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Basophils bind IgE via FceRI-abg2, which they uniquely share only with mast cells.

In doing so, they can rapidly release mediators that are hallmark of allergic

disease. This fundamental similarity, along with some morphological features

shared by the two cell types, has long brought into question the biological

significance that basophils mediate beyond that of mast cells. Unlike mast cells,

which mature and reside in tissues, basophils are released into circulation from

the bone marrow (constituting 1% of leukocytes), only to infiltrate tissues under

specific inflammatory conditions. Evidence is emerging that basophils mediate

non-redundant roles in allergic disease and, unsuspectingly, are implicated in a

variety of other pathologies [e.g., myocardial infarction, autoimmunity, chronic

obstructive pulmonary disease, fibrosis, cancer, etc.]. Recent findings strengthen

the notion that these cells mediate protection from parasitic infections, whereas

related studies implicate basophils promoting wound healing. Central to these

functions is the substantial evidence that human and mouse basophils are

increasingly implicated as important sources of IL-4 and IL-13. Nonetheless,

much remains unclear regarding the role of basophils in pathology vs.

homeostasis. In this review, we discuss the dichotomous (protective and/or

harmful) roles of basophils in a wide spectrum of non-allergic disorders.
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1 Basic concepts of basophils

Basophils are rare blood cells, accounting for 1% or less of the circulating leukocytes-a

feature evident both in humans and mice. Basophils share several morphological and

functional characteristics with tissue-resident mast cells. Most recognized are the

cytoplasmic granules that each cell possesses and that stain so predominantly with basic

stains. Phenotypically, both cell types s uniquely express the abg2 structure of the high-
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affinity receptor (FceRI) for IgE, which enables both cells to rapidly

release pre-formed histamine and newly generated cysteinyl

leukotriene C4 (LTC4), upon encountering relevant allergen (1, 2).

Accordingly, basophils were initially viewed, incorrectly, as blood-

circulating mast cells, which prompted the notion of using them as

surrogates to study tissue mast cells, which proved far more difficult

to obtain (2). However, it is now widely accepted that basophils and

mast cells profoundly differ in several fundamental aspects (3). For

example, the lifespan of basophils (~days) is much shorter than the

months estimated for mast cells (4). Transcriptionally, basophils are

more closely related to eosinophils than mast cells (5, 6). These

differences (among many more discussed elsewhere (7) suggest that

basophils have unique pathophysiological roles different from those

of mast cells.

IL-3 is central to the growth, differentiation, priming, and

overall activation of both human and mouse basophils (8, 9). It

does so by binding, with high-affinity, to the a subunit of its

receptor (IL-3Ra/CD123) highly expressed on basophils (10).

Many cell types are implicated in producing the IL-3 that impacts

basophil development and function, including T cells (11, 12), B

cells (13), human eosinophils and neutrophils (14), but also mast

cells and even basophils (15, 16). Although the IL-3 receptor is

highly expressed on basophils (17–28), mice incapable of producing

IL-3 and/or deficient in IL-3Ra/CD123 reportedly develop all blood
lineages, including basophils and mast cells (29–31). In this regard,

thymic stromal lymphopoietin (TSLP) is also reported to regulate

mouse basophil development (32, 33) and activation (9) in vivo and

may therefore represent an important early growth factor for these

cells. In contrast, numerous studies show that IL-3 is quite sufficient

in promoting the in vitro growth of functional human and mouse
Abbreviations: ACPA, anticitrullinated protein antibody; AIP, autoimmune

pancreatitis; AM, alveolar macrophage; BAFF, B cell activating factor; BAP,

basophil progenitor; CAF, cancer-associated fibroblast; CD, Crohn disease; CKD,

chronic kidney disease; COPD, chronic obstructive pulmonary disease; CMP,

common myeloid progenitor; CRTH2, chemoattractant receptor-homologous

molecule expressed on Th2 cells; CT, cholera toxin; CXCR4, CX-C motif

chemokine receptor 4; DC, dendritic cell; DMBA, 7,12-dimethylbenz[a]

anthracene; dsDNA, double-stranded DNA; DT, diphtheria toxin; EAE,

experimental autoimmune encephalomyeli t i s ; EGPA, eosinophi l

granulomatosis with polyangitis; EoE, eosinophilic esophagitis; FceRI, high

affinity IgE receptor; GMP, granulocyte-macrophage progenitor; HSC,

hematopoietic stem cell; IBD, inflammatory bowel disease; IFN-g, interferon- g;

IgG4-RD, IgG4-related disease; IL, interleukin; IM, interstitial macrophages;

LTC4, cysteinyl leukotriene C4; MI, myocardial infarction; MCTD, mixed

connective tissue disease; MRI, magnetic resonance imaging; MS, multiple

sclerosis; NK cell, natural killer cell; NSCLC, non-small cell lung cancer; OVA,

ovalbumin; PAD, peptidyl arginine deiminase; PDAC, ductal adenocarcinoma;

PDGFB, platelet derived growth factor subunit B; PDGFBR, platelet derived

growth factor subunit B receptor; PGD2, prostaglandin D2; PT, proximal tubular

cell; RA, rheumatoid arthritis; RBL, rat basophil cell; SLE, systemic lupus

erythematosus; TDLN, tumor-draining lymph node; TGF-b, transforming

growth factor-b; TME, tumormicroenvironment; TPA, tetradecanoylphorbol-

13-acetate; Treg cell, T regulatory cell; TSLP, thymic stromal lymphopoietin; UC,

ulcerative colitis; UUO, unilateral ureter obstruction; WT, wild type.
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basophil-like cells from progenitors. TSLP is reported to activate

human basophils from asthmatic subjects by promoting histamine

release and cytokine secretion, along with inducing cell surface

expression of CD203c and IL-3Ra (34). In contrast, several other

investigators have since reported that TSLP does not activate

human basophils isolated from healthy subjects or allergic

patients (9, 10, 35). In light of the latter findings, TSLP may have

very different effects on human versus mouse basophils (9). Finally,

IL-3 is well known for its capacity to mediate synergistic (or

priming) effects when combined with a diverse array of co-stimuli

(9, 36–40).
It has been shown in mice that basophils originate from

hematopoietic stem cells (HSCs) in the bone marrow (41, 42). So-

called granulocyte-macrophage progenitors (GMPs), which develop

later than the HSCs giving rise to most of the common myeloid

progenitors, are thought to be the relevant basophil progenitors

(BaPs (43). Common basophil-mast cell progenitors are also

present in the spleen (43, 44). Single-cell transcriptomic analyses

have highlighted the differentiation pathways of various cell lineages

in mice (45–47). Single-cell culture of mouse bone marrow

progenitors generated FcϵRI+ basophils and erythroid cells (48).

The erythroid trajectory is close to that of basophils/mast cells, both

in mice (49) and humans (50–53). Human CD131+ CMP

progenitors in the bone marrow can differentiate into basophil/

mast cell/eosinophil and erythroid/megakaryocyte populations

(51). Likewise, studies of human bone marrow cells using single-

cell transcriptome analysis found the basophil trajectory to be more

linked with that of the megakaryocyte and erythroid lineages, rather

than those of granulocytes/monocytes (52). It is likely that the

differentiation pathways of basophils and mast cells are more closely

linked to those of the erythroid/megakaryocyte lineages, rather than

to granulocytes/monocytes, both in mice and humans.
Several analytical tools for the study of mouse basophil biology have

been developed in recent years. In particular, the use of antibodies capable

of depleting basophils in vivo (54, 55) as well as mice that are genetically

altered to be deficient of basophils (56–61), which includes reporter mouse

models (58, 61), and basophil-specific Cre-expressing mice (58, 62, 63).

