figure 1A). The two subtypes showed high and low

enrichment scores of these immune cells, termed Immunity-H and

Immunity-L, respectively. These consistent clustering results

demonstrated the reproducibility of this subtyping method.

Furthermore, we performed PCA of the TCGA-KIRC cohort based

on their ssGSEA scores of the 28 immune signatures and confirmed

both subtypes to be clearly distinguished (Figure 1B).

In TCGA-KIRC, the pathological slides data confirmed that the

percentages of TILs were significantly higher in Immunity-H than in

Immunity-L KIRCs (P = 0.01); the percentages of stromal cells were

also higher in Immunity-H than in Immunity-L KIRCs (P = 0.007);

however, the percentages of tumor cells were lower in Immunity-H

than in Immunity-L KIRCs (P = 0.007) (Figure 2A). As expected, the

immune scores and stromal scores by ESTIMATE (29) were

significantly higher in Immunity-H versus Immunity-L KIRCs in all

four datasets (P < 0.01) (Figure 2B). By contrast, tumor purity was

significantly lower in Immunity-H than in Immunity-L KIRCs.

Interestingly, we observed that the abundance of exhausted CD8+ T

cells was significantly higher in Immunity-H than in Immunity-L

KIRCs, consistently in the four datasets (P < 0.05) (Figure 2C).
The immune subtypes of KIRC have
significantly different clinical and
molecular properties

In the datasets (TCGA-KIRC and GSE29609) with survival data

available, Immunity-H patients displayed significantly worse OS
Frontiers in Immunology 04
than Immunity-L patients, consistently in both datasets (P < 0.05)

(Figure 3A). Moreover, in TCGA-KIRC, Immunity-H patients

likely had worse DFS than Immunity-L patients (P = 0.091)

(Figure 3A). We further compared several cancer-associated

phenotypic or molecular features between both subtypes based on

transcriptomic profiles, including proliferation, stemness, and

angiogenesis. Notably, the scores of proliferation and stemness

were likely to be higher in Immunity-H than in Immunity-L

KIRCs. In contrast, angiogenesis scores were significantly higher

in Immunity-L KIRCs compared to Immunity-H KIRCs

(Figure 3B). Notably, the expression levels of PD-1, PD-L1,

CTLA-4, and PARP1, which are targets of immunotherapy or

targeted therapy, were significantly higher in Immunity-H than in

Immunity-L KIRCs (P < 0.05) (Figure 3C). These results suggest

that Immunity-H patients are likely more susceptible to ICB and

PARP1 inhibitors.

TMB showed no significant difference between both immune

subtypes of TCGA-KIRC (P = 0.84) (Figure 3D). However, tumor

aneuploidy levels were significantly higher in Immunity-H than in

Immunity-L KIRCs (P = 0.043). HRD scores were also significantly

higher in Immunity-H than in Immunity-L KIRCs (P = 0.037)

(Figure 3E). In addition, we found four DNA repair pathways to

be significantly upregulated in Immunity-L versus Immunity-H

patients, including mismatch repair, base excision repair,

homology-dependent recombination, and DNA replication

(P < 0.05) (Figure 3F). Altogether, these results suggest a higher

degree of genomic instability in Immunity-H versus Immunity-L

patients. Interestingly, Immunity-H KIRCs had significantly lower

ITH than Immunity-L KIRCs (P = 0.003) (Figure 3G), in line with

the negative association between ITH and antitumor immune

responses (33).
Identifying pathways and GO highly
enriched in the immune subtypes of KIRC

