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Background: The immune responses to severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) are crucial in maintaining a delicate balance

between protective effects and harmful pathological reactions that drive the

progression of coronavirus disease 2019 (COVID-19). T cells play a significant

role in adaptive antiviral immune responses, making it valuable to investigate the

heterogeneity and diversity of SARS-CoV-2-specific T cell responses in COVID-

19 patients with varying disease severity.

Methods: In this study, we employed high-throughput T cell receptor (TCR) b
repertoire sequencing to analyze TCR profiles in the peripheral blood of 192

patients with COVID-19, including those with moderate, severe, or critical

symptoms, and compared them with 81 healthy controls. We specifically

focused on SARS-CoV-2-associated TCR clonotypes.

Results:We observed a decrease in the diversity of TCR clonotypes in COVID-19

patients compared to healthy controls. However, the overall abundance of

dominant clones increased with disease severity. Additionally, we identified

significant differences in the genomic rearrangement of variable (V), joining (J),

and VJ pairings between the patient groups. Furthermore, the SARS-CoV-2-

associated TCRs we identified enabled accurate differentiation between COVID-

19 patients and healthy controls (AUC > 0.98) and distinguished those with

moderate symptoms from those with more severe forms of the disease (AUC >
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0.8). These findings suggest that TCR repertoires can serve as informative

biomarkers for monitoring COVID-19 progression.

Conclusions:Our study provides valuable insights into TCR repertoire signatures

that can be utilized to assess host immunity to COVID-19. These findings have

important implications for the use of TCR b repertoires in monitoring disease

development and indicating disease severity.
KEYWORDS

coronavirus disease 2019, T cells, T cell receptor b repertoire, machine learning,
immunology
Introduction

The ongoing COVID-19 pandemic, caused by severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2), has had a

profound global impact, resulting in unprecedented public health

and socioeconomic consequences (1, 2). In 2020 and 2021 alone,

COVID-19 was responsible for an estimated 14.9 million deaths

worldwide (3). The clinical presentation of COVID-19 exhibits

considerable variability, with the initial outbreak revealing a wide

range of symptoms. While the majority of infected individuals

experience mild to moderate symptoms or remain asymptomatic,

approximately 10%–20% develop severe forms of the disease, such

as acute respiratory distress syndrome, leading to increased

mortality rates (4, 5). Understanding the pathogenesis of

COVID-19 is of utmost importance to prevent disease

progression and effectively manage the ongoing pandemic,

especially in light of the resurgence of new cases globally and

the potential for the pandemic to persist in the years ahead.

Immune responses are pivotal in host-pathogen interactions

during infectious diseases, and numerous studies have

highlighted their role in maintaining a delicate balance between

protective effects and harmful pathological reactions in the

context of SARS-CoV-2 and COVID-19 progression (6–11). T

cells, also known as T lymphocytes, are integral components of

the immune response against coronaviruses (12–14). Patients

with more severe symptoms of COVID-19 often exhibit

decreased levels of CD4+ and CD8+ cells, resulting in

prolonged viral persistence and increased mortality rates

compared to those with moderate symptoms (15, 16). T cells

recognize pathogen-derived peptides by presenting them to the

major histocompatibility complex (MHC) on virally infected cells
RS-CoV-2, severe acute

compatibility complex;

risk; PCR, polymerase

c lupus erythematosus;

; HTLV-1, human T

te antigen.
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through their hypervariable T cell receptors (TCRs). The TCRs

are generated through the random recombination of variable (V),

divers i ty (D) , and joining (J) gene segments in the

complementarity-determining region 3 (CDR3) of the receptor

chain, a process known as V(D)J recombination (17). The beta

(b) chain, formed by the connection of the D region with the V

and J regions, is highly diverse and contains more information

than the alpha chain (V and J), making it well-suited for

characterizing T cell immune responses. Moreover, the b chain

sequence is relatively short, enabling its analysis using high-

throughput sequencing technologies (17). TCR repertoires

exhibit dynamic composition and diversity, serving as

important parameters in immune responses (18). While TCR

repertoires are diverse and polyclonal under normal conditions,

they can become biased during infection due to preferential

selection of pathogen-specific TCR clones. Thus, real-time and

quantitative tracking of T cell clones through TCR repertoire

sequencing can provide insights into the expansion and

contraction phases of antiviral defense and potentially aid in

predicting clinical outcomes (17, 19). Given that SARS-CoV-2 is

a novel coronavirus to which humans have not developed prior

immune responses, investigating differences in TCR repertoires

resulting from infection with this virus offers an innovative

approach that may elucidate the mechanisms underlying

antigen-specific immune pathology. While several studies have

explored the characteristics of TCR repertoires in COVID-19

(20–24), comprehensive characterizations of TCR repertoires in a

reasonably sized sample of infected individuals with varying

severity levels and clinical follow-up remain scarce, and the

relationship between TCR repertoire parameters and COVID-

19 immunopathology remains unknown.

In this study, we conducted an in-depth analysis of the TCR b
repertoires in the peripheral blood of 192 patients exhibiting

moderate, severe, or critical symptoms of COVID-19, as well as

81 healthy controls. Through this analysis, we characterized TCR

b repertoire signatures and identified specific TCR b clonotypes

associated with SARS-CoV-2 infection. Additionally, we

employed a machine learning algorithm to classify patients

with COVID-19 of varying severities from the healthy controls.
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Materials and methods

Sample collection and survival analysis

Figure 1 presents the flowchart of the study design. This

multicenter, prospective cohort study was conducted at three

hospitals in Wuhan. Between March and April 2020, 192 patients

aged at least 18 years and diagnosed with COVID-19 were

consecutively enrolled. The patients were classified into three groups

according to the Protocol on Prevention and Control of Novel

Coronavirus Pneumonia (Edition 6, https://www.chinadaily.com.cn/

pdf/2020/2.COVID-19.Prevention.and.Control.Protocol.V6.pdf.

