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The landscape of the
immunoglobulin repertoire in
endemic pemphigus foliaceus
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Gabriel Adelman Cipolla1, Danielle Malheiros1, Axel Künstner2,
Ticiana D.J. Farias1, Carolina M. Camargo1,
Maria Luiza Petzl-Erler1, Hauke Busch2†, Anke Fähnrich2*†

and Danillo G. Augusto1,3*†

1Programa de Pós-Graduação emGenética, Universidade Federal do Paraná, Curitiba, Brazil, 2Medical
Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck,
Lübeck, Germany, 3Department of Biological Sciences, The University of North Carolina at Charlotte,
Charlotte, NC, United States
Introduction: Primarily driven by autoreactive B cells, pemphigus foliaceus (PF) is

an uncommon autoimmune blistering skin disease of sporadic occurrence

worldwide. However, PF reaches a prevalence of 3% in the endemic areas of

Brazil, the highest ever registered for any autoimmune disease, which indicates

environmental factors influencing the immune response in susceptible

individuals. We aimed to provide insights into the immune repertoire of

patients with PF living in the endemic region of the disease, compared to

healthy individuals from the endemic region and a non-endemic area.

Methods: We characterized the B-cell repertoire in i) nontreated patients (n=5);

ii) patients under immunosuppressive treatment (n=5); iii) patients in remission

without treatment (n=6); and two control groups iv) from the endemic (n=6) and

v) non-endemic areas in Brazil (n=4). We used total RNA extracted from

peripheral blood mononuclear cells and performed a comprehensive

characterization of the variable region of immunoglobulin heavy chain (IGH) in

IgG and IgM using next-generation sequencing.

Results: Compared to individuals from a different area, we observed remarkably

lower clonotype diversity in the B-cell immune repertoire of patients and

controls from the endemic area (p < 0.02), suggesting that the immune

repertoire in the endemic area is under geographically specific and intense

environmental pressure. Moreover, we observed longer CDR3 sequences in

patients, and we identified differential disease-specific usage of IGHV

segments, including increased IGHV3-30 and decreased IGHV3-23 in patients

with active disease (p < 0.04). Finally, our robust network analysis discovered

clusters of CDR3 sequences uniquely observed in patients with PF.

Discussion:Our results indicate that environmental factors, in addition to disease

state, impact the characteristics of the repertoire. Our findings can be applied to

further investigation of the environmental factors that trigger pemphigus and

expand the knowledge for identifying new targeted andmore effective therapies.

KEYWORDS

autoimmunity, immunoglobulin repertoire, environmental factors, B cells, skin disease,
pemphigus foliaceus
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Introduction

Pemphigus foliaceus (PF) is an autoimmune disease primarily

driven by autoreactive B cells, characterized by cell detachment

between keratinocytes, an acantholytic process that causes skin

blisters. This process is caused by autoantibodies against desmoglein

1 (DSG1), a member of the cell-cell adhesion proteins of the

desmosomes of keratinocytes (1). Interestingly, PF is uncommon

and sporadic in most parts of the globe, exhibiting an incidence as

low as one case per million (cpm) (2–5). However, it is an endemic

disease in Brazil due to its high incidence in some regions, reaching

25-35 cpm (6), the highest incidence ever reported for an autoimmune

disease. Furthermore, an impressive prevalence of up to 3.4% has been

reported in Amerindian communities living in the endemic area (7).

Epidemiological studies have shown that most patients live in

rural areas or precarious houses, with high exposure to bites from

hematophagous insects, considered the most relevant

environmental factor associated with the endemicity (8, 9). Some

of them are also vectors of parasitic diseases: L. longipalpis

(leishmaniasis), reduviid (Chagas disease), and simuliid

(onchocerciasis), which, besides the disease-causing parasites, also

inoculate salivary proteins that could trigger the development of

autoreactive antibodies (10). Previous research has shown the

presence of non-pathogenic anti-DSG1 antibodies in patients of

these diseases (11), and that anti-DSG1 antibodies cross-react with

antigens derived from L. longipalpis salivary glands, such as LJM17

and LJM11 (12–14), and the peptide maxadilan (15).

On the other hand, several genetic variants strongly increase PF

risk, including variants within the major histocompatibility

complex (MHC), such as the human leukocyte antigen (HLA)

class I and II genes (16–21). A recent study, also analyzing

patients and controls from the endemic area, found that variants

in genes related to antiviral responses are associated with higher

susceptibility to the disease (22). Altogether, these results suggest

that environmental antigens can initiate the autoreactive response

of PF in genetically susceptible individuals, which leads to the

generation of pathogenic autoantibodies.