Pathway analysis by GSEA (34) identified numerous KEGG

pathways highly enriched in the Immunity-H subtype of TCGA-

KIRC. These pathways were mainly involved in oncogenic,

immune, and metabolic pathways (Figure 4A). The cancer-related

pathways included VEGF signaling, p53 signaling, MAPK signaling,

DNA replication, and apoptosis pathways. The immune-related

pathways included NK cell-mediated cytotoxicity, lysosomes,

cytokine receptor interactions, antigen processing and

presentation, T cell receptor signaling, chemokine signaling, Toll-

like receptor signaling, Fc gamma R-mediated phagocytosis, B-cell

receptor signaling, Jak-STAT signaling, Fc-epsilon receptor

signaling, NOD-like receptor signaling, leukocyte transendothelial

migration, and RIG I-like receptor signaling, cell adhesion

molecules (CAMs), and cytoplasmic DNA sensing pathways. The

metabolic pathways included valine, leucine, and isoleucine

degradation, lysine degradation, methyl butyrate and propionate

metabolism, glycosylphosphatidylinositol-anchor biosynthesis, and

vasopressin-regulated water reabsorption. These results confirmed

the high tumor immunity and genomic instability in the Immunity-

H subtype and suggested the activities of these oncogenic and
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metabolic pathways to be positively associated with KIRC

immunity. Pathway analysis also identified two pathways highly

enriched in the Immunity-L subtype of TCGA-KIRC, including

neuroactive ligand-receptor interaction and PPAR pathways

(Figure 4A). The PPAR pathway is involved in the regulation of

tumor angiogenesis (38), consistent with the strong angiogenic

signature shown in Immunity-L KIRCs.

We performed a weighted gene co-expression network analysis

of the TCGA-KIRC dataset by WGCNA (35). This analysis

identified a set of gene modules that significantly differentiated

KIRC by immune subtypes, survival time, or survival status

(Figure 4B). As expected, the gene modules associated with
Frontiers in Immunology 05
immune response and lymphocyte activity were highly enriched

in the Immunity-H subtype (r > 0.65). Moreover, the “lymphocyte

activity” module was positively correlated with the OS status (r =

0.17), consistent with the negative correlation between immune

responses and survival outcomes in KIRC. The “cell cycle” module

was also upregulated in Immunity-H KIRCs but downregulated in

Immunity-L KIRCs. It agrees with the previous result that

Immunity-H KIRCs have a stronger proliferation potential than

Immunity-L KIRCs. Notably, this gene module was consistently

and negatively correlated with OS and DFS prognosis (Figure 4B).

Again, it conforms to the worse survival prognosis in Immunity-H

than in Immunity-L KIRCs. Like the “cell cycle” module, the
B

A

FIGURE 1

Clustering analysis identifies two immune subtypes of KIRC based on transcriptomic profiles. (A) Based on the enrichment scores of 28 immune cell
types, hierarchical clustering uncovers two immune subtypes of KIRC (Immunity-H and Immunity-L), consistently in four transcriptome datasets.
(B) Principal component analysis (PCA) shows both subtypes to be clearly distinguished based on the enrichment scores of the 28 immune
signatures in the TCGA-KIRC cohort.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1191365
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chen et al. 10.3389/fimmu.2023.1191365
“extracellular exosome” module was upregulated in the Immunity-

H subtype and negatively correlated with OS and DFS. In contrast,

the “endothelial cell proliferation regulation” module was

significantly upregulated in the Immunity-L subtype and

positively correlated with survival prognosis. It indicates that

enhanced immunity in KIRC is associated with impaired

endothelial cell proliferation.
Frontiers in Immunology 06
Prediction of the KIRC immune subtypes

