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Interferon regulatory factor 7
in inflammation, cancer
and infection

Furong Qing and Zhiping Liu*

School of Basic Medicine, Gannan Medical University, Ganzhou, China
Interferon regulatory factor 7 (IRF7), a member of the interferon regulatory

factors (IRFs) family, is located downstream of the pattern recognition

receptors (PRRs)-mediated signaling pathway and is essential for the

production of type I interferon (IFN-I). Activation of IRF7 inhibits various viral

and bacterial infections and suppresses the growth and metastasis of some

cancers, but it may also affect the tumor microenvironment and promote the

development of other cancers. Here, we summarize recent advances in the role

of IRF7 as a multifunctional transcription factor in inflammation, cancer and

infect ion by regulat ing IFN-I product ion or IFN-I- independent

signaling pathways.
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Introduction

Interferon regulatory factors (IRFs) are a class of transcription factor families that share

a conserved N-terminal DNA-binding domain (DBD) and an IRF-associated structural

domain (IAD) (1, 2). Currently, there are 11 members of IRFs. The mammalian IRFs

consist of IRF1-9 (3), whereas IRF10 and IRF11 are only found in avian or fish (4, 5).The

main role of IRFs is to regulate the transcription of Interferon (IFN) and the expression of

IFN stimulated genes (ISGs). Thereby they promote the production of inflammatory

cytokines and chemokine (6). Specifically, when this family member is activated by

phosphorylation, it can further activate IFN and the expression of ISGs through the

JAK-STAT pathway, and promote the production of inflammatory cytokines, which are

widely involved in apoptosis, tumorigenesis and viral latency (7–9). In addition, the IAD

structural domain at the C-terminus of IRFs can interact with other members of the family

and other transcription factors including NF-kB and PU.1 to play important roles in host

defense against viruses and bacteria, in innate and acquired immune responses, and in cell

development and tumorigenesis (10).

Interferon regulatory factor 7 (IRF7) is a member of the IRFs. IRF7 gene is located on

human chromosome 11p15.5 and encodes four isoforms of IRF7A, -B, -C and -D (-H) (11),

which can be constitutively expressed in the spleen, lymph nodes and bone marrow and

especially in epithelial cells, monocytes and macrophages. Recognition of pathogenic
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microorganisms by pattern recognition receptors (PRRs) induces

the activation and translocation of IRF7 to nuclear, leading to IFN-I

production and secretion. Then IFN-I can be recognized and bound

by IFNAR receptors on the cell surface. Subsequently, IRF7

production is induced via the JAK-STAT signaling pathway. This

results in an IRF7-IFN-I positive feedback loop that allows for the

sustained production of large amounts of IFN. However, many

studies have shown that there are both promoting and inhibiting

effects of IFN in diseases such as inflammation, cancer, and

infection (12, 13). Therefore, by understanding the role of IRF7 in

inflammation, cancer and infection, we can develop the new means

to better regulate the function of IRF7 and modulate the immune

response in a more precise and effective manner. More importantly,

it will enable the development of highly targeted therapies for

clinical use. However, systemic review of IRF7 in inflammation,

cancer and infection is still lacking.
IRF7 signaling

The IRF7 gene, originally identified in 1997 during latent EB virus

(EBV) infection, encodes a protein that binds to and regulates the EB-

Barr virus nuclear antigen 1 (EBNA-1) Q promoter (14) and is closely

related to the major EBV oncogenic protein latent membrane

protein-1 (LMP-1) (15). It has been shown that IRF7 can be

activated by phosphorylation through TBK1/IKKϵ and TRIF-

dependent pathways downstream of the cytoplasmic RNA/DNA

sensor, and subsequently enters the nucleus, dimerizes with IRF3,

exerts transcriptional activation and induces IFN-a/b expression

(16). IRF7 is also essential for the induction of IFN-a/b gene

expression via the viral-activated MyD88 independent pathway and
Frontiers in Immunology 02
the TLR-activated MyD88-dependent pathway (16). IRF7 is a

positive regulator of IFN-I gene induction downstream of PRRs

(17) and the positive feedback loop formed by IRF7-IFN-I allows

for the continuous production of large amounts of IFN, which

ultimately resists infection by pathogenic microorganisms (Figure 1).
Role of IRF7 in inflammation

Inflammation is a host defensive response to detrimental

stimuli. Usually, inflammation is an automatic and beneficial

defense response. However, overt inflammation can be harmful,

such as attacking on the body’s own tissues. Large amounts of

cytokines, chemokines during inflammation could play important

roles in the development of various diseases.

