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An optimized thermodynamics
integration protocol for
identifying beneficial mutations
in antibody design

Zizhang Sheng1*, Jude S. Bimela2, Maple Wang1, Zhiteng Li1,
Yicheng Guo1 and David D. Ho1

1Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and
Surgeons, New York, NY, United States, 2Zuckerman Mind Brain Behavior Institute, Columbia
University, New York, NY, United States
Accurate identification of beneficial mutations is central to antibody design.

Many knowledge-based (KB) computational approaches have been developed to

predict beneficial mutations, but their accuracy leaves room for improvement.

Thermodynamic integration (TI) is an alchemical free energy algorithm that offers

an alternative technique for identifying beneficial mutations, but its performance

has not been evaluated. In this study, we developed an efficient TI protocol with

high accuracy for predicting binding free energy changes of antibody mutations.

The improved TI method outperforms KB methods at identifying both beneficial

and deleteriousmutations. We observed that KBmethods have higher accuracies

in predicting deleterious mutations than beneficial mutations. A pipeline using KB

methods to efficiently exclude deleteriousmutations and TI to accurately identify

beneficial mutations was developed for high-throughput mutation scanning. The

pipeline was applied to optimize the binding affinity of a broadly sarbecovirus

neutralizing antibody 10-40 against the circulating severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) omicron variant. Three identified

beneficial mutations show strong synergy and improve both binding affinity

and neutralization potency of antibody 10-40. Molecular dynamics simulation

revealed that the three mutations improve the binding affinity of antibody 10-40

through the stabilization of an altered binding mode with increased polar and

hydrophobic interactions. Above all, this study presents an accurate and efficient

TI-based approach for optimizing antibodies and other biomolecules.
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Introduction

Antibodies are immune system proteins that recognize versatile

foreign- and self-biomolecules. Antibody biotherapeutics have been

growing fast for the treatment and prophylaxes of infectious

diseases, cancer, and autoimmune diseases (1–3). Compared to

small molecule drugs, therapeutic monoclonal antibodies have

multiple advantages such as high potency and specificity,

metabolic stability, and low antigenicity (4). Many therapeutic

antibodies require further improvement in specificity and binding

affinity through mutagenesis of antibody residues at or close to the

antigen binding site (5–7). Computational algorithms, promising

for the cost-efficient identification of beneficial amino acid

mutations, are now in high demand (8). Currently, many physics-

and knowledge-based (KB) algorithms have been developed for

structure-based antibody optimization (9, 10). Most computational

approaches score the effects of mutations by computing the relative

binding free energy (RBFE) difference between the wildtype and

mutant states (7, 10–13). Despite many antibodies being

successfully optimized by computational approaches (7, 14–16),

the predicted RBFE has a weak correlation with experimental data

(17), resulting in a low success rate of identifying affinity-

enhancing mutations.

Thermodynamic integration (TI) is an attractive alchemical free

energy (AFE) algorithm that predicts RBFE of small molecule

ligands with high accuracy (Pearson’s r ~0.8 and root mean

square error (RMSE) ~1kcal/mol) (18, 19). Whether TI can be

applied to protein design has not been thoroughly investigated. TI

uses molecular dynamics (MD) simulation and statistical

mechanics to detect free energy alterations in biomolecule

systems caused by mutations in a small subset of atoms (20).

Briefly, TI uses an alchemical transformation to gradually mutate

the selected residue to another amino acid through multiple steps in

the presence and absence of a receptor, with a coupling parameter l
(ranging from zero to one) controlling the pathway of

transformation. The free energy difference between states, DG0
TI,

is calculated by integrating the generalized force along the

transformation pathway. TI then uses the thermodynamic cycle

to compute the RBFE difference (DDG) between the wildtype and

mutant states. With the improvement in the force field and

sampling algorithm, TI performs comparably to another AFE

methodology, free energy perturbation (FEP) (18, 19), which has

been sophisticatedly optimized in commercial software FEP+ (9,

21). But FEP+ is not open-source and cannot be parallelized on a

large scale (due to tokens).

AFE algorithms have advantages over KB algorithms in

calculating the RBFE of protein-protein interaction by more

precisely describing many factors contributing to the interaction

energy. For example, contributions of remote conformational

modulation, protein flexibility, solvation, water-mediated

interaction, cofactors, post-translational modifications, and ions

are poorly approximated or not incorporated by KB algorithms.

TI and other physics-based methodologies solve the above issues by

monitoring energy changes of proteins and cofactors in an explicit

solvent environment with molecular mechanistic force fields,

capturing protein dynamics with high accuracy. Thus, TI has the
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potential for a robust and accurate prediction of the RBFE of

protein mutations.

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-

2), the virus causing the ongoing COVID-19 pandemic, continues

to evolve new variants that evade immune recognition (22, 23).

Neutralizing antibodies (nAbs) that can tolerate viral mutations are

critical for therapeutics and vaccine efficacy (24, 25). 10-40, a nAb

isolated from a COVID-19 convalescent donor, broadly neutralizes

sarbecoviruses by recognizing a highly conserved epitope on the

receptor binding domain (RBD) of the viral spike to block cellular

entry (26). 10-40-like or class nAbs - originates from a similar V(D)

J recombination and binds a similar epitope - represent one major

component of the SARS-CoV-2 infection and vaccine elicited

antibodies that can broadly neutralize sarbecoviruses (27).