The results obtained with these different models have demonstrated non-

redundant roles of basophils in experimental Th2-type inflammation,

comprising certain aspects of various allergic responses (3, 64, 65).

Likewise, these models have substantiated the long-held belief that

basophils help mediate immunity against parasitic infections (66–69).

Some of these analytical tools have been employed to evaluate the role

of mouse basophils in myocardial infarction (MI) (70), renal fibrosis (71),

cancer (72–75), autoimmune disorders (76, 77), and chronic obstructive

pulmonary disease (COPD) (62). Table 1 lists the antibody-mediated and

geneticmodels for analyzing the in vivo contribution ofmouse basophils in

various pathophysiological conditions.
Several outstanding reviews have discussed the roles of mouse

and human basophils in allergic disorders (1, 64, 74, 81, 82) and

parasitic infections (66–68). Increasing evidences indicate that

basophils also play relevant roles in several other types of

responses, including autoimmunity (83, 84), myocardial

infarction (70), fibrosis (70, 71, 85), cancer (86–88), and COVID-

19 (89). In this review, we discuss the recent basophil contribution

to the pathogenesis of several non-allergic inflammatory diseases.
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2 Basophils in myocardial infarction

Myocardial infarction (MI) occurs when coronary arteries that

supply oxygen and nutrients to the heart become obstructed by

atherosclerotic arterial walls (90). The consequence is an ischemic

injury that mobilizes a repertoire of innate and adaptive immune

cells (91, 92). Shortly, after ischemic occurs, resident cardiac mast

cells release their preformed mediators (93), resident macrophages

and cardiomyocytes produce cytokines and chemokines (94, 95),

fibroblasts release growth factors (96) and endothelial cells are

activated. These events typically cause an influx of various

immune cells, including neutrophils, monocytes, macrophages

(92, 97), and mast cells (98, 99).

The inflammatory response following MI deeply affects

subsequent cardiac remodeling and fibrosis (100, 101). The

composition of immune cell types identified in the infarcted

myocardium consists mostly of macrophages, monocytes,

neutrophils, DCs, B and T cells, and NK cells (70, 97). Using a

mouse model, Sicklinger and coworkers demonstrated that

basophils infiltrate infarcted hearts, reaching a peak between days

3 and 7 and reverting to baseline on day 14 (70). The administration

of the monoclonal antibody (mAb) anti-FcϵRI (MAR-1) depleted

basophils in the heart, peripheral blood, and spleen. In contrast,
Frontiers in Immunology 03
mast cells and a subset of DCs expressing FcϵRI were not altered

following MAR-1 administration. Depletion of basophils reduced

left ventricular ejection fraction 4 weeks after MI and increased

heart weight compared to control. Moreover, basophil-depleted

mice showed reduced scar thickness.

Sicklinger et al. also studied the inflammatory response after MI

in Mcpt8-Cre-transgenic (Baso-KO) mice constitutively deficient in

basophils (57). In this model, the infarct size did not differ between

Baso-KO compared to WT mice. However, 28 days after inducing

the MI, the basophil-deficient mice developed cardiac dysfunction

and increased heart weight compared to their WT littermates.

Finally, Baso-KO mice showed increased scar thinning compared

to controls. MI in genetic basophil ablation mice was associated

with an altered cellular inflammatory response in infarcted hearts.

Four days after MI, there was a change in the composition of

monocyte subpopulations in the infarcted myocardium of the

basophil-depleted mice, namely a shift from reparative Ly6Clo

macrophages toward inflammatory Ly6Chi monocytes. This

proinflammatory response could be reversed by the adoptive

transfer of basophils into the basophil-deficient mice. The absence

of basophils was associated with lower concentrations of cardiac IL-

4 and IL-13, two cytokines typically released by mouse (9, 57, 102–

105) and human basophils (9, 16, 36–38, 106–108). The authors
TABLE 1 Antibody-mediated and genetic depletion models for the in vivo study of basophils in different pathological conditions.

Methods to deplete basophils Examined pathological conditions References

Antibody-mediated

Monoclonal antibody (mAb) anti-FcϵRI (MAR-1) IgE-mediated chronic allergic dermatitis (IgE-CAI) (54)

mAb anti-CD200R3 (Ba103) Description of the mAb (78)

mAb MAR-1 Allergic inflammation (79)

mAb MAR-1 Myocardial infarction (MI) (70)

mAb anti-CD2003 (Ba103) Emphysema (62)

mAb MAR-1 Kidney fibrosis (71)

Genetically engineered mice

Mcpt8Cre mice N. brasiliensis infection
IgE-CAI
Systemic anaphylaxis

(57)

Mcpt8DTR mice Tick-borne disease (56)

Runx1 IgE-CAI
Strongyloides infection

(59)

BasTRECK IgE-CAI (59)

BasoDTR mice IgE-CAI (60)

Basoph8xiDTR mice Skin allergic inflammation (61)

Mcpt8Cre/DTR mice Kidney fibrosis (71)

Mcpt8DTR mice Emphysema (62)

Mcpt8iCreERT2Stim1fl/fl IgE-CAI (63)

Mcpt8Cre mice MI (70)

CT-M8 mice Systemic Lupus Erythematous (80)
DTR, diphtheria toxin receptor; IgE-CAI, IgE-mediated chronic allergic dermatitis; mAb, monoclonal antibody; MI, myocardial infarction.
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concluded that the IL-4/IL-13 secreted by basophils infiltrating

these lesions is critical in the transition from inflammatory

monocytes to reparative macrophages (81, 109) Figure 1

illustrates the proposed mechanisms by which basophils influence

the inflammatory response following myocardial infarction.

The authors also evaluated the cytokines produced in the heart

3 days after the MI event, both in the Baso-KO and WT mice.

Among the cytokines commonly reported to be produced by mouse

basophils (IL-4, IL-13, IL-6, TNF-a), there was a reduction only of

IL-4 in the injured heart tissue of the basophil-deficient mice. Mice-

deficient in IL-4/IL-13 showed a higher proportion of inflammatory

Ly6Chi monocytes and worsened cardiac function following MI. In

contrast, the increased release of IL-4 by basophils following the

administration of the glycoprotein IPSE/a-1 (a known stimulus of

these cytokines from basophils) resulted in enhanced post-MI

healing. The authors concluded that myocardial basophils are

activated to produce IL-4 following MI and that this response is

critical in healing the damaged myocardium (70). What currently

remains unknown, however, is the exact mode of stimulation in the

myocardium responsible for inducing basophils to produce IL-4.

These experimental results were supported by observations that

human subjects presented with decreased blood basophil numbers

within the first week following an MI event, and that this basopenia

associated with an increased scar size, as measured by late

gadolinium enhancement cardiac MRI after one year of follow-up

(70). Importantly, this correlation persisted after the adjustment of

possible confounders (e.g., initial infarct size, systemic
Frontiers in Immunology 04
inflammation, cardiovascular risk factors). The authors suggested

that basophils may also influence cardiac remodeling after MI

in humans.