IRF7 can promote inflammation and the development of

inflammatory diseases. Systemic sclerosis (SSc) is a multi-system

autoimmune disease characterized by vasculopathy, fibrosis and

immune system dysregulation. However, there are currently no

targeted treatment options for the fibrotic complications of SSc, and

disease-related mortality remains high (18). A study showed that

the gene and protein levels of IRF7 were significantly enhanced in

skin and cultured fibroblasts from patients with SSc. Furthermore,

IRF7 promotes TGF-b-induced fibrosis by interacting with Smad3

in fibroblasts. Specifically, in comparison with wild-type (WT)

mice, IRF7 knockout (Irf7-/-) mice showed lower IL-6 gene

expression levels, lower expression of pro-fibrotic factors in

fibroblasts, less subcutaneous thickness, and milder inflammatory

responses, and thus less skin fibrosis after bleomycin stimulation

(19). Both type 2 helper T (Th2) cells and type 2 innate lymphoid

cells (ILC2s) are major driver of allergic airway inflammation or
FIGURE 1

IRF7 promotes IFN-I production. IRF7 can be activated by phosphorylation through cGAS-STING-TBK1, RLRs-MAVS-TBK1, TLR3-TRIF-TBK1 and
TLR7/TLR9-STING-IKKa signaling pathways. The entry of p-IRF7 into the nucleus induces IFN-I production and secretion, which plays a role in host
defense against pathogenic microorganisms. In addition, IFN-I binds to IFNAR1 on the cell surface and subsequently induces the production of ISGs
(e.g. IRF7) through the JAK1-STAT1/2 signaling pathway, ultimately forming an IRF7-IFN-I positive feedback loop.
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asthma. Patients with asthma displayed higher levels of ILC2s in

both peripheral blood and bronchoalveolar lavage fluid (BALF)

compared to healthy individuals (20). Another study showed that

IRF7 expression in murine lung ILC2s was dramatically induced

upon stimulation of papain or interleukin-33 (IL-33). ILC2s from

asthma patients display a markedly higher level of IRF7 than those

from healthy donors, indicating that IRF7 might enhance the

development of asthma. Furthermore, IRF7 deficiency in mice

attenuated the various allergic asthma animal models through

limiting the expansion and function of lung ILC2s by inhibiting

the expression of BCL11B and other cytokines such as IL-13 and IL-

5 (21). Similarly, IRF7, together with IRF3, was shown to promote

RAPTOR and mTOR activation and inhibit autophagy, which in

turn enhanced lung inflammation and injury induced by diesel

exhaust particles (DEPs) (22).

However, IRF7 is also able to suppress inflammation and inhibit

the development of inflammatory diseases in other circumstances.

Pulmonary hypertension (PH) is a severe syndrome characterized by

the extensive remodeling of small intrapulmonary arteries, leading to

the development of right ventricular hypertrophy and dysfunction

and, eventually, lethal right heart failure (23). Current treatment

options primarily improve the symptoms or slow disease progression,

but they cannot cure this severe condition. Thus, the development of

more effective treatments is urgently warranted (24). Using an MCT-

induced in vivo rat model of PH and in vitro rat pulmonary artery

smooth muscle cells (PASMCs), IRF7 was able to inhibit NF-kB
activation resulting in a significant reduction in the levels of pro-

inflammatory cytokines such as TNF-a and IL-6, as well as inhibit

ATF3 signaling to reduce the proliferation of PASMCs and their

resistance to apoptosis. These results suggest that IRF7 can prevent

vascular remodeling in pulmonary arterial hypertension by inhibiting

the proliferation and inflammation of PASMCs (25).

Overall, transcription factors are key factors that regulate the

inflammatory response (26). Notably, IRF7 is a multifunctional

transcription factor, and plays pro-inflammatory or anti-inflammatory

roles in different inflammatory diseases through various signaling

pathways, such as NF-kB signaling pathway, autophagy activation,

etc. (Figure 2). The specific role of IRF7 in inflammation may vary

depending on the microenvironment (Table 1).
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Role of IRF7 in cancer

As a multifunctional transcription factor, IRF7 can regulate cell

differentiation, proliferation, and apoptosis in addition to being

involved in immune regulation. Therefore, IRF7 plays an important

role in tumor development and metastasis (10).