However, compared to nAbs targeting other RBD sites, all

isolated 10-40-like antibodies show relatively weak potency

against the SARS-CoV-2 omicron variants of concern (26, 28).

Whether the neutralization potency of 10-40-like antibodies can be

improved against the circulating omicron subvariants is unclear.

In this study, we developed a TI protocol with a substantially

improved accuracy for predicting beneficial mutations, which is

superior to KB methods. A pipeline incorporating both TI and

KB methods was established to perform saturation mutagenesis.

The pipeline successfully identified beneficial mutations that

improve both the binding affinity and neutralization potency of

antibody 10-40. Molecular dynamics (MD) simulation revealed the

structural basis of the synergistic effects of three beneficial

mutations. This study developed and validated a TI-based

approach for antibody improvement.
Results

An optimized TI protocol for predicting
the relative binding affinity of
antibody mutations

To evaluate the performance of TI on predicting the RBFE of

antibody mutations, we applied the conventional TI protocol (19)

with 12 l windows and the single topology approach, developed on

small molecule ligand/receptor systems, to predict the RBFE of 38

mutations from three antibody/antigen systems (Figures 1A, B).

Briefly, the TI protocol performs energy minimization, heating

from 100K to 298K, system relaxation, equilibration, and

production of MD (See details in Methods). The experimentally

determined structures were used as the starting structures for

mutagenesis and energy minimization (Table S1). The last

snapshot of the previous step was used as the starting coordinate

of the next step.

The 38 mutations include a balanced number of beneficial and

detrimental mutations, all of which are within or peripheral to the

epitope-paratope interface (Table S1). The analysis revealed that

when mutating to negatively charged amino acids, the mutated

residue forms clash with positively charged ions in the solution at

one or a few l windows, resulting in large jumps in the l-derivative
of the total energy (dV/dL) and the inaccurate prediction of the
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RBFE (Figures 1C, S1A). The incorporation of the recently

developed smooth step function (18), which weighs dV/dL using

a specified formula, substantially reduces the energy spike and

improves the predicted RBFE (Figure S1B). Despite that, the

predicted RBFEs of some mutations still deviated from the

experimental RBFEs by more than 1.5kcal/mol. Further analysis

showed that the predicted RBFEs with large errors tend to harbor l
windows with significant dV/dL deviation between the antibody-

bound and -unbound systems (Figure 1D). Excluding such l
windows [identified using deviation from mean dV/dL by one

standard deviation (SD)] further improved the prediction

performance (Figure S1C). By incorporating the above strategies,

the conventional TI protocol was applied to predict the RBFE of the

38 mutations with 5 nanosecond (ns) production run per lwindow.
The results showed that the performance of the conventional TI

protocol converges in 3 to 4ns of MD simulation, which is
Frontiers in Immunology 03
comparable to the convergence time for predicting small molecule

RBFE (19).

The conventional TI protocol showed a Pearson’s r of

approximately 0.55 and a root mean square deviation (RMSE) of

approximately 1.8kcal/mol (Figures 1E, F), which is not comparable

to its performance on a small molecule RBFE prediction and is not

ideal for antibody design. Because antibody/antigen complexes have

system sizes much larger than small molecule/receptor complexes,

we suspect that the conformation sampling of the antibody/antigen

complexes may be inadequate using conventional MD. Thus, we

applied the Hamilton replica exchange MD (HREMD) (29, 30),

which allows for the exchange of intermediate states between

adjacent l windows during MD simulation to enhance sampling

convergence. The results showed that HREMD substantially

improved the performance of TI (Pearson’s r 0.74 and RMSE

1.05kcal/mol with 3ns MD) (Figures 1E, F).
B C

D E F

A

FIGURE 1

Diagram and the performance of thermodynamics integration protocols. (A) Diagram of the conventional and Hamilton-replica exchange MD TI
protocols. (B) Diagram of the alchemical thermodynamics cycle for free energy calculation. (C) Clash between Na+ and S56DL (PDBID: 2BDN) in MD
with the conventional TI protocol leads to a large free energy spike (see Figure S1A). (D) HREMD TI protocol contains l windows with large dV/dL
deviation between antigen- bound and unbound MD runs. (E) Correlation of experimental measured binding free energy change (DDG) and DDG
predicted by conventional and HREMD TI protocols with different MD simulation lengths. (F) Root mean square error (RMSE) between experimental
measured DDG and DDG predicted by conventional and HREMD TI protocols with different MD simulation lengths.
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We further used the one antibody-antigen system (human

MCP-1/antibody 11K2, 2BDN, Table S1) to examine the impacts

of MD length (up to 10ns), the number of l windows, and the sizes

of the waterbox on the accuracy of the HREMD TI protocol. The

results showed that comparable DDG RMSEs were obtained with

3ns and 10ns MD (Figure S1D), suggesting that a longer MD may

not improve the accuracy. Increasing the number of l windows

from 12 to 16 reduced both Pearson’s r and RMSE. Changing the

size of the waterbox from 6Å to 10Å increased Pearson’s r but

reduced RMSE (Figure S1D). By considering both the computation

time and accuracy, HREMD TI with 3ns MD, 12 l windows, and

6Å waterbox were performed for the downstream studies.