These studies, emphasizing the protective role of basophils

following MI, might have translational relevance. For example, a

growing number of allergic patients (e.g., asthma, atopic dermatitis)

are being treated with biologics that block the IL-4/IL-13 axis (e.g.,

dupilumab, an anti-IL-4Ra mAb) (82, 120). Thus, the possible

protective role of basophil-derived IL-4/IL-13 in MI should

stimulate further mechanistic studies to investigate possible links

between these therapies and whether they might impact myocardial

healing following MI.
3 Basophils in kidney fibrosis

Chronic kidney disease (CKD) is a final manifestation of renal

fibrosis and its incidence is increasing (121). Various inflammatory

stimuli, including chronic infections, tissue injury, autoimmune

disorders, chemical insults, and radiation result in kidney fibrosis

(117, 122). Chronic low-grade inflammation is a crucial promoter

of fibrosis (117, 123), but immune pathways orchestrating kidney

fibrosis are largely unknown. Doke and collaborators investigated

the interactions between altered renal tubules and basophils in a

mouse model of kidney fibrosis by employing single-cell RNA-seq

analysis (71). In this model of CKD, mice experienced either a sham

operation or underwent unilateral ureter obstruction (UUO)
FIGURE 1

Proposed mechanism by which basophils influence the inflammatory response to promote wound healing and tissue repair following myocardial
infarction (MI). MI is caused by the rupture of an atherosclerotic plaque causing the occlusion of a coronary artery, which then results in cardiac
tissue damage due to ischemia (90). It has been shown in mice that several immune cells [e.g., monocytes/macrophages, neutrophils, dendritic cells
(DCs), B and T cells, and natural killer (NK) cells, basophils and eosinophils infiltrate the heart after experimental MI (70, 97, 110). For basophils, this
infiltration into the heart is evident 3 days following MI and peaks 7 days after the MI event (70). Monocytes/macrophages represent the most
prevalent immune cells after MI. Cardiac resident macrophages contribute to the initial neutrophil infiltration into the ischemic area (111). Resident
macrophages are reduced in murine models 1 day post-infarction (112). Within 1-3 days infiltrating bone marrow- and spleen-derived Ly6Chi

monocytes are recruited into the injured cardiac tissue and differentiate to Ly6Clow macrophages facilitating clearance of necrotic cardiomyocytes.
At approximately 5-7 days post MI, macrophages adopt a reparative phenotype, contributing to the resolution of inflammation and fibrotic tissue
formation (70). By day 3, infiltrating basophils into the injured cardiac tissue release IL-4 and IL-13, which induce phenotypical and functional
changes within macrophages expressing anti-inflammatory and tissue repair genes (70). Formation of neovessels in the healing infarct play an
important role in repairing the infarcted myocardium (113). Basophils (114), macrophages (115–117), and cardiac mast cells (118, 119), are major
sources of angiogenic factors. Collectively, results in mice models of MI indicate that basophils infiltrating infarcted heart promote resolution of
cardiac inflammation and scar formation.
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surgery. Injured tubular cells (PTs) expressed several cytokines and

chemokines known to induce the recruitment of basophils and

other immune cells. PTs also released platelet-derived growth factor

B (PDGFB), which upon binding to its receptor (PDGFBR) on

fibroblasts induces these cells to release TGF-b. CXCL1, secreted by

profibrotic tubules, recruited CXCR2+ basophils. The density of

basophils (FcϵRI+CD200R3+CD49b+ cells) was markedly increased

in UUO kidneys compared to sham operation. Using antibody-

mediated and genetic approaches to delete basophils, the authors

explored the role of these cells in this model. In the latter model,

injection of diphtheria toxin (DT) into Mcpt8Cre/DTR mice

induced depletion of basophils in the kidney and mitigated

fibrosis in UUO kidney. Single-cell analysis and in situ

hybridization demonstrated overexpression of Il6 by basophils in

UUO kidneys, indicating that mouse basophils are a source of this

cytokine in UUO kidneys. In the other model, basophil depletion

was mediated by MAR-1 administration into WT mice, followed by

UUO surgery and kidney examination 7 days later. MAR-1-treated

mice showed a reduction of the fibrosis markers induced by the

UUO surgery. These results from two complementary models of

basophil depletion highlight the importance of these cells in the

development of experimental kidney fibrosis.

There is evidence that TH17 cells contribute to renal fibrosis

(124). For example, basophils were shown to directly interact with

TH17 cells and macrophages (104, 125). Both TH17 cell number and

IL-17A expression were increased in UUO, but they were lower in

UUO kidneys of basophil-depleted mice. Single-cell RNA-seq

analysis indicated a shift toward TH17 cells in fibrosis. Basophil-

derived IL-6 contributed to enhanced TH17 cell differentiation from

CD4+ T cells in UUO kidney (126). Moreover, the expression of

Il17a and Tgfb1 were higher in UUO kidneys and were lower in

UUO kidneys of basophil-depleted mice. Mice treated with an anti-

IL-6R antibody were partially protected from renal fibrosis.

To evaluate the relevance of the above experimental findings to

human kidney fibrosis, Doke and collaborators examined human

kidneys, comparing those from healthy controls and CKD subjects

using single-cell RNA-seq (71). They found that basophil numbers

were increased in the kidney of patients with CKD, compared to

healthy controls. Moreover, a correlation between renal fibrosis and

basophil density was evident in the kidneys of CKD patients. There

was also a positive correlation between IL6 expression and the

severity of renal fibrosis, which further showed a negative

correlation between IL6 and kidney function. Moreover, renal IL6

correlated with CKD severity. Collectively, the above results reveal

several correlations between both basophil density and their

function and renal fibrosis. Figure 2 schematically illustrates the

contribution of basophil-derived cytokines and TH17 as

downstream mediators in kidney fibrosis.
4 Basophils in cancer

There is mounting evidence showing that basophils are an

important component within the tumor microenvironment

(TME) of several human (72, 88, 131, 132) and mouse
Frontiers in Immunology 05
experimental cancers (72, 73, 132, 133). Moreover, these studies

indicate that basophils may play an active role in the onset and

development of both solid and hematologic tumors (74, 86, 134).

The results from these studies reveal that basophils can have both

pro-tumor and antitumor effects depending on the context and type

of tumor.

In particular, immune profiling studies show that basophils

constitute a portion, albeit small, of the immune landscape in

human non-small cell lung cancer (NSCLC) tumors (131) and in

the immune infi ltrate seen in the early stage of lung

adenocarcinoma (132). Several studies additionally show that

mouse and human basophils support the development and

expansion of M2-like monocytes/macrophages (127–130), which

are often prevalent in the TME favoring tumorigenesis. An in vivo

study in mice points to the importance of IL-4/IL-13, promoting

carcinogenesis by reducing Th1-like immunity (72). Likewise,

basophils are known to secrete vascular endothelial growth factor-

A (VEGF-A) (114) and cysteinyl leukotriene C4 (LTC4) (18, 19)

with the latter more recently implicated in tumorigenesis and

metastasis formation (135). In particular, both tumor growth and

metastases were reduced in mice deficient in the cysteinyl

leukotriene 2 receptor (CysLT2R). Moreover, administration of a

CysLT2R antagonist reduced tumor growth and metastases in WT

mice (135).