IRF7 can act as a tumor suppressor that inhibits the

proliferation and metastasis of cancer cells. A study showed that

overexpression of IRF7 increased IFN-b production and

significantly enhanced NK cell activity, leading to cytolysis of

prostate cancer cells and exerting a role in limiting bone

metastasis of prostate cancer (27). Another study on different

gastric cancer cell lines revealed that the activation of

circ0007360/miR-762/IRF7 axis suppressed the survival,

migration and invasion of gastric cancer cells, indicating the

inhibitory role of IRF7 in gastric cancer (28). A further study

showed that miR-762 can directly target the 3′ UTR of IRF7

mRNA and inhibit IRF7 expression and in turn promotes the

proliferation and invasion of breast cancer cells (29). Meanwhile,

miR-1587 can downregulate IRF7 expression to promote the

polarization of tumor-associated macrophages (TAMs) to M2

type, which produces anti-inflammatory factors to promote

immune escape, proliferation and migration of breast cancer cells,

and thus enhancing breast cancer development (35). IRF7 was also

shown to inhibit the expansion of granulocytic myeloid-derived

suppressor cells (G-MDSCs) through directly suppressing S100A9

expression, thus reducing lung cancer metastasis (30).

Interestingly, IRF7 can also act as an oncogene that promotes

cancer development. IRF7 was shown to promote glioma cell

invasion as well as chemoresistance and radiation resistance by

inhibiting the expression of argonaute 2 (AGO2), a regulator of

microRNA maturation, biosynthesis, and function (31). Another

study showed that lncRNA AFAP1-AS1 promoted non-small cell

lung cancer (NSCLC) cell proliferation, invasion and migration

while inhibiting cell apoptosis. Meanwhile, lncRNA AFAP1-AS1

can activate IRF7, indicating that IRF7 can promote cell

proliferation (36). A further study found that Circ-EGLN3 could

act as an endogenous competitive RNA (ceRNA) to enhance the

expression of IRF7 by competitively binding miR-1299, which in
FIGURE 2

Regulatory mechanisms of IRF7 in the inflammatory response. IRF7 can exert pro-inflammatory effects by promoting the expression of IL-5 and IL-
13 induced by BCL11B or directly promoting the expression of inflammatory cytokines and chemokines such as IL-6, TGF-b, CCL5 and CXCL10. IRF7
can also induce the expression of RAPTOR, which in turn activates mTORC1 thus inhibiting autophagy and promoting inflammation by increasing
tissue damage. In addition, IRF7 can suppress NF-kB signaling pathway and inhibit the expression of TNF-a and IL-6, exerting an anti-inflammatory
effect.
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TABLE 1 The role of IRF7 in inflammation, cancer and infection.

Category Diseases Cells Research
Methods Mechanism Function Reference

Inflammation

Systemic Sclerosis Fibroblast

Bleomycin-induced
skin fibrosis

modeling in WT and
Irf7-/- mice; SSc
patient samples.

IRF7 promoted IL-6 expression and inflammatory
response and interacted with SMAD3 in fibroblasts

to enhance TGF-b-induced fibrosis.
Promotion

Wu M, Ann
Rheum Dis,
2019 (19)

Bronchial asthma
Type 2 innate
lymphoid cells

In vivo allergic
asthma modeling
was performed on
WT and Irf7-/- mice,
while ILC2s cells

from WT and Irf7-/-

mice were cultured
in vitro and

subsequently studied
in combination with

samples from
asthmatic patients.

In an allergic asthma model, IRF7 mediated the
activation and function of ILC2s cells through

BCL11B, increasing the expression of IL-5 and IL-
13, which in turn promoted allergic respiratory

inflammation and allergic asthma.

Promotion
Juan He, Cell
Rep, 2019 (21)

Acute pneumonia Macrophages

Modeling of acute
lung inflammation
induced by DEPs

and in vitro BMDM,
BMDC and

neutrophil cultures
in WT and Irf3-/-

Irf7-/- mice.

In a model of acute lung inflammation induced by
diesel exhaust particles (DEPs), IRF7 was able to
induce RAPTOR expression together with IRF3,

promote mTORC1 activation and signal
transduction, inhibit autophagy, and thus
promoting lung injury induced by DEPs.

Promotion
Yang Li, Eur J
Immunol, 2020

(22)

Pulmonary
hypertension

Pulmonary
artery smooth
muscle cells

MCT-induced
pulmonary

hypertension was
studied in rats and
rat PASMCs cells
transfected with an

adenovirus
overexpressing IRF7.