COVID-19. Prevention.and.Control.Protocol.V6.pdf) developed by

the National Health Commission of the People’s Republic of China:

moderate (fever, respiratory symptoms, etc., with abnormal findings

on chest imaging), severe (respiratory rate ≥ 30/min, oxygen

saturation ≤ 93% on room air at rest, arterial oxygen pressure/

fraction of inspiration oxygen ≤ 300 mmHg, or progressive clinical

symptoms and lung imaging showing > 50% significant progression of

the lesion within 24–48 h), and critical (respiratory failure requiring

mechanical ventilation or shock combined with other organ failure

and requiring intensive care unit supervision). Each patient was

prospectively followed-up till hospital discharge or death. The

clinical outcomes of patients with COVID-19 were evaluated after

28 days of follow-up. All the patients were classified into three types,

and the severity of disease classification was used for comparing the

state of the disease on the 1st (baseline) and 28th day of follow-up.
Frontiers in Immunology 03
Type 1: Deteriorate: Patients progressed from moderate to

severe/critical COVID-19 or from severe to critical COVID-19,

along with those who died owing to any reason during the 28-day

follow-up.

Type 2: Unchanged: Disease severity remained the same as that

at baseline.

Type 3: Improved: Patients with alleviated symptoms or those

who recovered from COVID-19, with at least one of the following

criteria being achieved: 1) body temperature was back to normal for

> 3 days; 2) respiratory symptoms improved, i.e., successfully

weaning off mechanical ventilation; 3) pulmonary imaging

showed absorption of inflammation; and 4) nucleic acid tests of

respiratory tract samples were negative two consecutive times, with

a sampling interval at least 24 h.

The Ethical Review Board of Peking University Third Hospital

approved the study protocol in March 2020, with the exemption of

informed consent from participants (IRB00006761-M2020083). We

also recruited 81 HCs from a previous cohort study that was

conducted by Fuwai Hospital, China National Center for

Cardiovascular Diseases, from March 2018 to December 2019,

i.e., before the COVID-19 pandemic.

Patients with complete clinical data and survival information

(n = 167) were included in the survival analysis. Kaplan–Meier

survival curves and Cox proportional hazards models were

established using the survival (version 3.2–11, https://CRAN.R-

project.org/package=survival) and survminer (version 0.4.9)

packages in R software (25). Schoenfeld residuals were used to
FIGURE 1

Study flowchart.
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assume proportional hazards before Cox analysis. The log-rank test

was used to assess statistical significance. A P-value of < 0.05 was

considered statistically significant.
High-throughput TCR b repertoire
sequencing

Peripheral blood samples were collected from 273 subjects. The

DNA was extracted utilizing QIAamp DNA Blood Mini Kit (NO.

51306, Qiagen, Hilgen, Germany), and measured using NanoDrop

2000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA,

USA) to determine concentration. The DNA served as the template

for PCR ampliflication, originating the library of TCR b. The step 1

PCR ampliflication protocol was as follows: 95°C for 5 min; 95°C for

30 s, 59°C for 30 s; 72°C for 1 min for 30 cycles; and 72°C for

10 min. The step 2 PCR ampliflcation protocol was as follows: 98°C

for 2 min; 98°C for 30 s, 65°C for 30 s; 72°C for 30 s for 10 cycles;

and 72°C for 5 min. The PCR products were purified, and the

barcodes were confirmed. The CDR3 gene fragments of the TCR b
chain were amplified through a multiplex PCR amplification

reaction. Then, they were sequenced using the Illumina

HiSeq2000 platform from the genomic DNA. The CDR3 nucleic

acid sequences of the TCR b chain were aligned based on the

definition established by the International ImMunoGeneTics

(IMGT) collaboration (26). An algorithm was utilized to identify

the V, D, and J segments that contributed to the CDR3 region based

on established protocol (26). Only productive reads were evaluated

for downstream analyses since sequences with frameshifts or stop

codons cannot produce functional proteins.
Preprocessing of raw amplicon PCR
sequencing data and alignment to the
IMGT database

To decrease the effects of sequencing errors, we first used

Cutadapt software (version 2.10) (27) to strictly filter the raw

sequencing data based on four criteria and delete the following

sequences (1): sequences containing linker sequence contamination

(2); those with > 5% sequences of unknown bases (N) (the threshold

of N base ratio was set to < 5%) (3); those with an average quality

score of < 20 (based on the Illumina 0–41 quality system); and (4)

those with low-quality bases (Q score < 20) or very short sequences

(< 60 bp in length).

The human TRBV sequence was downloaded from the IMGT

database (https://www.imgt.org/vquest/refseqh.html), and the

reference sequence was uploaded to GitHub (https://github.com/

Na-Yuan-BIG/TCR-rep/tree/main/imgt). After obtaining high-

quality sequencing data by preprocessing the raw data, we used

MiXCR software (version 3.0.13) (28) to complete TCR clonotype

identification of the sequenced fragments, which can realize the

conversion from raw sequence to quantitative clonotype data. We

used the analyze mode to completely align, assemble, and perform

assembleContigs and exportClones analysis of each sample in one

command line (mixcr analyze amplicon–species hsa–starting-
Frontiers in Immunology 04
material DNA–5-end v-primers–3-end j-primers–adapters

adapters-present–receptor-type TRB). The 192 samples used in

the analysis had a mapping rate of > 70%. Then, we used the

convert function of Vdjtools (version 1.2.1) (29) to convert the

output of MiXCR into a text file in VDJtools format for

subsequent analysis.
Overall characteristics of the TCR
b repertoires of COVID-19 and HC samples

All analyses were performed using R (version 3.6.3, https://

www.R-project.org), the immunarch (version 0.6.5) package, and

Python (version 3.8.3).
Gene usage analysis and COVID-19
prediction

Comparative analyses of VJ gene usage were performed by

clustering information based on its occurrence frequency in each

sample. Similarities in usage patterns between different groups were

determined using Spearman’s correlation. To identify the

significantly different V genes, J genes, and VJ pairings between

different groups, one-way analysis of variance (ANOVA) and post-

hoc multiple comparisons were separately performed on the

frequency of V gene/J gene/VJ pairing. The classification

performance of the three different models of naive Bayes

classifier, multiple logistic regression model, and random forest

model was compared using V gene/J gene/VJ paring separately; we

observed that the random forest model has better classification

performance. Therefore, we obtained four classification results

(control/moderate/severe/critical) by separately using V gene/J

gene/VJ paring based on the random forest model. To ensure

model reliability, we used the same method to build a random

forest classification model in the training set and verified the

classification performance of the model in the test set. To classify

any two groups among the four sample groups, we also established a

random forest classification model using the above method.
COVID-19-associated TCR b identification

In each sample, we defined clones with the same V gene, J gene,

and CDR3 amino acid sequences as the same clone. The detected

clones and their abundance information in all samples were

integrated to obtain the frequency abundance of each TCR clone

in each sample. During integration, the clones with no more than 10

detection samples were filtered to improve subsequent

calculation efficiency.

