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Who and how, DNA sensors in
NETs-driven inflammation
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1Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières,
QC, Canada, 2Groupe de Recherche en Signalisation Cellulaire, Université du Québec à Trois-
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During infections, neutrophil extracellular traps act like a meshwork of

molecules that captures microbes. In contrast, during sterile inflammation

the presence of NETs is usually associated with tissue damage and

uncontrolled inflammation. In this context, DNA acts both as activator of

NETs formation and immunogenic molecule fueling inflammation within the

injured tissue microenvironment. Pattern recognition receptors that

specifically bind to and get activated by DNA such as Toll-like receptor-9

(TLR9), cyclic GMP-AMP synthase (cGAS), Nod-like receptor protein 3 (NLRP3)

and Absence in Melanoma-2 (AIM2) have been reported to play a role in NETs

formation and detection. However, how these DNA sensors contribute to

NETs-driven inflammation is not well understood. Whether these DNA

sensors have unique roles or on the contrary they are mostly redundant is

still elusive. In this review, we summarize the known contribution of the above

DNA sensors to the formation and detection of NETs in the context of sterile

inflammation. We also highlight scientific gaps needed to be addressed and

propose future direction for therapeutic targets.
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Carcinoma; HMGB1, High-Mobility-Group Protein B1; HUVEC, Human Embryonic Vein Endothelial Cells;
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Receptor Protein 3; NMOSD, Neuromyelitis Optica Spectrum Disorder; ox-mtDNA, Oxidized mtDNA;

PAD4, Peptidyl Arginine Deiminase 4; PBMC, Peripheral Blood Mononuclear Cell; pDCs, Plasmacytoid

Dendritic Cells; PRRs, Pattern Recognition Receptors; SLE, Systemic Lupus Erythematosus; STING,

Stimulator of Interferon Genes; TFAM, Transcription Factor A; TLR9, Toll-Like Receptor 9; tPA,
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Introduction

Neutrophils are polymorphonuclear leucocytes with a crucial

role in the elimination of microbes during infectious inflammation.

First described in 2004 (1), neutrophils extracellular traps (NETs),

are a meshwork of inflammatory molecules, usually constituted by

DNA, histones, neutrophil elastase (NE), high-mobility-group

protein B1 (HMGB1), myeloperoxidase (MPO) and a plethora of

primary and secondary granular proteins. NETs are produced by

activated neutrophils, are usually degraded by DNases and are

cleared by phagocytes such as macrophages. Overproduction of

NETs or failure to clear them lead to their accumulation and

subsequent tissue damage, organ malfunctions, uncontrolled

inflammation and coagulation (2–4). Hence, the balance between

NETs production and clearance is vital to homeostasis (5). First

observed during infections (1), recent evidence shows that NETs are

also produced during sterile inflammation, often leading to

exacerbated inflammation and autoimmunity (6).

DNA is a critical component of NETs and is a potent immune

stimulatory molecule. The clinical importance of DNA in

inflammation is i l lustrated by autoinflammatory and

autoimmunity symptoms observed in patients and in mouse

models with deficiency in DNases (7–9). To stimulate immune

responses, DNA binds to a class of pattern recognition receptors

(PRR), called DNA sensors. Toll-like receptor 9 (TLR9), cyclic

GMP-AMP synthase (cGAS), Absent in Melanoma 2 (AIM2) and

NOD-like receptor protein 3 (NLRP3) (10, 11) were all shown to be

activated by DNA in the context of NETs. Apart from cGAS, these

DNA sensors are expressed in neutrophils and in the cell

populations in contact with NETs. cGAS is absent from human

and mouse neutrophils, but its downstream signaling adaptor

protein Stimulator of Interferon Genes (STING) is present (12).