IRF7 was able to inhibit MCT-induced NF-kB
activation in PH rats and large PASMCs cells,

causing a significant decrease in the levels of pro-
inflammatory cytokines such as TNF-a and IL-6,
while inhibiting ATF3 signaling to reduce the

proliferation of PASMCs and promoting apoptosis.

Inhibition
Deng Y, Life
Sci, 2021 (25)

Cancer

Prostate cancer NK cells

In vitro culture of
prostate cancer cells
stably transfected
with IRF7 and in
vivo experiments
with nude mice, as
well as validation

with clinical patient
samples.

Overexpression of IRF7 increased IFN-b production
and thus significantly enhanced NK cell activity,
leading to cytolysis of prostate cancer target cells

and exerting an inhibitory effect on bone metastasis
of prostate cancer.

Inhibition
Zhao Y, Oncol
Res, 2017 (27)

Gastric carcinoma
Gastric cancer

cells

In vitro culture of
gastric cancer cell
lines and in vivo

tumor growth assays
via nude mice.

The circ0007360/miR-762/IRF7 axis inhibited the
survival, migration and invasion of gastric cancer
cells and slowed down the progression of gastric

cancer.

Inhibition
Xing Y, Front
Cell Dev Biol,
2022 (28)

Breast cancer
Breast cancer

cells,
Macrophages

Clinical breast cancer
patient samples and
in vitro cultured
breast cancer cells.

IRF7 that is regulated by miR-762 could inhibit the
proliferation and invasion of breast cancer cells.

Inhibition
Li Y, Cell
Prolif, 2015

(29)

Lewis Lung
Cancer

Bone marrow
progenitor

cells

Tumor growth assays
and in vitro culture
tumor cell studies on
WT and Irf7-/- mice.

Clinical patient
samples.

IRF7 inhibited the expression of S100A9, and
inhibited the aggregation of granulocyte-like
myeloid suppressor cells (G-MDSCs), thus

suppressing tumor metastasis.

Inhibition
Yang Q,
Oncogene,
2017 (30)

Glioblastoma
multiforme

Microglia,
Macrophages

In vitro culture of
glioma cells

transfected with

①IRF7 inhibited the expression, biosynthesis and
function of argonaute 2 (AGO2), a regulator of

microRNA maturation, thus promoting glioma cell
Promotion

Kim JK,
Tumour Biol,
2015 (31)

(Continued)
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TABLE 1 Continued

Category Diseases Cells Research
Methods Mechanism Function Reference

overexpressed/
silenced IRF7

plasmids and in vivo
study of nude mice
injected with tumor

cells.

invasion as well as chemo- and radio-resistance.
②IRF7 upregulated the expression of anti-

inflammatory genes such as IL10, downregulated
pro-inflammatory genes such as IL1B, TNF, CXCL1
and CXCL2, and polarized microglia to the M2 type,
thereby establishing a tumor microenvironment that

exerted immunosuppressive effects. Meanwhile,
IRF7 mediated STAT3 expression and promoted the
survival and stem cell differentiation potential of
glioblastoma multiforme (GBM) cells through the
IL-6-STAT3 signaling pathway, thus enhancing the

progression and invasion of GBM.

Tanaka T,
Glia, 2015 (32)
Li Z, J Cancer,

2017 (33)
Cohen M,

EMBO J, 2014
(34)

Breast cancer Macrophages

Tumor growth in
vivo by injecting
macrophages and

breast cancer cells to
nude mice.

IRF7 promoted the polarization of tumor-associated
macrophages (TAMs) to M2 type, inhibited anti-
inflammatory factor production, enhanced immune
escape of tumor cells, proliferation and migration of

breast cancer cells, and thus promoting the
development of breast cancer.

Promotion
Tu D, Cell Biol
Int, 2021 (35)

Non-small cell
lung cancer

Non-small
cell lung

cancer cells

Clinical patient
samples and in vitro
cultured NSCLC cells

were studied.

IRF7 activated a positive feedback regulatory loop of
interferon signaling and subsequently activated the
RIG-I-like receptor signaling pathway and BCL-2

expression to inhibit apoptosis and promote
proliferation, invasion and migration of non-small

cell lung cancer cells.

Promotion

Tang XD, Cell
Physiol

Biochem, 2018
(36)

Renal cell
carcinoma

Renal cancer
cells

Clinical patient
samples and in vitro
cultured kidney
cancer cells.