The above performance was evaluated by averaging the RBFEs

of each mutation from two independent TI runs. Our analysis

showed that each single run can still reach high accuracy (3ns

HREMD Pearson’s r 0.72 and 0.65) with a mean deviation of

0.90kcal/mol between runs. This suggests that a single TI run has

a reasonable accuracy, which can be used for mutational screening

and will save substantial computation time.

Above all, we found that our strategies significantly improved

the performance of TI on antibody/antigen complexes and

identified settings optimal for both the accuracy and efficiency of

HREMD TI, which will be used for downstream studies.
The performance of the HREMD TI
protocol on a large dataset

To further examine the accuracy of the HREMD TI protocol, we

established a curated dataset of 225 point mutations from 15

antibody/antigen complexes from both public databases (SKEMPI

and AB-BIND: 171 mutations from 10 complexes) and literature

(54 mutations from 5 complexes) (6, 10, 31, 32) (Table S1). These

antibody/antigen complexes were chosen because each has

mutations to diverse types of amino acids and has both favorable

and deleterious mutations. In total, 55 favorable (DDG< -0.5kcal/

mol) and 119 deleterious mutations (DDG>0.5kcal/mol) were

included. The cutoff of 0.5kcal/mol was used to account for the

uncertainty of experimental binding affinity measurements (9). A

total of 36 mutations are from antigens and the rest are from

antibodies. Mutations both within and away from the binding

interfaces were included (Table S1).

The result showed a single run HREMD TI to have a high

accuracy (Pearson’s r 0.74 and RMSE 1.00kcal/mol) (Figure 2A).

Among the 225 mutations, 51 mutations were predicted by

HREMD TI to have DDG absolute error greater than 1.3kcal/mol.

Further dV/dL distribution analysis revealed 21 of the 51 mutations

to have single or multiple lwindows significantly deviating between
the antibody-bound and -unbound systems (identified using

deviation from mean dV/dL by one SD). The exclusion of the

deviated l windows improved the RMSE of the 21 mutations from

5.35 to 2.81kcal/mol (Figure S2C), confirming the effectiveness of

the strategy in improving prediction accuracy.

We then compared the performance of HREMD TI to five KB

algorithms [FoldX (12), Rosetta (33), ddG-predictor (34), SAAMBE-
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3D (13), and mmCSM-AB (10)]. For the 225 mutation dataset, the

comparison revealed that HREMD TI performed the best, followed

by SAAMBE-3d and mmCSM-AB (Figure 2B). Because the

mutations from SKEMPI and AB-BIND were used to train the

machine learning algorithms ddG-predictor, SAAMBE-3D, and

mmCSM-AB, we compared their performance using the 54

literature mutations collected from in vitro and in vivo antibody

maturation studies. The result showed that the correlation coefficients

of ddG-predictor, SAAMBE-3D, and mmCSM-AB substantially

decreased to approximately 0.2. The performance of FoldX is

comparable between the 225 and 54 datasets (Figure 2B) as well as

a previous study with a larger testing dataset (17). To further compare

the performance of TI to FEP+, we predicted the RBFE of 21 VRC01

mutations against the gp120 resurfaced stabilized core 3 (RSC3),

which showed an accuracy comparable to FEP+ (Figure S2E) (9).

Because the goal was to identify beneficial mutations for

antibody improvement, we further compared the accuracies of the

KB and TI algorithms in predicting beneficial and deleterious

mutations. The analysis showed that all algorithms predicted

deleterious mutations with higher success rates than beneficial

mutations (Figure 2B). HREMD TI achieved the best accuracy at

predicting beneficial mutations while KB methods classified many

beneficial mutations as neutral. HREMD TI also performed better at

predicting the RBFEs of non-interface mutations than KB methods

(Figure 2C), suggesting that TI can be used to explore a larger

mutational space.

The high success rate of KB methods at predicting deleterious

mutations suggests that KB methods can be used to exclude

deleterious mutations in the mutation screening process. Thus, the

high efficiency of the KB method and the high accuracy of the

HREMDTImethod can be integrated to identify beneficial mutations.
Improving the binding affinity of
antibody 10-40

To validate our hypothesis that KB and TI methods can be

combined to efficiently find beneficial mutations via saturation

mutagenesis, we established a pipeline to improve the binding

affinity of antibody 10-40 against the RBD from the circulating

omicron subvariant BA5 (RBDBA5), without impairing the binding

affinity against the wildtype RBD (RBDD614G) (Figure 3A). Because

the 10-40/RBDBA5 complex structure is unavailable and a

conformation change is observed at epitope positions of 370 to

376 in the antibody- free state (35), we modeled the 10-40/RBDBA5

complex and performed 20ns MD simulation. The complex

structure from the last snapshot of the MD simulation was used

for screening beneficial mutations against RBDBA5. Using the

experimentally determined structure of 10-40/RBDD614G and the

MD-generated 10-40/RBDBA5, the pipeline first used FoldX and

Rosetta to perform saturation mutagenesis at all 28 paratope

positions to identify neutral and beneficial mutations to both

RBDD614G and RBDBA5 (see methods). TI was then applied to the

obtained list of mutations to exclude deleterious mutations to

RBDD614G and to identify beneficial mutations to RBDBA5. Ten
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mutations, including four predicted to be deleterious or neutral by

TI but to be beneficial by FoldX and/or Rosetta and six of the top

predictions beneficial to RBDD614G and/or RBDBA5 by TI, were

synthesized and their binding affinities against RBDD614G and

RBDBA5 were measured (Figure 3B; Table S3).