The detection rate of each clone in the HC and COVID-19

groups was calculated (i.e., the number of samples detected in the

clone) and recorded as cC and cD, and the nondetection rate in the

corresponding groups were calculated and recorded as cnC and

cnD, respectively. The relative risk (RR) index of the clones was

calculated as follows:
frontiersin.org
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RR =
cD

cD+cnD
cC

cC+cnC

When RR is > 1, it indicates that the clone has a higher detection

rate in the COVID-19 group, which is positively correlated with an

infection status of COVID-19. Based on the detection rate of the

clones in the HC and COVID-19 groups, Fisher’s exact test was

performed to evaluate the differences in the distribution of the clone

detection rate between the two groups, and P-values of descriptive

statistical significance were obtained. Then, the corrected p-values

(FDR) were determined using p.adjust (method = “fdr”).

Finally, the RR and FDR values were combined to identify the

COVID-19-related clones and protective clones. Here, we used

three filters:
Fron
(1) Large panel: 284 COVID-19-specific clones were identified

under the threshold of RR > 1 and FDR < 1e−5.

Simultaneously, under the threshold of RR < 1 and FDR <

1e−25, 276 clones were identified in the HC group, which

were called protective clones.

(2) Middle panel: 102 COVID-19-specific clones were

identified under the threshold of RR > 1 and FDR < 1e-6.

Simultaneously, under the threshold of RR < 1 and FDR <

5e−27, 101 clones were identified in the HC group, which

were called protective clones.

(3) Mini panel: Under stricter threshold conditions of RR > 1

and FDR < 1e−8, 12 COVID-19-specific clones that were

significantly different from those of the HC group were

identified in the COVID-19 group.
Characteristic analysis of COVID-19-
associated TCR b clones

Based on the results presented in the “COVID-19-associated

TCR b identification” section, the characteristics of COVID-19-

specific, protective, and random clones were studied.

The same number of COVID-19-specific clones and non-

COVID-19-related clones, as random clones, were randomly

sampled, followed by the evaluation of clone abundance, CDR3

amino acid sequence length, and CDR3 amino acid sequence

similarity among the COVID-19-specific, protective, and random

clones. For comparison, 100 random sampling experiments were

performed to avoid sampling bias caused by one-time random

sampling. Minimum Edit Distance was used to compare the

similarity between the CDR3 amino acid sequences (30).
Similarity network analysis of differential
clones and high-frequency clones

The differential clones between the COVID-19 and HC groups

were screened (FDR < 0.001). The CDR3 sequences of these clones

were separately extracted for each sample group using GLIPH2

(Version: 0.01) (31) software, which performs clustering. For
tiers in Immunology 05
clustering results, single clones were filtered without clustering

and the network diagram was constructed using the R package

igraph (1.2.8) (32). Similarly, for high-frequency clones, 1000 clones

(detected in > 10 samples) with the highest frequency in the

COVID-19 and HC groups, respectively, were extracted after

gliph2 clustering; the similarity network was constructed using

Gephi2 (0.9.2) (33).
Construction of the COVID-19 prediction
models using COVID-19-associated TCR
b clones

We used two methods to construct the COVID-19

prediction model.

Route 1: The proportion of the COVID-19-specific clones was

calculated in all samples based on the COVID-19-specific clones

(102 clones) obtained in the “COVID-19-associated TCR b
identification” section to the sample’s own unique TCR b clones.

All samples were classified and predicted according to this index.

Route 2: Dimensionality reduction was used to generate a four-

dimensional feature value (34) for each sample using the

distribution information of the COVID-19-specific clones in

different sample groups. Then, the four-dimensional feature

values were calculated under several different FDR thresholds

(calculated according to the “COVID-19-associated TCR b
identification” section), and the random forest classification

model was constructed in the training set. The performance of

the classification model was verified in the test set. The four-

dimensional features used were Fuinq/Fabund/Nd/NC.
Fuinq: Number of unique COVID-19-specific clones in the

sample accounts for the proportion of all unique TCR bs
in this sample.

Fabund: Number of abundant COVID-19-specific clones in the

sample accounts for the proportion of all unique TCR bs in
this sample.

Nd: Cumulative number of COVID-19-specific clones

contained in the samples detected in the COVID-19 group.

NC: Cumulative number of COVID-19-specific clones

contained in the samples detected in the HC group.
TCR-specific databases annotation

Human TRB data were downloaded and integrated from the

TCR-specific databases TBAdb (35), VDJdb (36), and McPAS-TCR

(37). All clones were divided into three categories: Autoimmune,

Cancer, and Pathogens, corresponding to 9, 10, and 22

subcategories, respectively. Based on the annotation information

of these three databases, disease-related information in the

databases was obtained using the V gene, J gene, and CDR3

sequence for pattern matching.

The percentage of clones present in the databases was calculated

using the total number of unique clones for all sample groups, and
frontiersin.org
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the distribution of the relevant clones in the three major categories

of the 41 disease subcategories was compared in each sample group.