IRF7 enhanced the proliferation and invasion of
kidney cancer cells.

Promotion
Lin L, J Cell
Biochem, 2020

(37)

Bacterial
infection

Pseudomonas
aeruginosa

Dendritic cells

In vivo infection of
WT and PTP1B-/-

mice and in vitro
culture of mouse
bone marrow-

derived dendritic
cells.

IRF7 promoted the activation of interferon-
stimulated response element (ISRE) and its

downstream cytokine and chemokine production,
such as CCL5, CXCL10 and IFN-b, which in turn

inhibited P. aeruginosa infection.

Inhibition
Yue L, Am J
Pathol, 2016

(38)

Mycobacterium
tuberculosis

Macrophages

Mouse bone
marrow-derived
macrophages and
human-derived

macrophage cell lines
in vitro.

IRF7 can be activated by weakly virulent
Mycobacterium tuberculosis, acting synergistically
with IRF3 to increase IFN-I production and thus

control infection.
IRF7 can be inhibited by OASL, a negative regulator

of IFN-I activated by strongly virulent
Mycobacterium tuberculosis, to suppress inhibition
and produce a cytokine storm that ultimately leads

to macrophage death.

Inhibition
Leisching G,

Virulence, 2017
(39)

Mycobacterium Macrophages

①In vivo infection of
WT, Irf7-/-, Irf3-/-,
cGAS-/-, STING-/-

mice and in vitro
culture of RAW264.7

cells.
②In vivo infection of
WT and Mavs-/-

mice and in vitro
culture of BMDM.

IRF7 promoted IFN-b expression and inhibited
Mycobacterium infection.

Inhibition

Ruangkiattikul
N, Virulence,
2017 (40)

Cheng Y, J Exp
Med, 2018 (41)

Parasitic
infection

Cryptosporidium
parvum

Epithelial cells

Culturing intestinal
epithelial cell lines
and mouse intestinal
tissues in vitro and
infecting mice in

vivo.

IRF7 promoted IFN-I expression and NF-kB
signaling pathway, which in turn promoted

intestinal epithelial resistance to Cryptosporidium
parvum infection.

Inhibition

Mathy NW,
Front

Immunol, 2022
(42)

(Continued)
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turn promoted the cell proliferation and invasion and the

development of renal cell carcinoma (37). In addition, IRF7 can

upregulate the expression of anti-inflammatory genes such as IL10

and downregulate pro-inflammatory genes such as IL1B, TNF,

CXCL1 and CXCL2 to polarize microglia to the M2 type, thereby

es tab l i sh ing a tumor microenv i ronment that exer t s

immunosuppressive effects. Meanwhile, IRF7 mediates STAT3

expression and promotes the survival and stem cell differentiation

potential of glioblastoma multiforme (GBM) cells through the IL-6-

STAT3 signaling pathway, and then enhances the progression and

invasion of GBM. Notably, IRF7 promotes the conversion of

microglia to M2 type, a pathway that can be inhibited by TGFb1
(32–34).
Frontiers in Immunology 06
As mentioned above, IRF7 plays different roles in different

tumor progressions. It can act as a tumor suppressor to kill cancer

cells by promoting NK cell activity or to function downstream of

cancer cell miRNAs (27, 28). IRF7 can also downregulate the

expression of S100A9 and reduce the aggregation of G-MDSCs to

limit the metastasis and spread of cancer cells (30). In addition, it

can restrict the polarization of tumor-associated macrophages to

M2 macrophages, thus preventing the proliferation, migration and

metastasis of cancer cells (35). IRF7 can also act as a pro-oncogene

to inhibit the expression of microRNA regulators and apoptosis of

cancer cells. Meanwhile, it can promote IL-6-STAT3 signaling to

induce cancer cells to acquire stem cell differentiation potential (33).

Moreover, it can regulate the phenotypic transition of microglia and
TABLE 1 Continued

Category Diseases Cells Research
Methods Mechanism Function Reference

Plasmodium
Dendritic
cells,

Macrophages

In vivo infection of
WT, Irf7-/- and
Ifnar1-/- mice.

IRF7 promoted IFN-a isoform production,
inhibited CD4+ Th1 cell activation, and suppressed
Th1 responses in the spleen, thereby promoting

Plasmodium infection.