To demonstrate the predictability of the immune subtyping

method, we predicted the KIRC immune subtypes based on the

enrichment scores of the 28 immune cell types using the RF

algorithm (36). Using TCGA-KIRC as the training set, its 10-fold

cross-validation (CV) accuracy was 93.4%, and the prediction
B

C

A

FIGURE 2

Comparisons of the enrichment of tumor-infiltrating lymphocytes (TILs) and stromal cells and tumor cells between the immune subtypes of KIRC.
(A) Pathological slides data for TCGA-KIRC show that the percentages of TILs and percentages of stromal cells are significantly higher in Immunity-H
than in Immunity-L KIRCs, and the percentages of tumor cells are significantly lower in Immunity-H than in Immunity-L KIRCs. (B) The immune
scores and stromal scores by ESTIMATE (29) are significantly higher in Immunity-H than in Immunity-L KIRCs, and tumor purity is significantly lower
in Immunity-H than in Immunity-L KIRCs, in all four KIRC cohorts. (C) The abundance (enrichment scores) of exhausted CD8+ T cells is significantly
higher in Immunity-H than in Immunity-L KIRCs in all four KIRC cohorts. The one-tailed Mann–Whitney U test P-values are shown. *P < 0.05, **P <
0.01, ***P < 0.001, nsP ≥ 0.05; it also applies to the following figures.
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D E
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F G

FIGURE 3

Comparisons of clinical and molecular properties between the immune subtypes of KIRC. (A) Kaplan–Meier curves show that Immunity-H patients
have significantly worse overall survival than Immunity-L patients in two KIRC cohorts and that Immunity-H patients likely have worse disease-free
survival than Immunity-L patients in TCGA-KIRC. The log-rank test P-values are shown. (B) The scores of proliferation and stemness are higher in
Immunity-H than in Immunity-L KIRCs, while angiogenesis scores are lower in Immunity-H than in Immunity-L KIRCs. (C) The expression levels of
PD-1, PD-L1, CTLA-4, and PARP1 are higher in Immunity-H than in Immunity-L KIRCs. (D) Tumor mutation burden (TMB) shows no significant
difference between Immunity-H and Immunity-L KIRCs in TCGA-KIRC. (E) Tumor aneuploidy levels and homologous recombination deficiency
(HRD) scores are significantly higher in Immunity-H than in Immunity-L KIRCs. (F) Four DNA repair pathways are significantly upregulated in
Immunity-L versus Immunity-H KIRCs. BER: base excision repair; DR: DNA replication; HR: homology-dependent recombination; MR: mismatch
repair. (G) Immunity-H KIRCs have significantly lower intratumor heterogeneity (ITH) than Immunity-L KIRCs. The one-tailed Mann–Whitney U test
P-values are shown in (B, D–G), and two-tailed Student’s t test P-values are shown in (C).
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accuracy was 89.7%, 89.1%, and 81.5% in GSE29609, GSE40435,

and GSE73731, respectively (Figure 5). The weighted average F-

score in these predictions were 92.5%, 90.5%, 91.3%, and 79.9% for

TCGA-KIRC, GSE29609, GSE40435, and GSE73731, respectively

(Figure 5). These results imply the predictability of the immune

subtyping method.

Discussion

The present study introduces a KIRC subtyping approach that

relies on the enrichment of 28 immune signatures in the tumor

microenvironment. The analysis has successfully identified two

immune subtypes of KIRC- Immunity-H and Immunity-L, which

have been reproducible in four independentKIRC cohorts. In contrast
Frontiers in Immunology 08
to Immunity-L, the Immunity-H subtype showed a greater level of

TILs, genomic instability, stemness, and proliferation potential, as well

as increased enrichment of immunological, oncogenic, and metabolic

pathways, and aworse survival prognosis.Nonetheless, the Immunity-

L subtype showed higher ITH and an abundance of angiogenic,

neuroactive ligand-receptor interaction, and PPAR pathways relative

to the Immunity-H subtype. The previous studies showing the less

aggressive nature of angiogenic tumors compared to strongly pro-

inflammatory tumors are supported by the higher levels of

angiogenesis signature observed in the Immunity-L subtype (39).