The surface plasmon resonance (SPR) measurement showed that

four of the six beneficial mutations (S32HH, R100bIH, R100bLH, and

Q53FL) predicted by TI enhanced the binding affinity to RBDBA5

without substantially impairing the binding affinity to RBDD614G

(Figure 3B). The deleterious mutations predicted by TI were also

validated by the SPR results, suggesting that TI can identify false

positives predicted by FoldX and Rosetta (Table S3). Interestingly,

TI predicted that adding S32HH and Q53FL to R100bIH
further improves the binding affinity of antibody 10-40 to RBDBA5

(Table S3). We then produced the combination mutants, and the SPR

measurement revealed a strong synergy between the three mutations,

with the triple mutations improving RBDBA5’s binding affinity by

over 5,000-fold (Figure 3B). Overall, the TI predictions correlated

with experimental data with Pearson’s correlation coefficients of

approximately 0.6 (Figure 3C).
Frontiers in Immunology 05
The structural basis of the synergistic
effects between S32HH, R100bIH,
and Q53FL

To understand the mechanism of synergy between S32HH,

R100bIH, and Q53FL, we performed MD simulations of antibody

10-40 with individual and combination mutation complexed with

both RBDBA5 and RBDD614G. Overall, compared to the wildtype 10-

40/RBDD614G complex, the three mutations induced both local and

global conformation changes to recognize RBDBA5 but not

RBDD614G (Figures 4A, S2B). Consequentially, for each mutation,

we observed altered polar interactions in the 10-40/RBDBA5

complex (Figure 4A right).

The three mutations did not change the buried accessible

surface area (bASA) between antibody 10-40 and RBDD614G

except the R100bIH and S32HH double mutant (Figure 4B),

whose paratope bASA increased by approximately 100Å2,

which is coincident with the 2.7-fold increase in binding affinity

(Figure 3B). Surprisingly, for the 10-40/RBDBA5 complex, the three

mutations induced similar conformational changes (Figure S2B),
B

C

A

FIGURE 2

Comparison of the performance of TI and five knowledge-based computational methods. (A) A high prediction accuracy was obtained by the
HREMD TI protocol. (B) TI outperforms the five KB algorithms at discriminating beneficial and detrimental mutations on the large and non-SKEMPI
mutation datasets. The KB methods predict detrimental mutations with higher accuracy than beneficial mutations. The non-SKEMPI dataset does not
include mutations in the SKEMPI database which is used to train knowledge-based algorithms. (C) TI outperforms the five KB algorithms at
predicting RBFE of both antibody-antigen interface and non-interface mutations.
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resulting in an increased paratope bASA (Figure 4C); the

contribution was mostly by enhanced light chain interaction with

the RBDBA5 (Figure 4A). Furthermore, individual and

combinations of S32HH, R100bIH, and Q53FL stabilized multiple

hydrogen bonds and salt bridges between paratope and epitope in

the 10-40/RBDBA5 complex but not the 10-40/RBDD614G complex

(Figures 4D, E, S2C, D). Above all, S32HH, R100bIH, and Q53FL
induced similar conformational changes for RBDBA5 recognition.

The increased bASA and polar interactions are consistent with the

improved binding affinity. The synergy between the three

mutations is probably through additive stabilization of the altered

binding mode.
The neutralization potency of antibody 10-
40 variants

A pseudovirus neutralization assay was performed to measure

the potency of antibody 10-40 variants against the SARS-CoV-2

D614G and omicron BA5 strains (Figures 5A, B). For the D614G
Frontiers in Immunology 06
strain, each S32HH, R100bIH, and R100bLH decreased the potency

by approximately 3-fold (Figure 5C). Q53FL and the combination of

S32HH, R100bIH, and Q53FL slightly improved the D614G

neutralization potency, which is consistent with the binding

affinity results. For the BA5 subvariant, R100bIH and R100bLH
did not affect the potency. S32HH reduced the potency substantially,

which cannot be explained by the minor change in the binding

affinity. Nonetheless, Q53FL and the double and triple mutations

increased the potency by approximately 3 to 5-fold.
Discussion

In this study, we performed a comprehensive investigation on

the performance of thermodynamic integration for predicting the

relative binding affinity of antibody and antigen mutations and

identified optimized parameter settings to substantially improve its

accuracy and efficiency. The new TI protocol outperforms

knowledge-based methods in discriminating beneficial and

deleterious mutations. With the increased computing power of
B

C

A

FIGURE 3

TI predicted beneficial mutations improve the binding affinity of antibody 10-40 against SARS-CoV-2 RBDD614G and RBDBA5. (A) Antibody 10-40
beneficial mutation screening scheme. FoldX and Rosetta are used to exclude detrimental mutations against RBDD614G and RBDBA5, and TI is used to
identify beneficial mutations against RBDBA5. (B) Binding affinities of antibody 10-40 mutants against SARS-CoV-2 RBDD614G and RBDBA5 measured
by plasmon surface resonance (SPR). TI- predicted detrimental, neutral, and beneficial mutations are colored light blue, gray, and green, respectively.
Data are shown with mean and standard deviation from triplicate. (C) Correlation of experimentally measured binding free energy change (DDG) and
DDG predicted by HREMD TI protocol for 10-40 mutants against RBDD614G (left) and RBDBA5 (right).
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modern GPUs, TI provides an accurate and feasible approach for