Antibody-mediated responses are critical for identifying and

protecting against pathogens, toxins, or allergens through specific

antigen-binding followed by neutralization, opsonization,

complement activation, or stimulation of other immune system

cells (23). The failure of self-tolerance mechanisms could lead to a

pathogenic response and the development of autoimmune diseases.

Antibodies are encoded by the immunoglobulin heavy locus

(IGH), lambda locus (IGL), and kappa locus (IGK) (24, 25) and are

secreted by plasma cells. Along with the differentiation of the naïve

B cells, these genes undergo somatic recombination of their variable

(V), diversity (D), and junction (J) gene segments (26). Upon

stimulation, B cells go through somatic hypermutation and class

switch recombination after encountering their specific antigens (27,

28). Altogether, these mechanisms generate a great diversity of

antibodies capable of recognizing virtually any antigen (29), with

the prominent participation of the third complementary-

determining region (CDR3), which is primarily responsible for

determining the antigen-binding specificity (30).
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The rearranged immunoglobulin genes (clonotypes) of anti-

DSG1 autoantibodies have been previously described in patients

with PF (31, 32). However, the immunoglobulin repertoire of

patients and controls from the endemic region has not yet been

revealed. Here, we show that the immunoglobulin repertoires differ

according to disease status and geography, particularly between

individuals from the endemic and non-endemic areas of PF.
Materials and methods

Study population

We analyzed 22 unrelated individuals from the PF endemic area

in Brazil, divided into four groups: i) non-treated patients (n = 5); ii)

patients under immunosuppressive treatment (~30 mg of

prednisone/day; n = 5); iii) patients in disease remission (without

treatment; n = 6), and iv) healthy controls (n = 6). Another group of

v) healthy individuals from outside the endemic area (n = 4)

recruited in Curitiba, Brazil, was included for comparison.

Individuals in the control group had no reported history of

autoimmune disorders, recent infections, or other known medical

conditions and did not report to be under any medication. The

demographics of the population of this study are shown in Table 1.

Patients were recruited from hospitals in the endemic area and

diagnosed by dermatologists specialized in PF based on

immunological tests, histopathology, and immunohistochemistry

of skin biopsies. This study was approved by the Human Research

Ethics Committee of the Federal University of Parana under

protocol number CAAE 02727412.4.0000.0096, according to

Brazilian Federal laws and the Declaration of Helsinki.
Library preparation and sequencing of the
immune repertoire

Peripheral blood mononuclear cells (PBMC) were lysed and

stored at -80°C in TRizol Reagent (Invitrogen, USA), and total RNA

isolation was performed according to the manufacturer’s

instructions. We used 100 ng of total RNA for reverse

transcription (RT) and library preparation with the SMARTer

Human BCR IgG IgM H/K/L Profiling Kit (Takara Bio, USA),

which performs a 5’-RACE-like RT and incorporates unique

molecular identifiers (UMIs) to each mRNA molecule to facilitate

PCR error correction (33). The entire length of the VDJ region and

a portion of the constant region of Immunoglobulin Heavy

Constant Mu (IGHM) and Immunoglobulin Heavy Constant

Gamma (IGHG) transcripts were amplified in two subsequent

rounds of PCR. The final product was barcoded with Illumina

adapters. We selected 400–900 bp amplicons through purification

with magnetic beads (MagSi-NGS). Libraries were analyzed on the

Bioanalyzer (Agilent, USA) for quality control and finally pooled at

equimolar concentration, denatured, diluted to 12 pM, and

sequenced with the MiSeq system (Illumina, USA) using paired-

end 2x300 bp protocol (34).
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Sequence analysis and
clonotype identification

The resulting fastq files were first filtered for high quality and

processed for PCR error correction by aggregating UMIs into

molecular identifier groups (MIGs) using MIGEC software (33),

following the steps shown in Figure 1. Annotation of CDR3

sequences and IGHV, IGHD, IGHJ, and IGHC gene segments, as

well as clonotype aggregation, quantification, and filtering, were

performed with the software MiXCR (35).
Data analysis

We estimated CDR3 length distribution and the IGHV, IGHJ,

and IGHC usage frequency with the R package Immunarch (36).

We used the Shapiro–Wilk normality test (37) to analyze the CDR3

length distribution and the Kolmogorov–Smirnov test (38) to

compare groups. The Wilcoxon test (39) was applied for the

pairwise comparison of usage frequencies for each gene segment

between groups. The individual frequencies of the differentially

expressed IGHV gene segments were included in a principal

component analysis (PCA) to evaluate similarities and possible

clustering among samples.

To estimate CDR3 diversity within and among groups, we

measured the phylogenetic distance between the CDR3 amino

acid sequences of IGHM and IGHG clonotypes by aligning the

clonotype sequences using the software MAFFT (v7.471), followed

by a phylogenetic tree reconstruction using the software FastTree2

(v2.1.4) (40) with branch length rescaling (gamma option) and

generalized time-reversible model (GTR) of nucleotide substitution.