In exploring the immune cells involved in human pancreatic

cancer (PC), IL4-expressing basophils were identified in the tumor-

draining lymph nodes (TDLNs). Moreover, their presence was a

negative prognostic marker of patient survival (72). To further

investigate the underlying mechanisms of this association, the

Mcpt8Cre basophil deficient mouse strain (57) and WT mice were

implanted with PC cells. Strikingly, 80% of the WT mice developed

PC-like cancer, but this was not observed in the basophil-deficient

mice (72). The authors reported that TSLP released from basophils

and cancer-associated fibroblasts (CAFs) within TDLNs activated

CD4+ T cells to produce IL-3. CCL7, derived from DCs and

monocytes, promoted basophil recruitment into TDLNs. IL-3-

activated basophils exerted a pro-tumorigenic role by secreting

IL-4, which induced the polarization of Th2 and M2 cells. Thus,

these results not only confirmed/supported the notion that

basophil-derived IL-4/IL-13 promote Th2 and M2-like cells, but

also demonstrated that these cells actively participate in

promoting PC.

With the concept that various basophil-derived products (e.g.,

IL-4, IL-13, VEGF-A, LTC4) promote tumorigenesis, an equally

important issue pertains to the stimuli mediating their release.

Schroeder and colleagues have shown that human basophils

release copious amounts of histamine, IL-4 and IL-13 when co-

cultured with the human lung adenocarcinoma cell line A549 (16).

These responses were dependent on basophils expressing IgE, since

removal/depletion of this immunoglobulin prevented basophil

activation. Since pharmacologic inhibitors of FcϵRI signaling also

suppressed these responses, it seemed clear that basophils were

being activated via IgE/FcϵRI crosslinking to secrete these

cytokines. Importantly, direct contact between basophils and

A549 was necessary and occurred even if the adenocarcinoma

cells were fixed with paraformaldehyde prior to co-culture. In a
frontiersin.org
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follow-up study, the IgE-binding lectin, galectin-3 (Gal-3) expressed

on the A549 cells, proved crucial for basophil activation in these co-

cultures, as A549 clones lacking Gal-3 failed to activate basophils

(136). Gal-3 is widely implicated in various cancers and is a marker

of chronic inflammation (137). These findings reveal a potentially

new mechanism by which Gal-3 expressed by human lung

adenocarcinoma cells can activate basophils to release cytokines

and pro-inflammatory mediators that promote tumorigenesis.

Additional investigations are required to fully understand all

aspects of this mechanism and how it might be targeted for

therapeutic intervention.

By utilizing a model whereby the skin of mice were topically

exposed to the proinflammatory 12-0-tetradecanoylphorbol-13-

acetate (TPA), Hayes et al. showed that serum IgE increased in

these animals, which was accompanied by increased numbers of

IgE-bearing basophils that promoted skin tumorigenesis (73). In a

similar model of epithelial carcinogenesis involving the use of [7,12-

dimyethylbenz(a)anthracene (DMBA) and subsequent exposure to
Frontiers in Immunology 06
TPA], mice lacking IgE (lgh7-/-) developed less tumors compared to

WT mice. The influx of basophils into skin was promoted by

CXCR4, TSLP and IL-3. IgE-signaling played a key role in

basophil activation and infiltrating tissue basophils expressed

Cxcr2, Cxcr4, and Ptgdr2 (CRTH2, the PGD2 receptor). Tumor

development was markedly reduced when conducting the same

experiment in Mcpt8Cre/+ mice, which were made deficient in

basophils but retained normal mast cell numbers (57).

Collectively, these in vivo results further indicate that FceRI-
signaling in basophils promotes inflammation-driven epithelial

hyperplasia and tumor growth. While the role of galectin-3 in

this tumorigenesis was not investigated, it seems worthy of future

investigation, as mechanisms of this response are further elucidated.

In contrast to the belief that basophils contribute to

tumorigenesis, association studies have shown evidence that

higher expression of basophils (i.e., CD123+, CCR3+, FceRI+) in

tumors correlated with better overall survival (88). In particular,

increased basophil numbers are associated with beneficial outcomes
FIGURE 2

Kidney and wild-type mice subjected to unilateral ureter obstruction (UUO) surgery revealed the presence of neutrophils, monocytes/macrophages,
dendritic cells (DCs), and basophils (71). Injured proximal tubular cells (PTs) in UUO kidney express Il34, Cxcl10, and the key profibrotic factor (71),
platelet derived growth factor subunit B (PDGFB). PDGFB released by injured tubular activates the PDGFB receptor (PDGFBR) on fibroblasts to
release TGF-b. Profibrotic PT cells participate in the recruitment of myeloid and lymphoid cells and the local fibroblast activation. CXCL1 released
from PT cells induces the recruitment of basophils through the engagement of CXCR2. Basophils in UUO kidney can be activated by IL-33 and IL-18
released from the stroma to secrete IL-6. This cytokine favors TH17 differentiation from CD4+ T cells in UUO kidneys. IL-17A and TGF-b released
from TH17 cells contribute to renal fibrosis. IL-4 and IL-13 released from activated basophils can contribute to macrophage activation (127–130).
PDGF released from injured PT cells activates the PDGFR on myofibroblasts causing the release of TGF-b. Macrophages are also a major source of
IL-6. Collectively, these findings indicate that basophils and their mediators contribute to kidney fibrosis.
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in several cancers, including sarcoma, lung, and breast. While

several additional markers (e.g., CD63, CD203c) indicated that

these tumor-associated basophils were, indeed, activated, relevant

mediators commonly released by these cells (histamine, LTC4, IL-4,

IL-13) were not investigated. Thus, the exact contribution of

basophils in the increased survival rates remains challenging to

interpret at this time. Likewise, the same group has reported

evidence that the in vitro responses of peripheral blood basophils

from cancer patients can predict survival rates. While such

correlations are intriguing, the exact mechanisms by which

basophils contribute to increased survival rates is an area

requiring further elucidation.

In agreement with the concept that basophils mediate a

beneficial role in cancer, evidence from a mouse melanoma

model showed that basophils released CCL3 and CCL4, which

induced CD8+ T cell recruitment and promoted tumor rejection

(75). MAR-1 administration in these melanoma-bearing mice

depleted basophils and prevented melanoma rejection. However,

it is important to note that basophil depletion using the MAR-1 is

also reported to deplete/activate other immune cells expressing

FcϵRI, including mast cells, monocytes and DCs (138, 139).

Whether these cells were also depleted and possibly involved in

tumoricidal activity remains unclear.

IL-33 has been shown to promote tumoricidal activity mediated

by eosinophils (140, 141), possibly by upregulating granzyme B

(142). As noted, this cytokine also activates both human and mouse

basophils (9, 36, 38, 143–145). Hence, IL-33-activated basophils co-

cultured with B16.F10 melanoma cells were shown to inhibit tumor
Frontiers in Immunology 07
growth compared to melanoma cells co-cultured with un-

stimulated basophils (142).