The Mann–Whitney test was performed in the HC and COVID-19

groups. In addition, the clones identified in the samples in the HC

and COVID-19 groups were compared with the COVID-19-specific

TRB clones in the three databases.
Results

Sample characteristics

Table 1 presents an overview of the characteristics of the 192

patients with COVID-19 and the 81 healthy controls (HCs). The

samples were collected from COVID-19 patients before the

availability of COVID-19 vaccines or immunological agents.

Patients received supportive treatments, including mechanical

ventilation, following the 6th tentative protocol, which is well-

documented and publicly available. The analysis revealed a

significant association (P < 0.001) between aging and an increased

risk of more severe symptoms (P = 5.91e−09). Patients with more

severe symptoms had a significantly higher prevalence of

hypertension. Interleukin (IL)-6 serum levels demonstrated a

strong and significant association (P = 3.19e−06) with disease

severity, while the levels of other ILs did not reach significance,

even at the nominal level. Survival analysis confirmed the highly

significant impact of IL-6 (P = 8.56e−23) on the survival of COVID-

19 patients and also identified a nominally significant effect of IL-2R

on survival (P = 0.0003, Figure S1, Table S1). Other laboratory test

indicators, including WBC, HGB, LYMPH, NEUT, TCHOL, ALB,

LDH, and CRP, showed significant associations. Overall, these

characteristics were consistent with those observed in previous

clinical and epidemiological studies (38–42).
Decreased diversity of TCR b repertoires in
patients with COVID-19

Following the isolation of T cells and high-throughput TCR b
repertoire sequencing, we obtained an average of 1.2e7 to 1.7e7

pair-end sequences per sample (Table S2). However, due to sample

heterogeneity and the presence of numerous low-abundance clones,

capturing the full range of clonotypes in a single sample was

challenging. Even when sequencing the maximum number of

samples, most samples approached saturation, as depicted in

Figure 2A, where the number of observed clones continued to

increase until reaching 3.5e7 reads. Nevertheless, our sequencing

data revealed a significant decrease in the number of clones as

COVID-19 severity increased (Figure 2A; Table S2).

To investigate clonal expansion in individuals with COVID-19,

we assessed the diversity of TCR b repertoires using various

parameters, including the number of clonotypes, Chao1 index,

accumulative frequency, Gini index, and clonal frequency. In

patients with COVID-19, the top 1000 TCR clones exhibited a

reduced number of clonotypes and Chao1 index, along with

increased accumulative frequencies (Figure 2C). This finding
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suggests that clonal diversity decreased as a subset of SARS-CoV-

2-specific clones expanded, indicating a more active state of the

immune response following viral infection. Similar patterns were

observed in the accumulative frequency analysis focusing on the top

100 TCR clones, although to a lesser extent than with the top 1000

TCR clones. Notably, the magnitude of clonal expansion within the

top 1000 frequent clones was greater than observed in a previous

study on systemic lupus erythematosus (SLE) and RA (34), where

clonal expansion was evident within the top 100 frequent clones.

This suggests that a broader range of TCR clones contributes to

SARS-CoV-2-specific immune responses compared to SLE and RA.

The Gini index, which measures clonotype uniformity, was

significantly decreased in patients with COVID-19 compared to

healthy controls (Figure 2C). This finding was unexpected since the

rapid expansion of a small number of clones, disrupting the

uniformity of the original clone distribution, would typically lead

to an increased Gini index. However, our observations align with

those in SLE and RA patients (34), where the Gini index was also

significantly decreased and then increased with disease severity. The

decrease in the Gini index in COVID-19 patients suggests clonal

expansion following infection, albeit in an unexpected direction.

Clonal frequency, a common measure of clonal amplification,

demonstrated that public clones (shared between two or more

samples) in patients with severe and/or critical disease had

significantly higher frequencies compared to those in patients

with moderate disease and/or healthy controls (Figures 2D, E).

This finding supports the hypothesis that patients with severe and

critical disease exhibit a more robust immune response and greater

clonal expansion.
Heterogeneity of the TCR b repertoire in
patients with COVID-19

The TCR b repertoire is well-known for its high level of

heterogeneity, wherein individuals typically share only a small

number of clones. In our study, we confirmed this characteristic

(Figure 2B). More specifically, over 90% of clones were found in

only one individual, and the shared clonotypes between any two

individuals accounted for only 0.23%–4.22% of the total clonotypes.

Importantly, we observed a significantly increased heterogeneity in

patients with COVID-19 compared to healthy controls, as evident

in the clonotype distribution (Figure S2). The likelihood of finding

shared clones between any pair of healthy controls was much higher

than that between any pair of patients. Notably, the heterogeneity

did not significantly differ among patients with varying levels of

disease severity. Remarkably, the observed increase in heterogeneity

in patients with COVID-19 was consistent with the decrease in the

Gini index.
Classification of the patients using V and
J genes

Cluster analysis demonstrated that patients could be effectively

differentiated from healthy controls based on the usage of V genes
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TABLE 1 Clinical characteristics of the study cohort.

Indexes Control
(n = 81)

Moderate
(n = 73)

Severe
(n = 66)

Critical
(n = 53) P-value

Age 50.5 (44.0–57.0) 63.0 (45.0–71.0) 66.5 (58.2–78.8) 66.5 (55.8–73.0) ***,#

Gender(F/M) 29/42 40/33 37/29 13/27 $,+

Past medical history

Hypertension, n(%) – 6 (8.2) 28 (42.4) 14 (58.3) ###,+++

Diabetes, n(%) – 6 (8.2) 10 (15.2) 8 (33.3) ns

Smoking

Never smoker, n(%) – 2 (66.7) 55 (87.3) 15 (65.2)

nsFormer smoker, n(%) – 1 (33.3) 5 (7.9) 2 (8.7)

Current smoker, n(%) – 0 (0.0) 3 (4.8) 6 (26.1)

CBC

WBC (10^9/L) 5.5 (4.6–6.5) 5.8 (4.8–6.9) 6.2 (4.4–7.7) 9.8 (7.5–16.0) **,$$$,+++

HGB (g/L) 148.0 (138.8–154.8) 128.0 (114.0–140.0) 117.5 (103.0–127.0) 105.5 (88.0–129.0) ***,#,++,