Promotion

Edwards CL,
Eur J

Immunol, 2015
(43)

Viral
infection

Venezuelan equine
encephalitis virus
(RNA virus)

Macrophages

In vivo infection of
WT and Irf7-/- mice
and in vitro culture
of BMDM, BMDC,
and macrophage cell

lines.

IRF7 promoted the production of IFN-I and
inhibited VEEV infection.

Inhibition
Bhalla N, J
Virol, 2019

(44)

West Nile virus
(RNA virus)

Macrophages,
Dendritic
cells,

Fibroblasts

In vivo infection of
WT and Irf7-/- mice
and in vitro culture
of BMDM, BMDC,
MEF, and primary
cortical neurons.

IRF7 promoted IFN-a gene expression and protein
production in macrophages, fibroblasts, dendritic
cells and cortical neurons, thereby suppressing
WNV infection in the peripheral and central

nervous system.

Inhibition
Daffis S, J
Virol, 2008

(45)

Rhinovirus (RNA
virus)

Macrophages,
Neutrophils,
Eosinophils

In vivo infection
studies were
performed by

injecting mice with
anti-CCL7 antibody/

isotype control,
IRF7-siRNA/control

siRNA.

IRF7 promoted IFN-a and IFN-b production, as
well as neutrophil and macrophage infiltration in
combination with CCL7, thus enhancing RV-

induced antiviral immune responses.

Inhibition
Girkin J, J

Immunol, 2015
(46)

Influenza A virus
(RNA virus)

/
In vivo infection of
WT and p53-/- mice.

The activation of IRF7 through p53 signaling
promoted IFN-g production, while antiviral signals
such as MX2 and EIF2AK2 were enhanced, thereby
preventing immune escape from influenza A virus.

Inhibition
Yan W, BMC
Med Genomics,

2015 (47)

Human
immunodeficiency
virus (RNA virus)

Monocytes/
Macrophages

In vitro culture of
human cervical

tissue and peripheral
blood single

nucleated cells for
infection studies.

IRF7 promoted the production of IFN-a and
downregulated RELA expression, a member of the
NF-kB family, thereby inhibiting HIV replication in

cervical tissue.

Inhibition
Rollenhagen C,
PLoS One,
2015 (48)

SARS-CoV-2
(RNA virus)

Neutrophils,
Plasmacytoid
dendritic cells,
Fibroblasts

Analysis with patient
blood specimens.

①IRF7 promoted the production of inflammatory
cytokines by neutrophils, leading to the

development of an inflammatory cytokine storm,
which enhanced SARS-CoV-2 infection.

②IRF7 promoted the production of IFN-I and IFN-
III, which inhibited SARS-CoV-2 infection.

Promotion/
Inhibition

Ai Z, PLoS
One,2022 (49)
Campbell TM,

J Exp
Med,2022 (50)

Herpes C virus
(DNA virus)

Macrophages

In vivo infection of
WT and Irf7-/- mice,
and in vitro culture

of BMDM.

IRF-7 attenuated chronic viral infection by limiting
the latency and establishment of viral reactivation of
herpes C virus in the peritoneal cavity and, to a

lesser extent, in the spleen.

Inhibition
Johnson KE, J
Virol, 2020

(51)
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enhance the expression of anti-inflammatory genes, thereby

inducing cancer cell proliferation, invasion and immune escape

(32) (Figure 3). Therefore, the role of IRF7 in cancer development

may be different in various conditions (Table 1).
Role of IRF7 in various infections

Role of IRF7 in viral infections

Innate antiviral signaling mainly activates IRF3, IRF7 and NF-

kB signaling to induce IFN and other pro-inflammatory factors to

inhibit viral replication and propagation. Irf7-/- mice infected with

Venezuelan equine encephalitis virus (VEEV) had significantly

lower survival rates and higher viral loads in liver, spleen and

brain tissues compared to WT mice due to reduced IFN-I

production (44). Compared to WT mice, Irf7-/- mice exhibited

higher lethality, less IFN-I production, and early and elevated viral

loads in peripheral and central nervous system tissues after West

Nile virus (WNV) infection. Consistent with this, there was reduced

IFN-a production and increased viral titers in Irf7-/- progenitor

macrophages, fibroblasts, dendritic cells, and cortical neurons (45).

Another study showed that IRF7 silencing inhibited the production

of IFN-a and IFN-b, while IRF7 could act in combination with

CCL7 to increase neutrophil and macrophage infiltration and

therefore enhancing antiviral response induced by rhinovirus RV

infection (46).