We used the R packages phyloseq v1.34.0 (41) and vegan v2.5-7 (42)
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to estimate alpha and beta diversities, and Faith’s index of

phylogenetic distance (PD) (43) and Shannon index (44) to

estimate alpha diversity. For beta diversity investigation, we

performed a permutational multivariate analysis of variance

(PERMANOVA), with 99,999 permutations, on weighted UniFrac

distances (45) between clonotypes to identify significant differences

among the CDR3 sequences of the two geographic regions (endemic

vs. non-endemic). Beta diversity was visualized through a Principal

Coordinate Analysis (PCoA). Chemical properties of the clonotypes

of each sample were evaluated using the IMGT/V-QUEST tool (46),

Change-o software and Alakazam R package (47).

To identify distinctive clonotypes for the endemic area of PF, we

evaluated the similarities between the CDR3 sequences of all the

samples from the endemic area using network analysis as previously

described (48–50). For the network assembly, we considered the

CDR3 amino acid sequences as nodes, connected by edges

according to their Hamming distance, i.e., the number of amino

acid substitutions that differentiate two sequences. Next, we

extracted all networks that included clonotypes from at least four

different samples from the endemic area connected by a maximum

Hamming distance of two. The networks were processed using the

igraph R package (51).
Results

The subgroups differed in their clonotype
frequencies but not in the chemical
properties of their clonotypes

We analyzed the immunoglobulin repertoire in three groups of

patients, one group of healthy individuals from the PF endemic
TABLE 1 Patient diagnostic features and repertoire sequencing.

Non-treated
patients

Patients
under treatment

Patients
in remission

Controls (endemic
region)

Controls (non-endemic
region)

Demographic characterization

Mean Age 35.2 37 44.16 44 43.25

Sex 3F/2M 3F/2M 4F/2M 4F/2M 4F

IGHM repertoire

Mean raw
reads 1,246,283 1,203,399 1,211,195 1,296,708 1,241,521

Mean MIG 2,126.2 2,472.4 1,894.3 1,933.0 17,439.3

Mean
clonotypes 1,359.8 1,346.4 1,109.3 1,224.2 12,268.5

IGHG repertoire

Mean raw
reads 2,099,649 1,818,216 1,878,301 1,900,283 1,362,850

Mean MIG 3,939.0 5,584.4 2,550.7 3,904.2 9,571.8

Mean
clonotypes 1252.0 1,419.8 452.5 628.0 2,796.0
F, Female. M, Male. MIG, molecular identifier group, i.e., the number of mRNA molecules. Clonotype counts are the number of unique sequences present and sequenced in a sample.
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region in Brazil and another group of healthy individuals from a

non-endemic area. We obtained the IGHM and IGHG clonotype

repertoire, corresponding to the immunoglobulin heavy chain of

IgM and IgG, and studied the whole variable region of the molecule

(VDJ exon) and a fragment of the constant region to distinguish the

isotypes and subclasses.

The raw read counts were similar among all groups; however,

the mean number of MIGs and clonotypes of the controls from the

non-endemic area was up to nine times higher than that of the

different patient groups and controls from the endemic area

(Table 1 and Supplementary Table S1). We classified the

repertoires according to the clonotype frequencies into low (<

0.1%), medium (between 0.1 and 1%), and hyperexpanded (>

1%). Controls from the non-endemic area had a higher

proportion of low-frequency clonotypes: 95% and 60% for IGHM

and IGHG, respectively. Interestingly, controls from the endemic

area presented a significantly larger proportion of medium-

frequency and hyperexpanded clonotypes compared to controls

from the non-endemic area (p < 0.04) (Figure 2). Moreover, we

compared the proportion of clonotype frequencies between groups

and found no statistical differences between all patients and controls

from the endemic area. We found significant differences for
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controls from the non-endemic area compared to patients and

controls from the endemic region (Supplementary Figure S1).

Additionally, the chemical characteristic of the amino acids in the

clonotypes did not differ between the samples (Supplementary

Figure S2).
Both patients and controls from endemic
region present lower clonotype diversity
than healthy individuals from the non-
endemic area

We compared the diversity levels between groups through

Faith’s phylogenetic diversity index (PD) (43). No significant

differences between patient and control groups from the endemic

area were observed (p > 0.05). However, controls from the non-

endemic area exhibited significantly higher diversity than those

from the endemic area (p < 0.05) for both IgM and IgG (Figure 3).

This result was confirmed by the Shannon index, which considers

the abundance of clonotypes and the evenness of their frequencies

(Supplementary Figure S3).