Studies investigating the role of these DNA sensors rely on complete

genetic deletion or on in vitro experiments using isolated cell

populations, making it difficult to identify their direct and

indirect roles in the formation and detection of NETs. This

creates an important research gap and prevents us to decipher

their specific involvement. Therefore, in this review, we discuss the

current knowledge on the role of these DNA sensors in the

formation of NETs and their detection during sterile inflammation.
DNA sensors involved in the formation
of NETs by neutrophils

TLRs are transmembrane proteins often located in endosomal

compartments (endosomes, lysosomes or endolysosome) of

myeloid cells such as macrophages and dendritic cells (DCs),

playing a crucial role in host immune defense (13). Different

types of nucleic acids activate different TLRs. While endosomal

TLR7/8 (TLR13 in mice) are activated by RNA, TLR9 recognizes

DNA with a preference for hypomethylated DNA which is

primarily found in bacteria. Other proteins, like defensins and

high mobility group box 1 (HMGB1) were shown to facilitate

TLR9 activation by increasing DNA uptake (14–16). Canonical
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activation of TLRs leads to the production of inflammatory

cytokines and of type-I Interferons (IFN-I), thus contributing to

inflammation and immune responses (13). Inflammasome

activation, which is strongly associated with the presence of

NETs, relies on the activation of the NLRP family of cytosolic

receptors. NLRP3 detects oxidized dsDNA (17, 18) and AIM2, a

receptor from the interferon-inducible HIN-200 family, also detects

dsDNA and can induce the formation of the inflammasome.

Inflammasome activation results in the secretion of the

interleukin IL-1b and promotes cell death. Neutrophils express

both NLRP3 (19) and AIM2 (20) but only NLRP3 was shown to

directly participate in the formation of NETs by neutrophils in the

context of sterile inflammation, although the contribution of DNA

in this activation was not investigated directly (19).
TLR9 activates the formation of NETs
by neutrophils

How TLR9 contributes to the formation of NETs by neutrophils

is not fully understood. While TLR9 is usually located in the

endosomal compartment, a study showed that primary blood

neutrophils express a fully functional TLR9 at their cell surface

that can detect extracellular DNA (21). In vitro experiments suggest

that neutrophils are activated by CpG DNA and mitochondrial (mt)

DNA but not nuclear DNA (22, 23). This mtDNA specific

activation may be explained by the fact that mtDNA has a higher

content of hypomethylated CpG DNA compared to animal nuclear

DNA (24). Since high levels of circulating free mtDNA is strongly

associated with inflammatory conditions (25), this could explain

how neutrophils are rapidly being activated upon tissue injuries.

Furthermore, activated neutrophils secrete interleukin-8 (IL-8), a

chemotactic factor for neutrophils themselves, which then allow for

the recruitment of more neutrophils in the inflamed tissue. As such,

TLR9 activation could be an initiator event in NETs formation (26,

27). In support of this idea, a study reported that in a model of acute

respiratory distress syndrome (ARDS), induced by the STING

agonist diABZI, TLR9 contributes to neutrophils recruitment

(28). STING activation results in cell death leading to cell-free

(cf)DNA release, neutrophil recruitment and formation of NETs.

DNase-I treatment or genetic ablation of TLR9 significantly reduces

the recruitment of neutrophils (28). This suggests that cfDNA

detection by TLR9 occurs prior to NETs formation. Again,

mtDNA was the most abundant type of DNA detected in this

context. Neither cGAS, AIM2 nor NLRP3 were involved in this

response as genetic deletion of these genes did not significantly

change neutrophils recruitment nor formation of NETs (28). A

study suggested that activation of surface TLR9 on platelets could

promote NETs formation by neutrophils. Activated platelets are

important NET inducers in ANCA-associated vasculitis (AAV), a

disease in which anti-neutrophil cytoplasmic antibodies are

produced. In vitro, this is dependent on the secretion of CXCL4

(platelet factor 4-PF4) by platelets (29). The intertwined

relationship between neutrophils and platelets has been brought

to light in several reports (30, 31). Activated platelets stimulate the

formation of NETs by neutrophils which in turn contribute to
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platelets activation, although the detailed molecular mechanisms

and the immune receptors involved are still not fully defined.