both the optimization of biomolecules and the prediction of the

effects of protein substitutions in natural evolution. We found that

the incorporation of HREMD and the statistical correction

strategies to TI increase the accuracy of a single TI run, which

substantially shortened the time to screen a large number of

mutations. It takes about 24 GPU hours to calculate the RBFE of

one mutation in the 10-40/RBD complex on an NVIDIA GTX

1080TI GPU, while the most accurate FEP+ protocol (100ns MD

per l window) takes approximately a week (9, 21). The run time of

TI could be shortened to approximately 12 hours or less using the

most advanced GPUs. Thus, the improved TI protocol alone or in

combination with KB methods could be broadly applied to in silico

mutational scanning.
Frontiers in Immunology 07
This study reveals that the smooth step function reduces the

“particle collapse problem” and the “large gradient-jump problem”

effectively in the softcore potential (18). Despite that, this study

further shows that large dV/dL deviation between antigen-bound

and unbound systems is observed at certain l windows. Excluding

such l windows for the calculation of RBFE tends to reduce the

RMSE of TI prediction, suggesting that a comparison of dV/dL

distribution may be a method to examine the reliability of TI

prediction. However, the causes of large dV/dL deviation and its

association with prediction error remain unclear. As shown in

Figure S1C, mutations with large dV/dL deviation issues tend to

enrich small-to-large and charge-changing mutations. We suspect

that multiple factors including residual “large gradient-jump

problem”, sampling convergence, and mutation-specific structural
B C

D E

A

FIGURE 4

The structural basis of antibody 10-40 binding affinity improvement by S32HH, R100bIH, and Q53FL. (A) The MD simulation of 10-40 with triple
mutations (S32HH, R100bIH, and Q53FL)/RBDBA5 shows substantial heavy and light chain conformation change compared to the 10-40/RBDD614G

complex. Each S32HH (second panel), R100bIH(third panel), and Q53FL (fourth panel) alter the local polar interactions between 10-40 and RBD.
Hydrogen bonds and salt bridges are shown with dashed lines. (B) MD simulations of 10-40 mutants complexed with RBDD614G show minor changes
in the buried surface area between epitope and paratope except for the combination of S32HH and R100bIH. (C) MD simulations of 10-40 mutants
complexed with RBDBA5 show significant changes in the buried surface area of the paratope. (D) Multiple hydrogen bonds between the RBDBA5

epitope and paratope are stabilized by S32HH, R100bIH, and Q53FL. (E) 10-40 mutants form a new salt bridge with RBDBA5. Kolmogorov–Smirnov
test is used to compare the significance of difference. P values less than 0.01 are labeled with **.
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microenvironment may contribute to the observed large dV/dL

deviation. Our TI protocol provides scripts to show the sampling

convergence and issues of a TI run by examining the HREMD

exchange rate (Figure S4A, a higher rate is better) (36), dV/dL

distribution (Figure S4B), and dV/dL deviation between antigen-

bound and unbound systems (Figure S4C). In future studies, we will

examine whether the optimization of the smooth step function

could reduce the prediction error. Ongoing efforts also include a

further reduction of the deviation between independent TI repeats

by incorporating advanced techniques (e.g., temperature REMD

and Arbitrary Degree of Freedom) to HREMD (18). While a single

TI run shows an accuracy high enough for mutation screening,

averaging over multiple TI runs will be optimal in cases where high

accuracy is demanded.

The improved TI method expands the mutational space

sampled during in silico mutational scanning. Many antibody/

antigen interactions involve post-translational modifications

(PTMs) (e.g., N-glycosylation, phosphorylation, and tyrosine

sulfation). With the improved glycan force field and tools

available to easily generate force field parameters for PTMs, the

TI method provides a tool to optimize PTM interactions, which

cannot be handled by most KB methods. Despite the fact that the

performance of TI on other biomolecule systems is still under

evaluation, we expect that the current protocol will be fairly

accurate for optimizing interactions between diverse biomolecules.

Most KB algorithms [e.g. FoldX (12), mmCSM-AB (10), and

SAAMBE-3D (13)] train empirical or statistical models to calculate

free energy changes (e.g. electrostatic and van der Waals

interactions and solvation) upon mutation. The dataset used for

model training are databases including SKEMPI (37), AB-BIND

(38), and PROXiMATE (39), which contain binding affinity of

approximately 7,000 protein mutations measured by experimental

assays. Our results indicate that KB methods have a high accuracy at
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finding deleterious rather than beneficial mutations, probably

because the training databases contain imbalanced numbers of

beneficial and detrimental mutations (only approximately 10%

beneficial mutations and approximately 50% alanine mutations).