LYMPH# – 1.2 (0.8–1.6) 0.8 (0.6–1.2) 0.9 (0.6–1.3) ###,

NEUT% 57.0 (51.0–62.8) 68.7 (59.5–76.3) 76.1 (66.3–85.9) 85.5 (69.7–90.2) ***,##,+++

TCHOL(mmol/L) 4.7 (4.3- 5.4) 4.1 (3.4- 4.9) 3.8 (3.2- 4.4) 3.3 (2.9- 4.1) ***,+

Hepatorenal

ALB (g/L) – 41.1 (37.7–44.4) 34.2 (32.3–39.1) 34.1 (29.9–38.5) ###,+++

Tbil (µmol/L) – 12.2 (8.8–16.4) 9.8 (7.2–15.0) 13.5 (8.3–19.9) ns

ALT (U/L) – 15.0 (14.0–24.0) 24.0 (15.0–32.5) 27.5 (21.8–50.2) ns

CREA (µmol/L) 81.0 (71.4–92.4) 72.2 (59.8–88.3) 70.5 (59.2–103.8) 64.0 (52.8–86.5) **

LDH (U/L) 168.5 (149.8–196.8) 181.0 (150.0–213.0) 263.0 (196.8–337.0) 427.0 (298.0–481.0) ***,###,$$,+++

CRP (mg/L) 1.2 (0.5–2.1) 0.4 (0.1–2.1) 19.5 (2.8–72.0) 63.6 (38.1–86.0) ***,###,$$,+++

Interleukin

IL-1b (pg/mL) – – 5.0 (5.0–8.1) 5.0 (5.0–7.5) ns

IL-2R (U/mL) – – 811.0 (514.5–1093.0) 863.0 (496.0–958.0) ns

IL-6 (pg/mL) – 3.1 (1.7–8.1) 13.9 (4.6–33.1) 41.5 (16.4–82.3) ###,$,+++

IL-8 (pg/mL) – – 12.7 (8.1–20.0) 12.5 (12.5–35.6) ns

IL-10 (pg/mL) – – 5.9 (5.0–8.7) 6.7 (5.9–7.1) ns

T cell subsets

LY% – 72.7 (66.8–77.6) 76.0 (68.6–78.6) 77.1 (69.9–77.4) ns

CD3Abs (cells/ul) – 1704.0 (1149.5–2167.5) 650.0 (344.8–909.8) 431.0 (190.5–679.0) ns

Th% – 41.6 ± 10.4 48.3 ± 12.6 43.8 ± 10.4 ns

Th# (cells/ul) – 670.0 (436.5–1339.5) 388.5 (217.2–589.0) 238.0 (105.0–356.0) ns

Ts% 26.0 (20.1–32.5) 20.3 (17.3–21.5) 24.6 (24.4–25.2) #

Ts# (cells/ul) – 629.0 (460.0–792.5) 230.0 (81.0–307.8) 188.0 (93.0–326.5) ns

Th/Ts – 0.7 (0.7–1.9) 1.7 (1.3–2.7) 1.3 (1.1–1.8) ns

Mechanical Ventilation

Mechanical Ventilation (Hours) – 0.0 (0.0–0.0) 0.0 (0.0–0.0) 240.0 (0.0–522.0) ##,$$$,+++

(Continued)
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(Figure 3A) or J genes (Figure 3B), while the differentiation among

patients with different disease severity levels was less pronounced.

Overall, the usage of V genes, J genes, and VJ pairings showed

similarities between individuals (V: r > 0.85, J: r > 0.77, and VJ: r >

0.86; Figure 3C). However, gene usage within patients exhibited

significantly higher similarity compared to that within healthy

controls (V: r > 0.91, J: r > 0.86, VJ: r > 0.89; Figure 3C).

Through one-way ANOVA analysis of gene usage, we identified

46 out of 63 V genes, 11 out of 14 J genes, and 536 out of 772 VJ

pairings that displayed significant differences between the patient

group and healthy controls (P < 0.001, Table S3). Subsequently,

prediction modeling was performed using the significant genes

obtained from ANOVA, employing three commonly used

methods: naïve Bayes, multiple logistic regression, and random

forest. Ten-fold cross-validations demonstrated that the random

forest classifier achieved the highest accuracy (Figure S3), with a

microaverage AUC of 0.91 and a macroaverage AUC of 0.87–0.88

for classifying all samples into four groups (Control, Moderate,

Severe, and Critical; Figure 3D). Examining each group

individually, the Control group was almost perfectly classified

using the V gene, J gene, and VJ pairings (AUC > 0.99). The

accuracies for classifying the Moderate group (V: AUC = 0.88, J:

AUC = 0.88, and VJ: AUC = 0.89) and the Critical group (V: AUC =

0.82, J: AUC = 0.84, VJ: AUC = 0.83) were slightly lower but still

satisfactory. In contrast, the accuracy for classifying the Severe

group was the lowest (V: AUC = 0.79, J: AUC = 0.81, VJ: AUC

= 0.77).
Identification and characteristics analysis
of COVID-19-associated TCR b clones

Analysis of COVID-19-associated TCR b clones identified a

total of 36,597 differential clones that were specific to COVID-19
Frontiers in Immunology 08
under an FDR threshold of < 0.001. Using a more stringent

threshold of 1e−6, we identified 102 risk clones associated with a

significantly increased risk of COVID-19 (Figure 4A). All these risk

clones exhibited a RR greater than 10.8. Additionally, applying the

same threshold (1e−6) for detecting protective clones, we identified

12,892 clones. To match the number of protective clones to the risk

clones, we employed a highly stringent FDR threshold of ≤5e−27,

resulting in the identification of 101 protective clones, all with an

RR of less than 0.3 (Figure 4A). Notably, the 102 risk clones showed

high detection rates in patients with COVID-19 (greater than 24%,

up to 44%), while the 101 protective clones exhibited high detection

rates in healthy controls (greater than 58%, up to 100%, Figure 4B).