A noteworthy observation indicates that Immunity-H, which is

distinguished by its high TILs enrichment, has inferior clinical

outcomes compared to Immunity-L, which is identified by its low

TILs enrichment. The study indicates that “hot” KIRCs carry a less

favorable prognosis than “cold” KIRCs, despite the former having a

higher enrichment of immune signatures. A similar observation has

been reported in other cancer types, such as prostate cancer (40) and

gliomas (41). In various cancer types, such as gastric cancer (42),

melanoma (43), head and neck squamous cell cancer (44), and triple-

negative breast cancer (45), “hot” tumors have a more favorable

prognosis than “cold” tumors. The TILs’ enrichment in KIRC has

been found to be inversely associated with survival prognosis, and

this can be attributed to the inflammation that TILs promote, which

in turn promotes tumor progression (46). Additionally, the existence

of a noticeably larger percentage of exhausted CD8+ T cells in

Immunity-H KIRCs contributes to a certain degree of inadequate

antitumor action of TILs in this category, despite its strong TILs

enrichment. Furthermore, a previous investigation (26) revealed that

the prevalence of exhausted CD8+ cells is linked to an unfavorable

prognosis in KIRC.

BAP1 (BRCA1-associated protein 1), a tumor suppressor gene,

is involved in regulating the cell cycle and response to DNA damage
BA

FIGURE 4

Pathways enriched in the immune subtypes of KIRC. (A) KEGG pathways highly enriched in the immune subtypes of TCGA-KIRC identified by GSEA
(34). (B) Gene modules significantly differentiating KIRC by immune subtypes, survival time, or survival status identified by WGCNA (35) in TCGA-
KIRC. The correlation coefficients and P-values in parenthesis are shown.
FIGURE 5

Prediction of the two immune subtypes of KIRC by Random Forest
based on the enrichment scores of 28 immune cell types. The 10-
fold cross-validation results in the training set and prediction results
in the other datasets are shown.
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(47). Our research showed that the mutation rate of BAP1 was

higher in Immunity-H than in Immunity-L KIRCs. It is plausible

that this could be responsible for the higher genomic instability,

proliferation potential, and cell cycle activity of Immunity-H KIRCs

in comparison to Immunity-L KIRCs. Furthermore, a previous

investigation revealed that the loss of BAP1 caused KIRC cells to

be more sensitive to Olaparib, a PARP inhibitor (48). Therefore,

considering the elevated HRD level, recurrent BAP1 mutations, and

elevated PARP1 expression levels in the Immunity-H subtype, we

contend that the therapeutic effectiveness of PARP inhibitors

targeting DNA damage repair could be enhanced in this subtype.

However, the use of VEGF inhibitors might be proposed as a

treatment option for Immunity-L patients given the considerable

angiogenic signature observed in this subtype. Moreover, as a result

of the heightened TILs and PD-L1 expression levels in Immunity-H

KIRCs compared to Immunity-L KIRCs, it can be inferred that

patients with Immunity-H will be more responsive to anti-PD-1/

PD-L1/CTLA-4 immunotherapy in comparison to those with

Immunity-L. In two KIRC cohorts, namely Miao-CM009 (49)

and Motzer-CM010 (50), treated with the PD-1 inhibitor

Nabumab, it was observed that Immunity-L patients had higher

response rates to Nabumab in comparison to Immunity-H patients.

The response rates for Immunity-L and Immunity-H patients were

70.6% versus 50.0%, and 66.7% versus 45.8%, respectively. The

potential explanation behind these unexpected findings could be the

significant depletion of CD8+ T cell function in Immunity-H

KIRCs. Despite this, the response rates for the PD-1 inhibitor are

relatively high for both Immunity-H and Immunity-L patients
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when compared to the response rate of less than 15% of cancer

patients to ICB up to this point (51). Moreover, understanding the

underlying mechanism that induces CD8+ T cell exhaustion in the

tumor microenvironment is vital to improve the response to

immunotherapy in Immunity-H patients.

It is worth noting that the proportion of female patients in the

Immunity-L subtype was significantly higher than in the Immunity-

H subtype (42.0% versus 26.7%). On the contrary, the proportion of

male patients in the Immunity-L subtype was significantly lower

than in the Immunity-H subtype (58.0% versus 73.3%) in TCGA-

KIRC. This was established through Fisher’s test with a P-value of

0.0002. The results indicate a notable correlation between gender

and phenotypic and clinical characteristics of KIRC. There is a

wealth of evidence (52) that supports the notion that male patients

diagnosed with kidney cancer have more unfavorable prognoses

than their female counterparts, which is consistent with our results.