Influenza A virus inhibited p53-IRF7-IFN-g signaling, resulting
in diminished expression of antiviral molecules such as MX2 and

EIF2AK2, leading to immune escape (47). IRF7 promotes the

production of IFN-a and is also able to downregulate the

expression of RELA, a member of the NF-kB family, thereby

inhibiting the replication of human immunodeficiency virus

(HIV) in cervical tissue (48). Notably, IRF7 was shown to
Frontiers in Immunology 07
attenuate chronic infection by limiting the establishment of

herpes C virus latency and viral reactivation in the peritoneal

cavity and, to a lesser extent, in the spleen (51).

Some studies investigated the relation between IRF7 and SARS-

CoV-2. Single-cell RNA-seq analysis of neutrophils from COVID-

19 patients revealed that excessive activation of neutrophils in

critically ill patients was significantly and positively correlated

with the expression of IRF7. That is, activation of IRF7 promoted

neutrophil production of inflammatory cytokines during SARS-

CoV-2 infection, leading to the development of an inflammatory

cytokine storm. IRF7 signaling blockade effectively reduced

neutrophil inflammation during SARS-CoV-2 infection.

Noteworthy, IRF7 expression was positively correlated with

SARS-CoV-2 RNA load in virus-positive neutrophils (49).

However, another study found that patients with autosomal

recessive IRF7 deficiency had reduced type I and type III IFN

production by respiratory epithelial cells and plasmacytoid

dendritic cells, and were highly susceptible to SARS-CoV-2

infection (50).

Interestingly, IRF7 deficient mice were unable to control

lymphocytic choriomeningitis virus (LCMV) replication due to

reduced IFN-I production in the early stages of infection.

However, in the late stages of infection, they did mount a normal

CD4+ T cell response, a relatively normal CD8+ T cell response,

enabling the clearance of LCMV infection to a degree consistent

with that of WT mice (52). Another study also found that CD8+ T

cell recruitment to the CNS and clearance of LCMV were IRF7-

independent (53). These indicate that IRF7 may not play an

intrinsic role in the activation of T cells. In short, IRF7 enhances

the host defense against RNA viral infection by promoting IFN-I

production in both acute and chronic phases.

However, some viruses are able to undergo immune escape by

targeting IRF7. For example, Seneca Valley Virus (SVV) induced

degradation of IRF3 and IRF7 proteins and inhibited transcription
FIGURE 3

Regulatory mechanisms of IRF7 in cancer cell proliferation, migration and survival. IRF7 inhibits tumor development by enhancing NK cell activation
via regulating IFN-b production and reducing the aggregation of G-MDSC via regulating S100A9 production. Meanwhile, IRF7 may enhance tumor
development by regulating the expression of AGO2 and BCL-2, or promoting phenotypic shift of microglia to M2 type. Interestingly, IRF7 is
regulated by circ0007360-miR-762/lncRNA AFAP1-AS1/miR-1587 and plays an important role in the tumor microenvironment.
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of IFN-a, IFN-b, and ISGs, thus leading to immune escape of the

virus (54). African swine fever virus (ASFV) MGF505-7R inhibited

IFN-b and ISRE promoter activity and the expression of IFN-I and

ISGs by degrading IRF7 and TBK1, thereby evading the host

antiviral response (55). VP23 protein from Marek’s disease virus

(MDV) inhibited IRF7 phosphorylation and nuclear translocation,

leading to reduced IFN-b production and ultimately immune

escape (56). These also show that IRF7 is important in inducing a

positive feedback loop in IFN and viral immune escape.
Role of IRF7 in bacterial infections

IRF7 plays an important role in the host defense against

bacterial infection by regulating IFN-I. A study found that

protein tyrosine phosphatase-1B (PTP1B) deficiency could

enhance ISRE and the production of cytokine and chemokine,

thus increase host clearance of Pseudomonas aeruginosa.