While computational approaches have been used to balance the

training dataset for mmCSM-AB (10), this study reveals that their

accuracy still has room for improvement. One pitfall is that the

sample size of the available beneficial mutations unseen by KB

methods for evaluating their performance is small. Accumulation of

more mutational data, especially beneficial mutations, from in vivo

and in vitro affinity maturation studies will be a critical and limiting

factor for evaluating and advancing KB methods. Nonetheless, the

high accuracy of the KB methods at identifying deleterious

mutations is still very useful in protein design. We demonstrate

that the incorporation of both KB and TI methods, by taking

advantage of the high efficiency of KB methods and the high

accuracy of TI, is effective at finding beneficial mutations. This

study provides proof-of-concept validation by combining FoldX,

Rosetta, and TI. The incorporation of other KB methods will be an

important next step to improve the accuracy of the KB-TI strategy.

The development of highly potent 10-40-like antibodies is an

important goal of anti-sarbecovirus therapeutics and vaccine design

(28). This study reveals that the substantial binding affinity

improvement of antibody 10-40 does not increase the

neutralization potency of the omicron variant to a very low level.

One hypothesis is that the spike trimer of the omicron variants

evolves to have more RBD protomers in the down conformation

(35), which buries the 10-40 epitope inside the spike trimer. In such

cases, both in vivo and in vitro affinity maturation may not result in

substantial potency improvement. Thus, this study suggests that

epitope inaccessibility may be a roadblock to further improving the

potency of 10-40-like antibodies against SARS-CoV-2 variants by in

silico design or vaccination.
B

C

A

FIGURE 5

Pseudovirus neutralization potency of antibody 10-40 mutants. (A) The neutralization potency of antibody 10-40 mutants against the SARS-CoV-2 D614G
strain. (B) The neutralization potency of antibody 10-40 mutants against the SARS-CoV-2 omicron BA5 subvariant. (C) The mean IC50 of antibody 10-40
mutants. The triple mutations improve the potency of 10-40 against both D614G and omicron BA5 subvariant. Antibody mutants with improved and
reduced potency are highlighted in green and red, respectively. Data are shown with mean and standard deviation from three replicates.
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Materials and methods

Antibody/antigen complex preparation

For each antibody/antigen system in the TI validation dataset

(Table S1), the antibody Fv domain and the epitope domain of the

antigen from the experimentally determined structures were used as

the starting complex for RBFE calculations of TI and KB methods.

Water molecules beyond 5Å of protein atoms in the original PDB

structure were excluded.

The VRC01/RSC3 complex for TI RBFE calculation was

modeled using the VRC01/gp120 crystal structure as a template

(PDB:3NGB). Modeller v9.16 with default parameters was used to

model the complex (40). Positions 76-87 are deleted in RSC3 but

were kept in the modeled RSC3 structure to prevent chain break.

Antibody 10-40 Fab/RBDD614G complex downloaded from the

protein data bank (PDB) database (PDB IDs: 7SD5) was used for

the RBFE calculations of 10-40 mutations against the RBDD614G.

Because the 10-40/RBDBA5 complex structure is unavailable and a

conformation change is observed at epitope positions of 370 to 376

in the antibody- free state (35), we modeled the 10-40/RBDBA5

complex and relaxed the structure using MD simulation. Briefly,

Modeller v9.16 with default parameters was used to model the 10-

40/Omicron RBDBA5 complex (40). An antibody MD simulation

pipeline was used to perform 20ns MD simulation (41). Briefly, the

tleap program was used to add a 10 angstrom (Å) cubic water box to

the system to neutralize the charge and generate topology and

parameter files for MD simulation. Amber20 with the amber14 and

GLYCAM_06j-1 force fields (42, 43) was used to perform 20ns

isothermal isobaric MD simulation with a 2 fs time step (after

10,000 steps of solution energy minimization, 10,000 steps of whole

system energy minimization, 5ns for heating from 0k to 300k, and

2ns of equilibration in the isothermal isovolumetric ensemble) (41).

The last snapshot from the MD simulation was used for FoldX,

Rosetta, and TI RBFE calculations of 10-40 mutations against

RBDBA5. Water molecules beyond 5Å of protein atoms

were excluded.
Thermodynamics integration

Amber20 was used to perform TI simulations with the “one-step”

transformation using pmemd.cuda.MPI for the HREMD runs and

pmemd.cuda for the conventional runs (44). The structures described

in the above section were used as the starting complex for the TI

simulation. Reduce was used to assign protonation states for titratable

residues to the pH of the experimental binding affinity assay and to

rotate the side chains of ASN, GLN, and HIS. Tleap (45) was used to

build mutations, add disulfide bonds and a 6- angstrom cubic periodic

solvent box (TIP3P model, system sizes are listed in Table S2), and

generate topology files for antibodies and antibody/antigen complexes.

Na+ or Cl- was added to neutralize the charge in the system. ParmEd

was used to remove redundant bonding terms. For each system, 10,000

steps of solvent minimization (solute is restrained with a force of

25kcal•mol-1•Å-2) and 10,000 steps of whole system minimization

(5kcal•mol-1•Å-2 restraint on solute) were performed. The solute
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restraint of 5kcal•mol-1•Å-2 was also applied to the following steps.