Overall, there are several studies indicating that basophils

promote tumorigenesis (72, 74). In this instance, the tumor cells

cause basophils to release cytokines/chemokines that may facilitate

the development of protumorigenic TME (Figure 3). Interestingly,

many of the same TME elements involved in this activity (e.g., IL-4,

IL-13, galectin-3, VEGF-A, M2 and Th2 cells) are also implicated in

promoting wound healing. Conversely, in certain tumors (e.g.,

melanoma), basophils mediate anti-tumor effects (75, 88, 154)

(Figure 4). The mechanisms underlying the protective effects of

basophils remain largely unknown. It has been suggested that

certain mediators (e.g., TNF-a and granzyme B) released by

basophils exert tumoricidal effect. In addition, other molecules

(e.g., CCL3 and CCL4) can favor the recruitment of cytotoxic

CD8+ T cells (74). Collectively, these findings highlight some

apparently conflicting results regarding the role that basophils

potentially exert in different models of tumorigenesis, and thus

warrant further investigation.
5 Basophils in autoimmune disorders

5.1 Systemic lupus erythematosus

With the discovery of IgE (168, 169), immunologists focused

their attention on understanding its relevance for allergic disorders

and host defense against parasitic infestations (2, 64, 81, 170).
FIGURE 3

Basophils can promote tumor progression through different mechanisms. Galectin-3 (Gal-3) is a lectin expressed by several cancer cells (137), including
the A549 adenocarcinoma cell line (EC-Gal-3). Gal-3 activates human basophils to release IL-4 and IL-13 (16, 136), which are widely known to promote
M2-like macrophages, the major players in the TME (127–130). IL-4+ basophils have been found in the TME of human and experimental pancreatic
cancer (72). Human and mouse basophils also secrete VEGF-A and angiopoietin 2 (ANGPT2) that can promote tumor angiogenesis (114, 146–148).
Basophils can promote IL-6 and IL-8 release from epithelial cell lines through a mechanism requiring cell-to-cell contact (149) (JTS, unpublished).
Tumor cell-derived IL-6/IL-8 play a critical role in metastasis formation (150). Dendritic cells and monocytes activated by EC-Gal-3 release TNF-a and
IL-6 in vitro (151). These cytokines, combined with M2 cell-derived IL-10 and TGF-b induce T-cell exhaustion by up-regulating checkpoint inhibitors (i.e.,
PD-1), which interact with tumor cell-associated PD-L1 to decrease cytotoxic T cell activity (152, 153). These results suggest that basophils can promote
tumorigenesis in certain experimental and clinical conditions. Adapted from Poto et al. (74).
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However, circulating IgE autoantibodies in rheumatoid arthritis

and SLE patients had been reported as early as the late 70’s (171).

While these early studies were conducted mostly using small

cohorts of patients, they did confound the thought at the time

that atopy was generally limited to patients suffering from allergic

disease and/or parasitic infestations.

Systemic lupus erythematosus (SLE) is an autoimmune disorder

associated with circulating self-reactive antibodies (172) (i.e., IgG

anti-double-stranded DNA: anti-dsDNA). Several studies reported

increased serum IgE in SLE, which correlated with severe disease

manifestations (76, 173–175). A portion of the circulating IgE in these

SLE patients was determined to be self-reactive, binding to nucleic

acids, as was often the case for most IgG autoantibodies (176). In fact,

several studies identified IgE against at least one autoantigen in SLE

patients (171, 173, 177–182). Importantly, IgE anti-dsDNA

ant ibodies are assoc ia ted with disease ac t iv i ty and

hypocomplementemia (177). Moreover, the levels of IgE anti-

dsDNA proved to be an independent risk factor for SLE activity,

even after excluding the levels of IgG anti-dsDNA (178). One study

reported that IgE anti-dsDNA antibodies are found in ~ 70% of lupus

patients, and are possibly linked to kidney damage (178). In a Franco-

American cohort, IgE anti-dsDNA antibodies did associate with

lupus nephritis, whereas IgE against other nucleic acid–containing

autoantigens (Sm, SS-A/Ro, and SS-B/La) did not associate with

disease (177). These findings suggested that IgE autoantibodies could

play a role in the pathophysiologic mechanisms of lupus nephritis.
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The French-American collaborative study identified IgE

autoantibodies against three new autoantigens: APEX nuclease 1,

N-methylpurine DNA glycosylase and CAP-Gly domain-containing

linker protein family member 4. These autoantigens specifically

elicited IgE autoantibodies but not IgG autoantibodies (177).

Collectively, these results indicate that IgE autoantibodies are

prevalent in lupus nephritis patients and are associated with disease

activity. Likewise, these findings provided the impetus for treating

SLE patients in a randomized clinical trial using anti-IgE mAb

(omalizumab) (NCT01716312).

Charles et al. first demonstrated mechanistic evidence that

basophils are implicated in the pathobiology of lupus nephritis by

using a spontaneous murine model of SLE (Lyn-/- mice) (76). This

observation was subsequently confirmed using a model of pristane-

induced lupus-like nephritis (183) as well as in a cohort of SLE

patients (181). Basophils from SLE patients express significantly

higher levels of the basophil activation marker, CD203c, compared

to healthy controls (76). It was also found that the basophil density

in both lymph nodes and spleen of SLE patients was higher than

controls. Basophil-derived IL-4 reportedly induced B cell class

switching toward IgE, and the autoreactive IgE produced was

determined to be a relevant inducer of lupus (177, 178, 181, 184).

Basophils from human patients with SLE and from two different

lupus-like mouse models, overexpress both PGD2 receptors

(PTGDR-1 and PTGDR-2) and CXCR4, the receptor for CXCL12

(185). Basophils seemingly contribute to SLE pathobiology by
FIGURE 4

Basophils can promote tumor suppression through different mechanisms. Vascular endothelial growth factors (VEGFs) released by tumor and
immune cells in the TME (e.g., macrophages, mast cells) (155–159) induce basophil recruitment via the activation of VEGFR2 on these cells (155).
IL-3, released from intratumoral lymphocytes, mast cells and tumor cells (10, 160, 161), is the major growth, differentiation, priming and activating
factor for both human and mouse basophils via the activation of the IL-3 receptor (IL-3Ra/CD123) (8–10). Intratumoral basophils secrete CCL3 and
CCL4 which favor CD8+ T cell infiltration in TME, favoring melanoma rejection in mice (75). IL-33 produced by epithelial and tumor cells, plays a
critical role in tumorigenesis (162) by upregulating granzyme B mRNA and the surface expression of CD63 in basophils. Mouse basophils activated by
IL-33 cause melanoma cell death in vitro (142). Mouse (104, 163) and, in certain conditions, human basophils (164, 165) release TNF-a and granzyme
B (142, 166), which exerts cytotoxic activity on cancer cells (102, 167). Tumor resident basophils overexpressing CD123, CCR3, CD63, CD203c
mRNAs are associated with improved outcome in ovarian cancer (88, 154). These findings indicate that, under specific experimental and clinical
circumstances, basophils can play an anti-tumorigenic role. Adapted from Poto et al. (74).
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migrating to secondary lymphoid organs in a prostaglandin D2

(PGD2)- and CXCL12-dependent manner (185). These basophils

can then support plasma cell functions by amplifying the

production of autoantibodies and circulating immune complexes

(76, 183, 185). Figure 5 schematically illustrates the mechanisms

presumably linking IgE and basophils to SLE.
5.2 Rheumatoid arthritis

Rheumatoid arthritis (RA) is a systemic autoimmune disease

primarily involving inflammation of the joints (187). On a genetic

background (i.e., HLA-DR4 found in ~ 70% of RA patients

compared to 30% of controls), post-translational citrullination of

several self-proteins generates altered self-antigens that activate

CD4+ T cell responses in RA patients. Citrullination occurs via

the conversion of arginine into citrulline by peptidyl arginine

deiminases (PADs). Anti-citrullinated protein antibodies

(ACPAs) are specific and predictive for RA and are implicated in

the pathogenesis of RA (187).