The mtDNA-TLR9 axis in neutrophils activation and

inflammation is well supported in the literature (32–34) and

surface TLR9 activation of neutrophils by dsDNA has been linked

to cases of cardiopulmonary bypass interventions (CPB). CBP leads

to myoendothelial damages and increases levels of cfDNA including

mtDNA in the plasma. This cfDNA binds to surface TLR9 of

neutrophils to stimulate the formation of NETs (35). In a mouse

model of primary graft dysfunction after lung transplantation

surgery, TLR9 drives the formation of NETs following mtDNA

release from cell death and tissue damages in bronchoalveolar fluid

(36). In vitro, they show that mtDNA leads to a rapid release of

citrullinated DNA complexes in a peptidylarginine deiminase 4

(PAD4) dependent mechanism. In addition to a role in NETs

formation, results from graft experiments suggest that TLR9 has a

broader contribution in NETs. Indeed, genetic ablation of TLR9 in

the donor lungs or in the host mice significantly reduce the level of

NETs (36).
Receptors involved in the detection of
DNA present in NETs

TLR9 is activated by DNA containing-NETs

In addition to its role in direct neutrophils activation, TLR9 also

contributes to the detection of NETs and therefore to NET-

mediated inflammation. This is well illustrated in autoimmune

syndromes with accumulation of immune-complexes containing

nucleic acids like in Systemic Lupus Erythematosus (SLE). In

pediatric SLE, NETs were found to contain DNA and LL37

peptides. This combination is taken up by plasmacytoid dendritic

cells (pDCs) and lead to the production of IFN-I via TLR9 (37). In

addition, the uptake of NETs by pDCs has been shown to stimulate

the production of autoantibodies against NET components like

DNA itself and HMGB1 (37). Interestingly the capacity of LL37

peptides to stimulate TLR signaling is not restricted to TLR9. In

psoriatic skin, DNA and RNA in complex with LL37 peptide

stimulate the production of NETs through TLR8/13 sensing in

polymorphonuclear cells (37, 38). In vitro, neither RNA or nuclear

DNA alone could mediate the production of NETs by

polymorphonuclear cells, suggesting that following the formation

of NETs, LL37 peptides are critical to NET sensing (38). In

atherosclerosis, DNA from NETs contributes to the recruitment

of more neutrophils through the TLR9 activation in macrophages

and production of IL-8, confirming the pivotal role of IL-8 in this

loop (39).

NETs also modulate wound healing and tissue repair through

the activation of TLR9 in non-immune cells. In the context of

diabetic foot ulcers, NETs prevent angiogenesis and delays wound

healing. In vitro experiments have demonstrated that treatment of

human embryonic vein endothelial cells (HUVEC) with NETs

promotes endothelial-to-mesenchymal transition via activation of

TLR9 (40). In a model of lung inflammation, chronic and excessive

NETs formation contribute to pulmonary fibrosis through the
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activation of TLR9 in fibroblasts (41). Whether these TLR9

activation in non-immune cells are common feature of tissue

damage remains to be determined.
The emerging role of the cGAS-STING axis
in NETs-driven inflammation

NETs are potent inducers of IFN-I specifically when the DNA is

oxidized which renders it resistant to degradation and therefore

more interferonogenic (42). As discussed above, TLR9 activation

results in IFN-I production, but accumulating evidence confirmed

that the DNA sensor cGAS is also a critical driver of IFN-I upon

NETs detection (23, 43–48). Unlike TLR9, cGAS has not been

detected in neutrophils, so its role is restrained to the detection of

NETs rather than the formation of NETs by neutrophils (12).

However, neutrophils express STING and the other effectors of

the cGAS signaling pathway. Given that STING can be activated

independently of cGAS, the effect of STING activation in

neutrophils remains to be investigated.