Meanwhile, it was found that PTP1B deficiency induce the

expression of IRF7, indicating that IRF7 could increase host

defense against P. aeruginosa infection by promoting the

production of IFN-I (38). When weakly virulent Mycobacterium

tuberculosis infects macrophages, it can activate IRF3 and IRF7,

resulting in increased IFN-I production and thus controlling the

infection, while strongly virulent M. tuberculosis inhibits IRF7

expression and produces cytokine storm due to its ability to

activate Oasl1, a negative regulator of IFN-I, which ultimately

leads to cell death of macrophage, indicating the inhibitory role

of IRF7 in M. tuberculosis infection (39). Other studies also found

that upregulation of IRF7 through the activation of cGAS-STING-
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TBK1-IRF3/IRF7 and RIG-I-MAVS-IRF7 signaling pathways can

promote IFN-b expression and directly inhibits M. tuberculosis

infection (40, 41).
Role of IRF7 in parasitic infections

Given its multifunctional transcription factor activity, IRF7 also

has an important role in host defense against parasitic infections.

IRF7 was reported to promote IFN-I expression and enhances

intestinal epithelial antimicrobial defense against Cryptosporidium

parvum infection (42). Interestingly, IRF7 was shown to impair

early splenic CD4+ Th1 cell activation, thereby promoting infection

by blood-stage Plasmodium (43). Therefore, the role of IRF7 in

parasitic infections remains to be characterized.

In conclusion, IRF7 plays a predominantly resistant role in

bacterial and viral infections and has both a facilitative and

inhibitory role in parasitic infections, which may be related to the

different cells or signaling pathways (Figure 4, Table 1).
Conclusion

A rapid, precise and ordered cellular response is central for host

defense against pathogens and tumors. IRF7 plays a crucial role as

an important transcriptional regulator of cellular responses in a

variety of inflammatory diseases, cancers and infections. IRF7, a

major regulator of IFN-I, exerts different biological functions and

activities in various inflammation-related diseases. IRF7 can be

either a tumor suppressor or an oncogene. As an interferon
FIGURE 4

Regulatory mechanisms of IRF7 in bacterial, parasitic and viral infections. IRF7 is able to promote the production of IFN-a and IFN-b, thereby
inhibiting bacterial replication and suppressing bacterial infections. Similarly, IRF7 is able to exert antiviral effects not only by promoting the
expression of IFN-a and IFN-b; it also exerts antiviral effects by promoting the expression of p65, which enhance the production of antiviral
molecules such as IFN-g, MX2 and EIF2AK2. Notably, IFN-a is able to inhibit CD4+ Th cell activation and suppress Th1 responses, thereby promoting
Plasmodium infection.
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regulatory factor, IRF7 also plays a key role in host defense against

bacterial, parasitic and viral infections. However, its role in fungal

infections has not been well characterized.

It is undeniable that IRF7 plays a key role in host defense against

various bacterial and viral infections by promoting the production

of IFN-I. However, many studies have now proposed other

functions for IRF7. As a transcription factor, IRF7 can directly

induce the expression of inflammatory cytokines and autophagy by

promoting mTOR signaling pathway. IRF7 also plays an important

role in immune escape, cell proliferation and survival of tumor cells

by affecting macrophage polarization, NK cell activation, apoptosis,

and G-MDSC cell aggregation. Interestingly, IRF7 can be regulated

by some MicroRNAs and also affects certain MicroRNA regulators

in the tumor microenvironment. A study showed that, miR-541

promoted vascular smooth muscle cell proliferation by targeting

IRF7 (57). In contrast, miR-144 was shown to target the TRAF6-

IRF7 axis, whose activation attenuates the host response to

influenza virus infection. This indicates that mechanisms to

induce IRF7 activity by microRNAs, directly or indirectly, exist

(58). In addition, IRF7 is subject to ubiquitination modifications

during viral infection. TRIM21 affects IRF7 stability downstream of

viral TLRs in order to limit antiviral responses (59). Like TRIM21,

the E3 ligase RAUL adds K48 linked ubiquitin chains to both IRF3

and IRF7 and ultimately acts as a brake on the system in response to

viral infection (60).Therefore, whether IRF7, as a transcription

factor, promotes or inhibits disease development by directly or

indirectly regulating additional molecules deserves further

exploration; whether IRF7, as an interferon regulator, functions

independently of IFN-I or through IFN-II or IFN-III in

inflammation, cancer and infection remains unclear.

In conclusion, IRF7 is a multifunctional regulator that not only

mediates the production of IFN-I, but also regulates autophagy,

apoptosis and cell activation, and proliferation. Therefore, IRF7

plays different roles in various diseases, which may result from

activation of multiple signaling pathways. It deserves more

investigations to study the regulatory mechanisms of IRF7 and

the signaling pathways of the IRF system, which may become
Frontiers in Immunology 09
important targets for the treatment of infectious diseases,

inflammation-related diseases or cancer.
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