The system was heated from 100K to 298K in 50ps. Next, a 100ps

simulation in the Isothermal–isobaric (NPT) ensemble was performed

to adjust the density of the system, followed by five short simulations

(each 200ps, canonical NVT ensemble) to gradually reduce the solute

restraint to zero. Next, we equilibrated the system for each l window

(0.00922, 0.04794, 0.11505, 0.20634, 0.31608, 0.43738, 0.56262,

0.68392, 0.79366, 0.88495, 0.95206, and 0.99078) using a strategy

described previously (19). Briefly, 1ns equilibration for l 0.56262 was

first performed. The final snapshot was used as the starting

configuration for 1ns equilibration of adjacent l windows (e.g.,

0.43738 and 0.68392). Finally, 3ns or 5ns HREMD or independent

production run was performed with energy information saved and

state exchange attempts between adjacent l windows every 2ps. Both

equilibration and production runs were performed in the NVT

ensemble with Langevin dynamics to control temperature and with a

1fs time step. The mutated residues were included in the softcore

region with the smoothstep softcore potential for dV/dl calculation.

For predicting DDG of combination mutations, the mutations were

introduced sequentially to the antibody with the last snapshot of the TI

simulation of the former mutation used as input structure for the TI

run of the latter mutation.

We used the trapezoidal rule to analyze the TI gradients (dV/

dl) from the production run with the first 0.5ns excluded as

equilibration. The cumulative average of dV/dl values over time

was plotted to check sampling convergence, with TI runs not

converged discarded. For each TI run, mean dV/dl and standard

deviation (SD) were calculated for each l window. A l window was

excluded if its mean dV/dl of the unbound TI run deviates from the

mean dV/dl of the bound TI run by over one SD, and vice versa. No
data decorrelation was performed for DDG calculation.
Prediction of the effects of mutations by
FoldX, Rosetta, SAAMBE-3D, ddg-predictor,
and mmCSM-AB

For all antibody/antigen systems, the structures were first

energy minimized using the Repair PDB module of FoldXv5, and

the optimized structures were then used for FoldX free energy

calculation with default settings. The fast relax protocol of Rosetta

(2021.07+release.c48be26) was used to minimize the energy of

antibody/antigen complexes before the Rosetta free energy

calculation using the cartesian_ddg protocol with default settings

(33). The energy minimized 10-40 mutants from Rosetta was also

used to calculate free energy by ddg-predictor (34). For SAAMBE-

3D (13) and mmCSM-AB (10), no energy minimization was

performed and the default parameters were used.
Predicting beneficial mutations of
antibody 10-40

The 10-40/RBDD614G structure shows antibody 10-40 contains 28

paratope residues from both heavy and light chains (identified by PISA

(46)). The structures of antibody 10-40/RBD complexes (experimental
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structure of 10-40/RBDD614G and modeled 10-40/RBDBA5) were

energy minimized using the Repair PDB module and the fast relax

protocol of FoldX and Rosetta, respectively. Mutations to all other

amino acids at the 28 paratope positions were first ranked by FoldX

and Rosetta, and mutations with predicted DDG <0.5kcal/mol by either

FoldX or Rosetta against both RBDD614G and RBDBA5 and FoldX

stability change <1.0 kcal/mol were kept. TI was applied to exclude

deleterious mutations against RBDD614G and RBDBA5. TI- identified

beneficial mutations that were then ranked by the RBFE. Cysteine

mutations were excluded due to their high reactivity with free cysteines

in a cell culture medium (47). Mutations resulting in the N-

glycosylation site (NXS/T motif, X cannot be Pro) were also excluded.
Molecular dynamics simulation and
trajectory analysis

Antibody 10-40 mutations were introduced to the 10-40Fab/

RBDD614G complex (PDB IDs: 7SD5) and the modeled 10-40Fab/

RBDBA5 complex (see above) for MD simulations to study their

effects on antibody and antigen interactions. A published antibody

MD simulation pipeline was used to perform MD simulation (41).

Briefly, the tleap program was used to introduce mutations to the

antibody, add a 10 angstrom (Å) cubic water box to the system,

neutralize the charge, and generate topology and parameter files for

MD simulation. Amber20 with the amber14 and GLYCAM_06j-1

force fields (42, 43) was used to perform 200ns isothermal isobaric

MD simulation per run (after 10,000 steps of solution energy

minimization, 10,000 steps of whole system energy minimization,

5ns for heating from 0k to 300k, and 10ns of equilibration in the

isothermal isovolumetric ensemble) on each Fab variant (41).