Comparing the 102 COVID-19-specific risk clones, 101

protective clones, and 100 randomly resampled clones (repeated

for 1000 replicates), we found that both risk and protective clones

had higher frequencies than random clones (Figure 4C, right panel).

Furthermore, the risk clones had significantly longer CDR3 amino

acid sequences compared to random and protective clones,

indicating an enrichment of longer CDR3 sequences (> 16 amino

acids) in the risk clones (Figure 4C, left panel). The risk clones also

exhibited a significantly longer smallest edit distance of CD3

sequences compared to the random and protective clones, with

an enrichment of the smallest edit distances of ≥5 in the risk clones

(Figure 4C, middle panel).

We performed GLPH2 clustering analysis of the CDR3

sequences to assess the similarity among the 36,597 differential

clones (FDR < 0.001) in the COVID-19 and healthy control groups

(Figure 4D). As expected, the differential clones showed a higher

degree of connectivity and a smaller number of clusters in patients

with COVID-19 compared to healthy controls, indicating a higher

similarity in CDR3 sequences among COVID-19 patients. To

further investigate this, we focused on clones shared by at least

ten individuals and among the 1000 most frequent clones and

repeated the GLPH2 clustering analysis (Figure 4E). This analysis
TABLE 1 Continued

Indexes Control
(n = 81)

Moderate
(n = 73)

Severe
(n = 66)

Critical
(n = 53) P-value

LOS

LOS (days) – 25.0 (21.0–31.0) 27.5 (21.0–37.8) 25.0 (19.2–43.2) ns

ICU (days) – 0.0 (0.0–0.0) 0.0 (0.0–0.0) 17.5 (3.8–25.2) ##,$$$,+++

Clinical outcome

Recovered, n(%) – 72 (98.6) 57 (86.4) 17 (70.8)

#,$,+++Survival, n(%) – 1 (1.4) 5 (7.6) 4 (16.7)

Death, n(%) – 0 (0) 4 (6.1) 3 (12.5)
a. n(%), median(p25-p75), mean ± SD.
b. One-way analysis of variance (ANOVA) was employed to calculate the P values. Statistically significant difference between the groups (Cotrol-COVID-19: *, Moderate-Severe: #, Severe-
Critical: $, Moderate-Critical: +) as *** P ≤ 0.001, **P ≤ 0.01, *P ≤ 0.05 and ns P > 0.05.
c. LY%: CD3+CD19; CD3Abs: CD3+CD19-; Th%: CD3+CD4+; Ts%: CD3+CD8+; Th/Ts: CD4/CD8.
d. for CREA p-vlaue ** shows that some patients have already used renal replacement therapy during the blood collection period, and creatinine cannot fully reflect renal function.
e. Normal range:

for CBC indicators, WBC: [3.5–9.5], HGB: [130–175], LYMPH#: [1.1–3.2], NEUT%: [40–75], TCHOL: [2.9–5.7].
for Hepatorenal indicators, ALB: [35–52], Tbil: ≤26, ALT: ≤41, CREA: [59–104], LDH: [135–225], CRP: < 1.
for Interleukin indicators, IL-1b: < 5, IL-2R: [223–710], IL-6: < 7, IL-8: < 62, IL-10: < 9.1.
for T cell subsets indicators, LY%: [50–84], CD3Abs: [955–2860], Th%: [27–51], Th#: [550–1440], Ts%: [15–44], Ts#: [320–1250], Th/Ts: [0.71–2.78].

ns = no significance.
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revealed a greater number of connective nodes (n = 261) in patients

with COVID-19 compared to healthy controls (n = 89), providing

additional evidence for the higher similarity among these clones in

COVID-19 patients. In summary, compared to random and

protective clones, COVID-19-specific risk clones tended to utilize

longer CDR3 sequences and displayed increased similarity, likely

adapting to the complex antigen exposure environments

encountered in the disease.
Construction of COVID-19 prediction
models using COVID-19-associated TCR
b clones

The classification of patients with COVID-19 and healthy

controls based on the ratio of COVID-19-specific risk clones to all

unique TCR b clones (Fuinq > 1.5e−05, Figure 5A) yielded accurate

results. Using the pool of 102 risk clones identified in our study, the
Frontiers in Immunology 09
classification achieved an AUC of > 0.99, and expanding the number

of risk clones to 284 resulted in perfect classification (AUC = 1.00).

In a more stringent approach, we narrowed down the pool of

clones to the top 12 COVID-19-specific clones based on a stricter

threshold (FDR < 7.5e−9 and RR > 29.9, Figure 5B). Using the four

parameters (Fuinq, Fabund, Nd, and NC) of these top 12 associated

clones as predictors, a random forest classifier exhibited reasonably

accurate classification results in differentiating patients from

controls during 10-fold cross-validation (overall AUC for the

four-parameter classification was 0.92; 95% CI: 0.905−0.939).

Moreover, the classifier satisfactorily distinguished severe and

critical patients from controls, achieving an AUC of 0.91 (overall

AUC for three-parameter classification was 0.95; 95% CI: 0.940

−0.965). To mitigate overfitting, we further divided our sample into

80% for training and 20% for testing. We replicated the marker

selection (12 clones) and model building analyses on the training set

and evaluated the predictive performance on the test set

(Figure 5C). Generally, increasing the number of clones in the
A B

D E

C

FIGURE 2

Overall characteristics of the T cell receptor (TCR) b repertoires in patients with COVID-19 and healthy controls (HCs). (A) Saturation analysis of each
group. Sequencing data were randomly selected to determine the number of clonotypes detected and extrapolated to the size of the largest
samples. Solid and dashed lines represent the interpolated and extrapolated regions of the rarefaction curves, respectively, and points indicate the
exact sample size and diversity. (B) Overlap between each group of public clones. (C) Obvious clonal expansion from the aspects of TCR b
repertoire diversity in COVID-19 development. Horizontal line is the median, and dot is the average value in the boxplot. (D) Trend of changes in the
average abundance of clones under different detection sample numbers for each group. (E) Trend of changes between the total abundance of
clones under different detection sample numbers for each group. ***P ≤ 0.001, **P ≤ 0.01, *P ≤ 0.05. ns = no significance.
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random forest model resulted in improved accuracy, with the lowest