IgE antibodies against citrullinated fibrinogen were detected in

the serum of ~ 60% of ACPA+ RA patients (188). These authors

reported that basophils from ACPA+ RA patients can be activated

by citrullinated protein, whereas basophils from healthy controls

were not activated. Serum from IgE-ACPA+ RA patients passively

sensitized human FcϵRI+ expressing rat basophil cells (RBL) for

activation by citrullinated proteins. These finding indicate that

basophils from IgE-ACPA+ RA patients can be activated by

citrullinated antigens. The results of this original study deserve to

be extended using citrullinated proteins specific for RA patients.
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5.3 Autoimmune encephalomyelitis

Experimental autoimmune encephalomyelitis (EAE) is an

animal model widely used to investigate the mechanisms

underlying multiple sclerosis (MS) (189). EAE differs from MS in

needing to be induced rather than occurring spontaneously,

although recent transgenic mouse models have indicated

spontaneous development of EAE (189, 190). However,

inoculation with central nervous system antigens and adjuvant or

passive transfer of lymphocytes reactive with these antigens are

often employed to induce EAE in many animal strains (189).

Yuk and collaborators have investigated the mechanisms by

which basophils can contribute to TH17 differentiation and EAE

pathogenesis (126). For example, IL-17 is highly expressed in MS

lesions (191) and TH17 cells mediate blood-brain barrier disruption

and the expression of IL-17 and IL-22 (192). TH17 differentiation

requires IL-6 and TGF-b (193), yet whether basophils promote

TH17 induction in EAE had remained unknown. To address this

possibility, Yuk and coworkers demonstrated that IgE cross-linking,

or the use of cholera toxin (CT), induced the release of IL-6 and IL-4

from bone marrow-derived basophils (126). Moreover, they found

that basophils mediate TH17 differentiation through IL-6 secretion.

The authors also examined whether basophils contribute to TH17

polarization in vivo. WT and IL-6-deficient mice were challenged

with CT plus antigen. IL-17A producing CD4+ T cells were reduced

in IL-6 deficient animals, suggesting that IL-6 is critical for the

antigen-induced TH17 response. The role of basophils was also

examined in basophil-deficient mice. The authors found that

basophil-derived IL-6 cooperates with DCs to promote the

differentiation of CD4 T cells into TH17 cells. TH17 responses
FIGURE 5

Proposed mechanism linking IgE basophils to autoimmunity in systemic lupus erythematosus (SLE). Serum IgE levels are increased in SLE and
correlate with severe disease manifestations (76, 173–175). IgE against several autoantigens have been reported in SLE (171, 173, 177–182). Basophils
from SLE patients show an activated phenotype in overexpressing CD203c (76), the prostaglandin D2 (PGD2) receptor [chemoattractant receptor-
homologous molecule (CRTH2) expressed on Th2 cells], and CXCR4, the receptor for CXCL12 (185). Once recruited to the secondary lymphoid
organs, activated basophils release IL-4, which drives B cell isotype switching toward IgE and autoreactive IgE (177, 181). Dendritic cells (DCs) in
lymph nodes also act on B cells, triggering their differentiation into plasma cells and potentiating the formation of self-reactive autoantibodies (186).
IgE immune complexes contribute to basophil activation. Deposits of IgG and IgE autoantibodies in the kidney play a major role in lupus nephritis.
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were reduced in the absence of basophils or IL-6. Collectively, these

findings suggest that basophil-derived mediators (e.g., IL-6) are

involved in TH17 cell differentiation, allowing TH17 cells to migrate

to the site of inflammation mediating pathogenic functions in EAE.

These studies identify basophils and their mediators as candidates

for investigating pathogenic mechanisms in MS patients. It should

be noted that EAE pathology is not driven exclusively by TH17 and

IL-17; other cells (e.g., CD8+, T cells, gd T cells) and cytokines may

also be involved (194).
5.4 Mixed connective tissue disease

Mixed connective tissue disease (MCTD) is a rare systemic

autoimmune disease (incidence ~ 2 per 100,000 adults) affecting

mainly women (~ 90%) (195). Its clinical manifestations often

overlap with other connective tissue disorders, including SLE,

systemic sclerosis, or myositis (196). The defining immunological

feature of MCTD is the presence of autoantibodies recognizing the

70-kDa subunit of the U1 small nuclear ribonucleoprotein (U1-

snRNP 70k) in the absence of IgG against dsDNA or to Sm, two SLE

hallmarks (197). The pathophysiology underlying MCTD remains

poorly understood, but posttranslational modifications of U1-

snRNP are known to generate neoepitopes that may contribute to

the disease (198). These neoepitopes can result in T cells

recognizing U1-snRNP, which ultimately lead to the induction

and proliferation of autoreactive B cells synthesizing

autoantibodies (199). Immune complexes made of anti-U1snRNP

antibodies and their antigen can activate endothelium and immune

cell via a variety of receptors (e.g., Fc, complement, and Toll-like

receptors, TLR), resulting in vascular disease and tissue injury (200–

203). Pulmonary involvement characterizes more than 70% of

MCTD patients (197). A mouse model has been described

whereby mice immunized with human U1-snRNP develop a

MCTD-like lung disorder (204).

Lamri and collaborators observed that basophils from patients

with MCTD present an activated phenotype (77), sharing some

features with basophils from SLE patients (i.e., overexpression of

CD203c, CXCR4) (76, 185). In addition, basophils from MCTD

expressed increased surface markers such as CCR3, yet unchanged

expression levels of CD62L (77). A similar basophil phenotype was

found in a MCTD-like mouse model in which activated basophils

infiltrated in the lungs and lymph nodes. To study the contribution

of basophils in the development of lung pathology in this model,

basophils were depleted through the injection of DT in female

Bcpt8DTR mice. Basophil depletion reduced the cellular infiltrates

(e.g., CD4+ T cells) in the lungs. The authors also examined the

MCTD-like lung disease in IgE-deficient mice (Igh7-/-). Similar to

that seen with basophil depletion, IgE deficiency also protected mice

from developing immune cell infiltration and lung fibrosis. These

results indicate that basophils play a major effector role in inducing

lung fibrosis via an IgE-dependent mechanism. The authors

suggested that basophils, activated by the U1-snRNP antibodies
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complex, accumulate in the airways, where they release IL-4

contributing to lung fibrosis development. In this scenario, IgE-

mediated basophil activation may play both immunoregulatory and

effector roles in the development of MCTD lung disease. These

mouse models identify basophils, and IgE as candidates for

investigating pathogenic mechanisms in patients with MCTD.
6 Basophils in IgG4-related disease

IgG4-related disease (IgG4-RD) is a rare multi-organ disorder

characterized by lympho-plasmacytic infiltration, fibrosis, and

obliterative phlebitis (205, 206). This condition is characterized by

IgG4+ plasma cell infiltration in different organs (e.g., biliary tree,

pancreas, retroperitoneum, salivary and lacrimal glands, and lymph

nodes) (207, 208). The disease was first described in 2003 in a

cohort of seven patients with a diagnosis of autoimmune

pancreatitis (AIP) associated with IgG4+ plasma cell infiltration

(209). Although the pathogenic mechanisms underlying IgG4-RD

remain elusive (206), an increased production of Th2 cytokines (IL-

4, IL-5, IL-13) has been identified in IgG4-related cholangitis and

pancreatitis (210). These cytokines favor IgE production and

eosinophil recruitment. It has also been reported that in patients

with IgG4-RD, there is an accumulation of T regulatory cells

(Tregs) in the blood, along with evidence that these cells infiltrate

affected tissues, showing overexpression of IL-10 and TGF-b (211,

212). TGF-b released from Tregs can stimulate fibroblasts to

produce collagen. IL-10 produced by Tregs can also stimulate

secretion of IgG4 from plasma cells. The involvement of IL-10

and TGF-b secreting basophils has been suggested in patients with

IgG4-related submandibular gland disease (213). B cell activating

factor (BAFF) and APRIL, in combination with IL-21, can promote

the expansion of IgG4-committed B cells (214, 215).