The role of cGAS in driving IFN-I in response to DNA first

came from a study trying to understand how mtDNA, which is

abundant in the plasma of SLE patients, was driving IFN-I. In this

study, they showed that injection of oxidized mtDNA in mice,

induces a STING-dependent IFN-I response (43). However, in this

setting, mtDNA was purified prior to the injection which could

potentially mask the role of other NET components interacting with

mtDNA. Likewise, in Neuromyelitis Optica Spectrum disorder

(NMOSD), an autoimmune disease specific to the central nervous

system, the IFN-I response correlates with the severity of the disease

and with the presence of high levels of serum-derived cfDNA

originating from NETs (48). The immunogenicity of this cfDNA

was assessed in vitro using a combination of DNA sensor inhibitors

and revealed that the IFN-I response was induced in a cGAS and

TLR9 dependency (48).

A recent study has identified key mechanical insight into how

cGAS detect DNA during NETs phagocytosis (23). Mechanistically,

the authors revealed that after phagocytosis by human peripheral

blood mononuclear cell (PBMC), DNA from NETs translocate to

the cytosol where it activates cGAS. This is induced by the nuclear

elastase, an enzyme responsible for the decondensation of

chromatin. Using a model of autoimmune hepatitis induced by

injection of the lectin concanavalin A, the authors demonstrate that

NET induction resulted in cGAS-dependent stimulation of IFN-I

response, suggesting that NETs also activate cGAS in vivo (23). The

current view of the impact of DNase-I treatment is that it inhibits its

immunogenicity. However, in vitro experiments showed that NETs

treated with DNase-I display an increased capacity to activate cGAS

compared to undigested NETs. This was observed until the DNA

fragments reach the size of 150 bp, which is around the size of a

nucleosome, when it stops to activate cGAS. Nucleosomes were

indeed shown to inhibit cGAS activity (49). Unlike nucleosomes,

other DNA binding proteins such as the mitochondrial

transcription factor A (TFAM) or HMGB1 were shown to induce

cGAS activation (50), suggesting that NETs components could

modulate cGAS capacity to sense DNA. Given that several other
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studies have used DNase-I treatments without validating the type of

DNA fragments they have produced, these results suggest that these

data should be analyzed cautiously.

The contribution of cGAS-STING activation by cfDNA during

tissue injury has been described in several models including in acute

peripheral tissue traumamodels, brain injury and strokes among others

(44, 45, 51). Tissue plasminogen (tPA), used to breakdown blood clots

in acute ischemic stroke, is associated with brain hemorrhage and the

disruption of the blood brain barrier. In a recent study, it was revealed

that treatment with tPA in a mouse model of stroke, significantly

induces NETs markers such. DNase-I treatment or inhibition of NETs

using PAD4 deficient mice significantly restores the integrity of the

blood brain barrier. Genetic deletion of cGAS in mice also significantly

reduces brain hemorrhage while on the contrary, cGAMP injection

counteracts the effect of DNase-I treatment suggesting a critical role for

the DNA sensor cGAS (45).

Finally, NETs have also been reported to play a role in the

modulation of cancer cell behaviors (52, 53). For instance, in

diabetic hepatocellular carcinoma (HCC), a cancer prone to

metastasize, neutrophils invade the tumor and produce NETs,

which then activate cGAS in HCC cells. Interestingly, HCC cells

have a low level of expression of DNASE1L3, suggesting that NETs

might not be degraded and eliminated properly (47).
DNA-containing NETs activate
the inflammasome

A contribution for AIM2 in NETS detection was reported in a

lipopolysaccharide (LPS)-induced acute respiratory distress

syndrome (ARDS) model during which intracellular NET-DNA

binds the AIM2 receptor to activate the inflammasome ultimately

resulting in alveolar macrophage pyroptosis (54). Another study

reported the presence of AIM2 and the DNA binding protein IFI16

within NETs. It was shown that AIM2 binding to NETs protected

these NETs from DNase-I degradation, suggesting a mechanism

whereby extracellular AIM2-NET interactions may promote

sustained IFN-I signaling (20). Although the authors did not

show the origin of AIM2, it is possible that AIM2 is already

present in neutrophils and released during NETs formation.