performance observed when differentiating critical from severe

forms of the disease.
Clinical implication of TCR b clones

We examined the correlation between IL levels and the

abundance of COVID-19-specific clones in a subset of our

patients (n = 32) with available IL data. While IL-6 and IL-2R

were significantly associated with patient survival, they did not

show a significant correlation with COVID-19-specific risk clones

(P > 0.05). However, in our study, we found a significant positive

correlation between IL-1 and the abundance of COVID-19-specific

risk clones (r = 0.57, P = 7e-4, Figure S4). This finding suggests a

potential connection between ILs and TCR b repertoires in patients

with COVID-19. Further investigations with larger sample sizes are

warranted to explore and confirm these correlations.
Frontiers in Immunology 10
Annotation of clonotypes using immune
receptor databases

To explore potential connections between COVID-19 and

other diseases, we utilized immune receptor databases (TBAdb,

VDJdb, and McPAS-TCR) to annotate clonotypes. A total of

47,874 human TRB clones were integrated and categorized into

Autoimmune, Cancer, and Pathogens, with further subcategories.

Among these clones, 7,630 overlapped with our data, and 384 were

annotated as COVID-19-specific clones, with 56 of them

overlapping with our data. However, the distribution of these 56

clones did not exhibit significant differences among the four

groups (HCs and patients with moderate, severe, and critical

COVID-19; ANOVA FDR = 0.45, Figure 6A; Figure S5). The

limited overlap between the COVID-19-specific clones annotated

in published datasets and those identified in our study may be

attributed to the high heterogeneity of the TCR b repertoire in

patients with COVID-19 and the incompleteness of public TCR
A B

D

C

FIGURE 3

Gene usage analysis of the T cell receptor (TCR) b repertoires. Frequency of V gene (A) and J gene (B) usage in different samples. (C) Frequency of
the similar patterns of V gene, J gene, and VJ pairing in different groups. (D) ROC curves showing the performance of the classification into four
groups using the V gene, J gene, and VJ pairing via 10-fold cross-validation.
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FIGURE 4

Identification and characteristic analysis of COVID-19-associated T cell receptor (TCR) b clones. (A) Differences in the detected clones between the
COVID-19 and healthy control (HC) groups (Fisher’s exact test). The horizontal axis is the clone’s relative risk (RR) index and the vertical axis is the
FDR value after correction using Fisher’s exact test. (B) Distribution of the clone detection sample numbers between the COVID-19 and HC groups.
(C) Comparison of COVID-19-specific, protective, and random clones in terms of CDR3 length, CDR3 sequence similarity, and clone abundance.
(D) Similarity network of the CDR3 sequences of the clones with a difference in FDR values of < 0.001 between the COVID-19 and HC groups.
Clones identified as dark red dots are COVID-19-specific clones, whereas those identified as light green dots are protective clones. The size of the
dot represents the clone’s cumulative frequency in all samples. (E) Similarity network of CDR3 sequences in the 1000 clones (dominant clones) with
the highest frequency in the COVID-19 and HC groups. The node degree of the cluster graph in (D, E) is > 2.
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databases. Interestingly, we observed a significant difference

between patients with COVID-19 and HCs in relation to

Epstein-Barr virus (EBV; FDR = 0.007, Figure 6A). In publicly

available datasets, 5,679 clones were annotated as EBV-specific

clones, with 788 of them overlapping with our data. These EBV-

specific clones showed a significant trend of increased frequency

with higher severity levels of COVID-19 (Figure 6B). Another
Frontiers in Immunology 12
noteworthy finding was the significant association with human T

lymphocytic leukemia virus type I (HTLV-1 virus; FDR = 0.016).

Similarly, the distribution frequency of HTLV-1-specific clones

was more prominent in patients with COVID-19 compared to

HCs. These findings align with previous studies that reported the

detection of opportunistic viral DNA reactivations in patients

with COVID-19 (43–45).
A

B

C

FIGURE 5

COVID-19 detection using T cell receptor (TCR) b clones from different classification models. (A) Distribution of the number of COVID-19-related
clones in all the unique TCR bs of the sample. ROC curve showing the performance of all COVID-19 samples according to this ratio. (B) Frequency
distribution bar plot of the 12 most significant COVID-19-related clones (FDR < 1e−8). ROC curve showing the performance of the test COVID-19
samples according to the random forest model using four variables. (C) Classification performance evaluations of the accuracy and AUC of the test
set for two groups under different FDR thresholds.
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Discussion

In the present study, we comprehensively profiled the peripheral

TCR b repertoire data of 192 patients with COVID-19 with different

levels of disease severity and compared them with those of 81 HCs

using a high-throughput sequencing approach. Our study aimed to

shed light on the T-cell immune response and clonal dynamics

associated with COVID-19, providing valuable insights into disease

pathogenesis and potential diagnostic and therapeutic strategies.
Frontiers in Immunology 13
Consistent with previous studies, we observed a significant

decrease in TCR clone diversity in patients with COVID-19

compared to HCs (21, 24, 46, 47). This reduced diversity suggests

a more focused and restricted T-cell response in COVID-19

patients, potentially due to the specific targeting of SARS-CoV-2

antigens. Interestingly, we found that the overall abundance of

dominant clones was significantly increased in patients with

COVID-19, particularly in those with more severe disease,

indicating clonal expansion and enrichment of specific TCR
A

B

FIGURE 6

(A) Database annotation of the T cell receptor (TCR) b repertoire for each sample using TBAdb, VDJdb, and McPAS-TCR. (B) The percentage of
annotated specific clones for significantly different groups. **P ≤ 0.01, *P ≤ 0.05 and ns P > 0.05. ns = no significance.
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clones. Moreover, the distribution of CDR3 sequence length showed

a bias toward longer clonotypes in COVID-19-specific risk clones,

which supports previous findings that antiviral TCR b CDR3s tend

to be longer than autoreactive clonotypes (48).