Two studies performed by different investigators in Japan

proposed a possible mechanism whereby basophils are stimulated

via a TLR-dependent activation involving IgG4-RD (214, 216).

When activated by TLR2/TLR4 agonists, basophils from healthy

donors induced B cells to produce IgG4 and IgG1 (214). TLR4

activation of basophils induced the release of IL-13 and BAFF.

Basophils from IgG4-RD patients, upon activation with TLR2 and

TLR4 ligands, induced more IgG4 than IgG1 when co-cultured with

B cells. The authors suggested that the activation of TLRs in

basophils play a role in IgG4-RD development (214).

Another study examined the role of basophils from peripheral

blood and pancreatic tissue in patients with autoimmune

pancreatitis (AIP) (216). AIP is a manifestation of IgG4-RD

(208). Basophil density in the pancreas of AIP patients was higher

than in alcoholic pancreatitis (216). In some of these patients,

peripheral blood and intrapancreatic basophils were TLR2 or TLR4

positive. The authors suggested that basophils activated by TLRs

could play a role in AIP. At present, the possible involvement of

basophils and their mediators in the pathogenesis of different

localizations of IgG4-RD remains unknown.
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7 Basophils in chronic obstructive
pulmonary disease

Chronic obstructive pulmonary disease (COPD) is a primary

cause of morbidity and mortality worldwide (217). COPD is

characterized by chronic inflammation, progressive airflow

limitation and emphysema. Relative to asthma, the cellular and

molecular mechanisms of COPD remain ill defined (117). It also

differs in being characterized by a non-reversible airway obstruction

(82, 218).

Shibata and collaborators elegantly investigated the potential

role of basophils and their mediators in an elastase-induced murine

model of COPD (62). Intranasal elastase elicited the recruitment of

monocytes to the lung, followed by differentiation into interstitial

macrophages (IMs) rather than alveolar macrophages (AMs).

Matrix metalloproteinase-12 (MMP-12) played a key role in

developing elastase-induced emphysema and was mainly

expressed by IMs. The expression of Il4, but not Il10, Il13, or

Tgfb was upregulated in the lung after the instillation of elastase.

Expression of Il4 mRNA was detected mainly in basophils, which

accumulated in the lung. The authors used two complementary

methods to deplete basophils in vivo, namely: diphtheria toxin (DT)

treatment ofMcpt8DTR mice and anti-CD200R3 antibody treatment

of WT mice. Using these models, they demonstrated impaired

emphysema formation in basophil-depleted mice. They suggested

that basophil-derived IL-4 promoted the differentiation of

infiltrating monocytes into MMP-12–producing IMs that caused

the alveolar wall destruction and emphysema formation. The

authors concluded that the basophil-derived IL-4/monocyte–

derived IM/MMP-12 axis plays a role in emphysema

development. They also proposed that this novel cellular and

humoral axis may be a potential target for COPD treatment.

In other findings, both eosinophils and basophils have been

detected in several lung compartments of COPD patients,

particularly in very severe COPD (219). Eosinophilic infiltration

was patchy, and mainly confined eotaxin signatures with CCL11+

fibroblasts and CCL24+ macrophages. Basophils were preferentially

localized in lymphoid tissue. These studies identify basophils and

perhaps eosinophils as candidates for future investigations on their

role in the pathogenic mechanisms of COPD.
8 Basophils in COVID-19

The current COVID-19 pandemic is caused by the novel severe

acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) (220). A

dysregulated innate immune response is a key driver of clinical

complications culminating in COVID-19 (221, 222). High levels of

several cytokines (e.g., IL-1, IL-6, TNF-a, CXCL8) are detected

early after viral infection, and many of these mediators are

associated with granulocyte activation (223). The recombinant S1

subunit of the SARS-CoV-2 Spike protein activated in vitro human

peripheral blood monocytes to release several cytokines (e.g., IL-6,
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IL-1b, TNF-a) and chemokines (e.g., CXCL10/IP-10, CCL3/MIP-

1a, CCL4/MIP-1b) linked to COVID-19 (224). In this study, the S1

subunit did not induce any of these cytokines/chemokines from

highly purified basophils (224). Another study reported that live

SARS-CoV-2 virus induced IL-4 and IL-13 release in vitro from

unprimed and IL-3-primed basophils (225). Although basophils

have been implicated in the host response to other viruses (119,

226–229), the in vivo significance of basophil-derived cytokines/

chemokines in the pathogenesis of COVID-19 remains unclear.

A detailed analysis at the single-cell resolution of granulocyte

diversity in peripheral blood of COVID-19 patients demonstrated

an increased level of both mature and immature neutrophils (230).

By contrast, decreased basophils and eosinophils are often

associated with severe COVID-19 (230, 231). Moreover, the

emergence of PD-L1 expression on peripheral blood basophils (as

defined as CD11b+SSlowCrTH2+ cells) has been associated with

COVID-19 severity (232). It should be pointed out that in vitro

incubation of live SARS-CoV-2 with basophils purified from

normal donors did not induce the expression of PD-L1 (225),

whereas INF-g increased PD-L1 expression on IL-3-primed

basophils (233). High basophil counts are associated with a lower

risk of developing severe COVID-19 (234). Collectively, these

interesting results potentially implicate that basophils and/or their

mediators play a protective role in COVID-19.
9 Basophils in inflammatory
bowel diseases

Crohn’s disease (CD) and ulcerative colitis (UC) are the most

common chronic inflammatory bowel disorders (IBDs) (235, 236).

The inflammatory infiltrate in IBDs is canonically characterized by

activated T cells, macrophages, DCs, neutrophils, and TH17 cells

(236). Basophils were identified in the inflamed mucosa of IBD

patients that also expressed IL-33 (125). When activated by IL-3

and IL-33, basophils amplified TH17 cytokine expression in T cells.