In psoriasis, NETs activate AIM2 inflammasome through the

p38 MAPK signaling pathway, thus causing the production of IL-

1b. However, treatment of NETs with DNase-I only slightly reduces

the release of IL-1b, suggesting that this was independent of DNA.
It was also found that NETs-activated AIM2 promoted the secretion

of IFN-g by keratinocytes, suggesting that DNA sensors behave

differently in different cell populations (55). Furthermore, in the

context of AIM2 in keratinocytes and psoriasis, LL37 peptides were

shown to inhibit AIM2 dsDNA sensing (56). Interestingly, LL37 is

also a transporter for cGAMP, the STING agonist produced by

cGAS (57). In view of the involvement of cGAS in NETs detection,

it would be interesting to determine whether the presence of

cGAMP would interfere with the activation of inflammasome and

whether it could promote STING activation in host targeted cells.

In macrophages, the activation of NLRP3-inflammasome was

suggested to rely specifically on oxidized mtDNA (ox-mtDNA)
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while the AIM2-inflammasome could be activated by mtDNA and

nuclear DNA (58). For instance, mtDNA accumulation in plasma of

adult-onset Still’s disease activates NLRP3 in macrophages resulting

in systemic inflammation and elevated level of IL-1b (17). Ox-

mtDNA was shown to induce NLRP3 and the STING pathway in

bone marrow derived macrophages. Genetic depletion of NLRP3

did not result in loss of the activation of STING by ox-mtDNA

suggesting that STING activation is either independent or upstream

of NLRP3 (59). Since prior studies showed that the cGAS-STING

pathway can activate NLRP3, it would suggest that STING acts to

upstream of NLRP3 in this context (60–62). Based on that, it would

be interesting to define whether activation of NLRP3 by DNA is

always STING-dependent.
Discussion and future perspectives

The relevance of NETs in sterile inflammation is gradually

emerging as illustrated in Figure 1. In pre-clinical models,

accumulating evidence suggests that preventing NETs formation

using inhibitor of PAD4 for example (45, 63) could benefit patients.

Another strategy to improve patients’ health would be to directly

target DNA sensors to prevent either NETs formation or detection.

In order to do that, we need to identify precisely the involvement of

each of these DNA sensors.

First, in which pathological context and tissue a given DNA sensor

is activated. To date, most studies have selectively tested one or two

DNA sensors, which prevent us from determining their specific

contribution. In addition, the fact that TLR9 and cGAS activation

result in a similar outcome in terms of cytokines produced like IFN-I

suggests that they might have redundant and confounding effects.

Many studies have reported the pathological roles of NETs in sterile

inflammation without specifically investigating the role of these DNA

sensors. For instance, a study established that the increased production

of cfDNA in the airways characterizes a subset of neutrophilic asthma

patients who have broad lung function impairments, poor symptom

control with an exacerbation-susceptible phenotype (64). Although not

characterized, the presence of cfDNA within the inflammatory airways

is strongly suggestive to DNA sensors induced inflammation.

Second, DNA is not the only component of NETs. How the

other NETs components such as LL37 influence the uptake of DNA

and the activation of DNA sensors is still a core question that

remains to be addressed. The composition of NETs varies according

to the context and whether it is accompanied by neutrophil cell

death in a process called NETosis needs to be defined (65). The

DNA itself can be different depending on the presence of reactive

oxygen species or of mtDNA (66–69). Although most studies that

look into NET sensors have focused on DNA, recent studies showed

that RNA derived from NETs is also immunogenic (38, 70).

Genetic depletion of TLR9 in neutrophils would allow us to

determine whether TLR9 is involved in the first wave of neutrophils

recruitment within the damaged tissue. Likewise, genetic depletion

of STING in neutrophils will inform us on whether it has a cGAS

independent role in the formation of NETs. Finally, given the

controversial role of DNases in NETs immunogenicity, a more

standardize use of DNases and the development of experiments to
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Aubé et al. 10.3389/fimmu.2023.1190177
measure its activity in vivo may help understand the discrepancies

in the outcome of DNases treatment. In summary, the fact that

several DNA sensors contribute to NETs-driven inflammation

offers a variety of targets for therapeutic interventions, however

more studies are needed to clearly define the specific involvement of

each DNA sensor.
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