In addition, the TCGA-KIRC cohort was composed of 87.7%

White, 10.8% African American, and 1.5% Asian populations; the

population distribution showed no significant correlation with the

immune subtypes (Fisher’s test, P = 0.093).

Prior studies have performed molecular classification of KIRC

based on gene expressions. For example, Brannon et al. identified

two subtypes (ccA and ccB) of KIRC based on the expression

profiles of a small gene set by unsupervised consensus clustering

(53); ccA was enriched in angiogenesis and displayed a significantly

higher survival rate than ccB, and ccB overexpressed cell cycle,

response to wounding, and Wnt pathways. It is consistent with our

results: (1) Immunity-L KIRCs highly expressed the angiogenesis
FIGURE 6

Schematic comparisons of clinical and molecular characteristics between the immune subtypes of KIRC. The figure was created with BioRender.com.
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signature and had a more favorable prognosis; and (2) Immunity-H

KIRCs overexpressed cell cycle, immune, and oncogenic pathways

and had a less favorable prognosis. Puzanov uncovered three

subtypes of KIRC in the TCGA-KIRC cohort and revealed key

genetic features of these subtypes (54); consistent with our findings,

the aggressive subtype had a higher level of immune infiltration and

worse OS than other subtypes. Li et al. classified KIRC into the high-

risk group and the low-risk group using a prognostic model built

based on the expressions of four metabolic genes (P4HA3, ETNK2,

PAFAH2, and ALAD) (55); the high-risk group displayed higher

abundance of TILs, in agreement with our results. Additionally,

based on the expressions of 279 coagulation-related genes, Yin et al.

detected two clusters of KIRC in TCGA-KIRC by consensus

clustering (56); among both subtypes, Cluster 2 displayed higher

levels of T-cell infiltration and worse survival than Cluster 1. Again,

this result is consistent with our findings. A shared finding between

these prior investigations and this study is that the KIRC subtype

with strong immune infiltration has inferior survival. Nevertheless,

our investigation reveals marked discrepancies from the earlier

studies. First, it is essential to note that our KIRC clustering

involved transcriptomic profiles. However, unlike previous studies

(53–56), our approach utilized gene set enrichment analysis rather

than individual gene expressions. Undoubtedly, the gene set

enrichment-based clustering is more likely to be robust in

identifying cancer subtypes than gene expression-based clustering.

This is because the gene set-based approach integrates the

expression of a set of genes into a single expression value to

overcome the vulnerability to expression outliers of individual

genes (57). Second, the present study investigated the correlation

between tumor immunity and several molecular and clinical

features, including tumor stemness, proliferation potential,

angiogenesis, microenvironment, genome instability, intratumor

heterogeneity, pathway enrichment, and clinical outcomes in

KIRC. Ultimately, this study revealed the potential mechanism

that underlies the negative association between the enrichment of

TILs and clinical outcomes in KIRC.

Moreover, there are several limitations associated with this study.

Our discoveries were predominantly made via transcriptome data

analysis and were not validated at the protein level. The inverse

correlation between the TILs enrichment and survival prognosis in

KIRC may be attributed to the cellular composition of the tumor

microenvironment, including immune cells, stromal cells, and cancer-

associatedfibroblasts. Verification through experiments is necessary to

establish the reliability of certain findings obtained through

bioinformatics analysis.

In conclusion, KIRC can be divided into two immune

subtypes, each of which exhibits significantly different molecular

and clinical characteristics (as depicted in Figure 6). Elevated

immunity is correlated with a worse prognosis in KIRC. Patients

with Immunity-H KIRC could demonstrate active responses to

PPAR inhibitors and immune checkpoint inhibitors, whereas
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those with Immunity-L might exhibit favorable responses to

anti-angiogenic agents and immune checkpoint inhibitors. The

immunological classification presents molecular insights into

KIRC immunity and significant clinical implications for

disease management.
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