Basophils, but not mast cells, accumulated in inflamed CD and UC

tissues compared to non-inflamed mucosa (237). No basophils were

detected in colons of healthy control donors, indicating selective

recruitment and/or survival of these cells at inflamed mucosal sites

in patients with IBDs. The accumulation of basophils occurred in

colons of untreated patients as well as in patients treated with 5-

aminosalicylate acid or immunomodulators (e.g., glucocorticoids

and/or immunosuppressive agents and/or biologics). Activated T

cells infiltrate inflamed colons and are a major source of IL-3 (10)

that may contribute to the infiltration and/or survival of basophils

locally (238). Basophils increased IL-17 production and promoted

the differentiation of IL-17+ cells. Collectively, these results

demonstrate that basophils accumulate in the inflamed colon in

patients with the two most frequent IBDs and may thus contribute

to CD and UC pathogenesis. Figure 6 schematically illustrates the

potential mechanisms by which basophils, together with other

immune cells, contribute to IBD.
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10 Basophils in eosinophilic
granulomatosis with polyangiitis

Eosinophilic granulomatosis with polyangiitis (EGPA) is a rare

systemic disease characterized by eosinophilic asthma, sinus and

pulmonary infiltrates, and eosinophil vasculitis (245). Lung biopsies

are rarely done in EGPA and adequate animal models are not

currently available. Therefore, the lung immunopathology of this

disorder has not been carefully examined. Basophils were detected

in four offive EGPA open lung biopsies (246), whereas no basophils

were identified in seven control lung biopsies. Mast cell density was

increased in EGPA patients compared to the control lungs. These

preliminary data show that EGPA lung immunopathology includes

infiltrates of eosinophils, basophils, and mast cells. Further studies

appear necessary to identify possible interlinks between basophils

and IgE and delineate the protective versus rather harmful effects of

these conditions in EGPA.

Therapeutic management of EGPA is based on glucocorticoids

alone and often in combination with immunosuppressive agents

(247). Several observational studies have evaluated the role of

omalizumab on maintenance therapy in EGPA (247–249). The

results of these studies suggest that omalizumab may be clinically

beneficial for EGPA patients improving asthma symptoms, lung

function, and may have a glucocorticoid-sparing effect (247–249).

There is the possibility that the effects of omalizumab in EGPA
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patients may be related, at least in part, to its effects on human

basophils (250).
11 Basophils in eosinophilic
esophagitis

Eosinophilic esophagitis (EoE) is a chronic, food-driven allergic

disease characterized by esophageal eosinophilia that affects

children and adults (251–253). The histopathological and clinical

features of EoE have been attributed to overproduction of the type 2

cytokines IL-4, IL-5 and IL-13, which mediate profound alterations

in the esophageal epithelium (254–256). The esophageal epithelium

likely has an important role in the initiation of EoE via production

of the epithelium-derived cytokines thymic stromal lymphopoietin

(TSLP) and IL-33 (257, 258). EoE is associated with polymorphism

in the gene that encodes TSLP in children (259, 260). In a mouse

model, EoE-like disease developed independently of IgE, but was

dependent on TSLP and basophils (257). Targeting TSLP or

basophil depletion during the sensitization phase limited disease

and improved established EoE-like disease. Interestingly, increased

TSLP expression and basophil responses were demonstrated in

esophageal biopsies of patients with EoE (257). Collectively, these

results suggest that the TSLP-basophil axis contributes to the

pathogenesis of EoE.
FIGURE 6

Hypothetical mechanisms by which dysregulated epithelial cells and inflammatory signaling by lamina propria immune cells in response to
microbiota, contribute to inflammatory bowel disease (IBD) pathogenesis. Intestinal epithelial cells separate the lamina propria and deeper tissues
from the luminal environment containing the intestinal microbiota (239). Increased intestinal permeability can potentiate immune-mediated systemic
and intestinal inflammation in IBD (240). Damaged epithelial cells release alarmins (IL-33, TSLP, and IL-25) (115, 123, 241), which then regulate
underlying immune cells (242), including basophils (9), macrophages (157), and DCs (243). Macrophages can damage epithelial cells directly by TNF-
a secretion. Basophils accumulate in inflamed IBD compared to non-inflamed mucosa and to colon of healthy controls (125). Activated T cells
infiltrate inflamed colons and release IL-3 which can contribute to the attraction and/or survival of basophils locally (238). Specific components of
gut microbiota induce the emergence of intestinal TH17 cells. Basophils may also promote TH17 responses (125). Activated T cells release IL-23,
which converts homeostatic TH17 cells to pathogenic TH17 cells, and play a major role in Crohn’s disease (244).
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In another model of EoE-like disease, mice were epicutaneously

sensitized with ovalbumin (OVA), followed by intranasal OVA

challenge (258). This procedure promoted eosinophilic esophagitis,

upregulation of Th2-like cytokines and the IL-33 receptor (ST2). In

vivo basophil depletion or disruption of the IL-33-ST2 axis mitigated

these features. These results suggest that basophils mediate

experimental EoE through IL-33-ST2 interaction. These authors also

found that pediatric patients with EoE have increased expression of

IL33 and IL1RL1 (encoding ST2) in esophageal biopsies (258).

Taken together, these studies endorse the paradigm that

epithelium-derived cytokines (i.e., TSLP and IL-33) play a role in

the pathogenesis of EoE through the activation of basophils and the

development of type 2 inflammatory milieu.
12 Concluding remarks
and perspectives

Basophils are extremely rare cells, accounting for 1% or less of

the circulating blood leukocytes, both in humans and mice. As a

result, there was limited capacity to investigate the biology of these

immune cells for several decades following their discovery in 1879

(261). However, advances during the past ~30 years have increased

interest with compelling new evidence that they represent

important effector cells in allergic inflammation (1, 64, 81, 82)

and exert a protective role in parasitic infections (66–68). The

development of new murine genetic tools and different models of

inflammation has also generated novel insight into the potential

contribution of basophils to an increasing spectrum of diseases. In

particular, basophils and their mediators are now implicated as

important participants in pathophysiologic conditions never before

considered, including MI (70), kidney fibrosis (71), several

autoimmune disorders (76, 77, 126), different cancers (72, 73, 75),

COPD (62), and COVID-19 (230–232, 234).

In several pathological conditions, such as kidney fibrosis (71),

autoimmune disorders (76, 77, 125, 126), some cancers (72, 73), COPD

(62), IgG4-RD (208), IBD (125, 237), and EoE (257, 258) basophils and

their mediators play a harmful role. In other inflammatory disorders,

such as MI (70), certain cancers (154) (75), and COVID-19 (230–232,

234), basophils appear to play a protective role. The dichotomous

pathogenic role of basophils is intriguing and will undoubtedly be the

subject of future investigations. There is the possibility that, like mast

cells (262–266), macrophages (104, 132, 267, 268), neutrophils (269–

272), and eosinophils (273, 274), subpopulations of basophils may also

exist. In this regard, distinct phenotypic and functional basophil

subpopulations have been described in human peripheral blood

(275). Moreover, it has already been demonstrated that tissue-

resident basophils differ from circulating basophils in mice (276) and

possibly in humans. Finally, basophils might possess a high degree of

plasticity and can modify their phenotype and functional

characteristics when exposed to different local environments.

Whatever the case, the possible existence of basophil subpopulations

and the disease-specific heterogeneity of these cells need to be

thoroughly and accurately explored in both humans and mice by

novel analytical tools (e.g., single-cell RNA seq, CyTOF).
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Finally, several biologics have been approved for the treatment

of severe allergic disorders and are showing remarkable efficacy

(218). Those designed primarily to target mast cells, eosinophils,

and Th2 cells (e.g., omalizumab, mepolizumab, benralizumab and

dupilumab) also target human basophils and/or their products (250,

277). Thus, there is the possibility that these biologics could prove

efficacious in helping to combat other unsuspected conditions/

diseases (e.g., cancer, autoimmunity, fibrosis) where basophils are

recently implicated. In contrast, with mounting evidence that

basophils and their mediators also play critical homeostatic and

protective roles (70, 75, 226, 230–232, 234), caution may be

warranted when these therapeutic interventions are used.
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