A master analysis script (Traj.R) was used to perform MD

trajectory analysis (41). Briefly, for each MD production run,

snapshots of the first 100ns were discarded as equilibration. Each

snapshot was superimposed to the first snapshot using Ca atoms of

the heavy and light chain variable domains and root-mean-square

deviation (RMSD) was calculated to determine simulation

convergence (48). For each snapshot, we quantified the sampled

distributions of the torsion and tilting angles and distance between

VH and VL using ABangle recompiled in R (49), elbow angle by

PyMOL, buried ASA, and hydrogen bond networks between

domain interfaces using PISA (46). All statistical analyses were

performed in R.
Cloning of antibodies and SARS-CoV-2
RBD variants

Genes encoding for the heavy and light chains of antibody 10-

40 were inserted separately into pcDNA3.4 plasmids. Respective

genes for the SARS-CoV-2 RBD variants (wild type and Omicron

BA5) were cloned into mammalian expression vector pLXM

followed by a C-terminal octa-histidine tag. All the cloning was

done using T4 ligase (NEB).
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Site-directed Mutagenesis using double-
primer PCR

Site-directed mutagenesis was performed as previously

described (41). The 10-40 mutants were generated using Pfu

Ultra II polymerase in a protocol that employed both forward

and reverse primers in the same PCR reaction for 18 cycles. The

PCR products were denatured and then reannealed. The non-

mutated methylated parental plasmid was digested with DpnI

(NEB), and the remaining plasmids were transformed into E. coli

cells. For each transformation, five colonies were selected at random

and grown overnight in 5 ml LB + Ampicillin medium at 37°C. The

plasmids were isolated using the Spin miniprep kit (Qiagen,

Germany) and sequenced to obtain the desired mutants. All the

pLXM plasmids encoding SARS-CoV-2 RBD variants were

transformed in a similar manner.
Expression and purification of antibody 10-
40 mutants and SARS-CoV-2 RBD variants

Recombinant 10-40 antibodies were transiently expressed in

Expi293F cells (Thermo Fisher Scientific) in a chemically defined,

serum-free medium using the ExpiFectamine™ 293 transfection Kit

according to manufacturer’s instructions by the cotransfection of

the heavy chain (VH+CH1+CH2+CH3) and light chain (VL+CL)-

expressing plasmids. Similarly, SARS-CoV-2 RBD variants (wild

type and Omicron BA5) were transfected separately in Expi293F

cells using expifectamine. The cell cultures were incubated in a 37°C

shaker at 125 rpm under 8% CO2. Supernatants were collected five

days after transfection. Antibodies were purified by affinity

chromatography using rProtein A Sepharose (Cytiva). The RBD

variants were purified by using Ni-NTA IMAC Sepharose 6 Fast

Flow resin (GE Healthcare) nickel affinity chromatography. All

proteins were further purified by size exclusion chromatography

(SEC) using a Superdex 200 increase column in 10 mM Tris pH 8.0,

150 mM NaCl for all 10-40 antibody mutants and 10 mM HEPES,

pH7.4, 150 mM NaCl for the RBD variants.
Surface plasmon resonance

SPR binding assays were performed using a Biacore T200

biosensor equipped with a Series S CM5 chip (Cytiva) at 25°C in

an HBS-EP+ buffer (10 mM HEPES, 150 mM NaCl, 3 mM EDTA,

0.05% P-20, pH 7.4). IgGs were captured to the chip surface using

immobilized protein A (Cytiva) over all four flow cells. Each IgG

antibody was captured over independent flow cells at 2mg/mL at a

capture level of approximately 200 RU. A surface without captured

IgG served as a reference control. RBD antigens were prepared in a

running buffer using a three-fold dilution series at five

concentrations ranging from 0.62 to 50nM, using a 150s

association time and 600s dissociation time at 30mL/min. At the

end of each cycle, the anti-IgG surface was regenerated using
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10 mM glycine pH 1.5. Blank buffer cycles were performed by

injecting running buffer instead of RBD to remove systematic noise

from the binding signal. The resulting data were processed and fit to

a 1:1 binding model using Biacore Evaluation Software. Each

concentration series were tested in triplicate.
Pseudovirus production

Pseudoviruses were produced in the vesicular stomatitis virus

(VSV) background, in which the native glycoprotein was replaced by

that of SARS-CoV-2 and its variants, as previously described (50). In

brief, HEK293T cells were transfected with a spike expression construct

with 1 mg mL-1 polyethylenimine (PEI) and cultured overnight at

37 °C under 5% CO2 and then infected with VSV-G pseudotyped DG-
luciferase (G*DG-luciferase, Kerafast) one day post-transfection. After
2 h of infection, cells were washed three times, changed to fresh

medium, and then cultured for approximately another 24 h before

the supernatants were collected, clarified by centrifugation, and

aliquoted and stored at -80°C for further use.
Pseudovirus neutralization assay

All viruses were first titrated to normalize the viral input between

assays. Heat-inactivated sera or antibodies were first serially diluted in

a medium in 96-well plates in triplicate, starting at 1:100 dilution for

sera and 10 µgmL−1 for antibodies. Pseudoviruses were then added

and the virus–sample mixture was incubated at 37°C for 1 h. Vero-E6

cells were then added at a density of 3 × 104 cells per well and the

plates were incubated at 37°C for approximately 10 h. Luciferase

activity was quantified using the Luciferase Assay System (Promega)

according to the manufacturer’s instructions using SoftMax Pro

v.7.0.2 (Molecular Devices). Neutralization curves and IC50 values

were derived by fitting a nonlinear five-parameter dose-response

curve to the data in GraphPad Prism v.9.2.
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