We further investigated the presence of shared TCR clonotypes

among patients with COVID-19. Contrary to the expectation that

shared clonotypes would be prevalent, we found that the majority of

TCR clones were private among samples, indicating significant

heterogeneity in the TCR repertoires of COVID-19 patients (23,

47). This heterogeneity suggests that TCR repertoires may reflect

disease severity and could potentially serve as valuable tools for

immunodiagnosis. Indeed, using the identified SARS-CoV-2-

associated TCRs, we achieved perfect accuracy in classifying

patients with COVID-19 from HCs, demonstrating the potential

of TCR analysis as a diagnostic assay based on high-throughput

sequencing of peripheral blood. Additionally, our classifiers showed

decent performance in distinguishing patients with different

severity levels of COVID-19, except for the challenge of

differentiating severe and critical cases due to their similar clinical

manifestations and potential immune impairment.

We also explored the distribution of V and J gene segments and

VJ pairings in patients with COVID-19. We identified several gene

segments and pairings that exhibited significantly higher

frequencies in patients compared to HCs, suggesting their

potential involvement in the immune response against SARS-

CoV-2. Notably, published SARS-CoV-2-associated TCRs had

low publicity and clonal frequencies, which may be attributed to

various factors, including the high heterogeneity of COVID-19-

specific clones, antigenic TCR privacy, cross-reactivity with

different antigens, and different HLA backgrounds (34, 49). The

interplay between HLA molecules and TCRs is crucial in shaping

the immune response to viral infections, and further studies

exploring the correlation between HLA and TCR are warranted

for future vaccine design and identifying at-risk populations.

To investigate potential connections between COVID-19 and

other diseases, we analyzed the annotation of clonotypes using

immune receptor databases. Interestingly, we observed a significant

enrichment of T cells targeting EBV and HTLV-1 in patients with

COVID-19. These findings suggest possible viral coinfections,

molecular mimicry, bystander activation, and viral superantigens

contributing to cross-activation and proliferation of T cells, as well

as enhanced cytokine production (50–53). Notably, EBV

coinfection has been associated with increased inflammation and

COVID-19 severity (44). These observations highlight the

complexity of immune responses during COVID-19 and the

potential interplay between different viral pathogens.

Our study benefits from the large sample sizes of Chinese

cohorts, providing increased statistical power and enhancing our

understanding of T-cell immunity in COVID-19 (54). Furthermore,

the recruitment of patients during the early stage of the disease,

before the availability of vaccines or immunological agents, and

sampling of HCs prior to the outbreak of COVID-19 ensure reliable

comparisons and provide an original characterization of TCR

repertoires under SARS-CoV-2 infection without the interference

of immunotherapy and vaccines. These findings have implications
Frontiers in Immunology 14
for diagnostic assays, prognostication, and monitoring disease

progression in COVID-19.

However, certain limitations should be acknowledged. The high

mutation rates of RNA viruses, including SARS-CoV-2, necessitate

concomitant adaptations across the immune system to cope with

novel variants (55, 56). Therefore, our study results may not directly

apply to patients with COVID-19 caused by current or potential

variants. Additionally, the limited sample sizes and ethnic diversity

of our population may introduce potential bias and limit the

generalizability of our findings. We also acknowledge that our

research methodology focused primarily on TCR sequencing and

did not integrate other omics technologies, such as single-cell

transcriptomics. The absence of HLA typing data further limits

the validation of SARS-CoV-2-specific TCR clonotypes. Future

studies should address these limitations to provide a more

comprehensive understanding of adaptive immune responses

against viral infections.

In summary, our study provides valuable insights into the T-cell

immune response and clonal dynamics in patients with COVID-19.

The decreased TCR clone diversity, specific clonal expansion, and

heterogeneity of TCR repertoires observed in COVID-19 patients

highlight the importance of T-cell immunity in disease pathogenesis

and potential diagnostic applications. Our findings contribute to the

growing body of knowledge on the adaptive immune response to

SARS-CoV-2 and have implications for the development of

immunotherapies, vaccines, and diagnostic tools. Future research

incorporating multi-omics approaches, larger and more diverse

cohorts, and HLA typing will further advance our understanding

of the complex immune responses and guide clinical practice in the

context of COVID-19.
Conclusions

We uncovered distinct TCR b repertoires and SARS-CoV-2-

specific TCR b clonotypes in patients with COVID-19, highlighting

the heterogeneity of T cell responses and the potential of TCR b
repertoires as indicators of disease severity. Our findings contribute

to the growing knowledge of T cell immunity in COVID-19 and

provide valuable TCR b repertoire data that can aid in

understanding the immune response to SARS-CoV-2. These

insights may have implications for monitoring disease

progression and developing targeted interventions. Further

research is warranted to decipher the intricate immune responses

to SARS-CoV-2 and leverage this knowledge for effective

management and prevention of COVID-19.
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FIGURE S1

Analysis of the clinical indicators of all patients with COVID-19. (A) Age and
sex distribution of the four sample groups. (B) Risk prediction using the Cox

regression model based on age index. (C) Risk prediction using the Cox
regression model based on sex and age. (D, E) Kaplan–Meier analysis of the

overall survival of patients with COVID-19 stratified based on IL-6 and IL-2R.
(F) Scatter plot of the distribution of IL-2R and IL-6 in 167 patients with

COVID-19.

FIGURE S2

Heterogeneity of the T cell receptor (TCR) b repertoires in the COVID-19 and
healthy control (HC) groups. (A) Trend of changes in the number of clones

under different detection sample numbers for each group. (B) Relationship
between quantiles and sequencing abundance in all sample groups. (C, D)
Proportion of overlapping clones between two samples in terms of

clonotypes and abundances.

FIGURE S3

ROC curves showing the classification performance of the different models

for the four groups using the V gene and J gene via 10-fold cross-validation.

FIGURE S4

Correlation coefficients of IL and COVID-19-associated clones in
the samples.

FIGURE S5

Identification of clones in COVID-19 T cel l receptor (TCR) b
repertoire databases.
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