We further evaluated the similarities between CDR3 sequences

from the different groups (beta diversity) with the UniFrac distances

between the sequences in a phylogenetic tree. We considered

medium-frequency and hyperexpanded clonotypes (clonotype

frequency > 0.001) for IGHG as they are the most relevant in the

repertoire. While for IGHM, we considered all clonotypes due to the

restrictively small proportion of high-frequency clonotypes for

some groups. From this analysis, we observed only a tendency of

separation between non-endemic (blue dots in Figure 4) and

endemic regions (p = 0.11) for IGHM clonotypes. However, a

significant difference was observed for IGHG clonotypes between

non-endemic (blue dots in Figure 4) and endemic regions (p =

0.003). There was no differential clustering between controls and

patients from the endemic area.
Differential usage of IGHV5-51 (IGHM) and
IGHV3-30 (IGHG) in patients with active
disease compared to individuals without
disease from the endemic area

We estimated the usage frequencies of IGHV gene segments in

each group (Supplementary Table S2) and evaluated if their use

differed between groups (Supplementary Table S3). PCA separated

the two groups i.e., with active disease (non-treated PF patients and

PF patients under treatment) and without the disease (controls

from the endemic region and PF patients in remission) for both

IGHM and IGHG isotypes (Supplementary Figure S4). Based on

these results, we evaluated the IGHV gene segments differentially

used between groups for both IGHM and IGHG isotypes (Table 2),

which one more time separated the groups by disease status

(Figure 5). The most frequent segments in patients with active

disease were IGHV5-51 (IGHM) and IGHV3-30 (IGHG), while

IGHV1-69 (IGHM) and IGHV3-23 (IGHG) were the most frequent

in individuals without the disease (p < 0.05; Table 2). We found
FIGURE 1

Pipeline for the immune repertoire characterization. MIG: molecular
identifier group. CDR3: complementarity determining region 3.
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neither significant differential usage for most IGHJ gene segments

(Supplementary Figure S4A) nor differences in the IGHG isotype

frequencies (Supplementary Figure S4B). A PCA on the IGHV gene

segments indicated significantly different frequencies between

individuals with active disease (non-treated and under-treatment

patients) and individuals without the disease (patients in remission

and controls), and found a separation between them (Figure 5).
IGHG clonotype of PF patients without
immunosuppressive treatment have longer
CDR3 amino acid sequences

For an unperturbed repertoire, it is expected that the CDR3

distribution follows a normal Gaussian distribution (52). However,

a skewed or deviation from normality could indicate an over-

abundance of some clones, perhaps due to stimulation from

specific antigens. We observed a normal distribution of IGHM

and IGHG CDR3 lengths (p > 0.05, Shapiro-Wilk normality test) in
Frontiers in Immunology 05
controls, while the distribution deviated from normality in all

patient groups, except the IGHM distribution in patients under

treatment (Figure 6). We found no statistical differences between

the CDR3 length distribution of patients compared to controls of

both the endemic and non-endemic regions (p > 0.05,

Supplementary Table S4). However, we observed an increased

frequency of IGHG clonotypes with longer CDR3 sequences in

patients without immunosuppressive treatment and patients in

remission (indicated by arrows in Figure 6).
Network analysis of CDR3 sequences
reveals clonotype clusters that might be
implicated in pemphigus pathogenesis

Similarities between the clonotype sequences of patients could

reflect similar binding properties in PF-related autoantibodies. To

estimate these similarities, we compared the CDR3 sequences from

clonotypes of patients and controls from the endemic region. We
FIGURE 2

Clonotype abundance among groups. The clonotype frequency proportion differs among groups of samples (Low, < 0.1%; Medium, between 0.1 and
1%; Hyperexpanded, > 1%).
FIGURE 3

Clonotype diversity of the IGHM and IGHG gene segments. Alpha diversity was assessed with PD (phylogenetic diversity index). Controls from the
non-endemic region and controls from the endemic region showed significant differences in most comparisons for both isotypes. Comparisons
between endemic samples were non-significant.
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considered a cluster relevant for PF if it connected clonotypes of at

least four distinct patients (Figure 7), meaning that at least four

individuals have similar clonotype sequences in each network. One

of these networks consists of clonotypes exclusively found in

patients (Figure 7A), while the other four networks include

clonotypes found primarily in patients (Figures 7B-D). Below

each network, we present the consensus sequence representing

the similarity among the CDR3 sequences of the clonotypes. No

network comprising clonotypes exclusively from controls could be

identified. The CDR3 sequences and their associated IGHV, IGHJ,

and IGHG segments are available in Supplementary Table S5.
Discussion

Here, we present the first analysis of the IGHM and IGHG

immune repertoire in patients with endemic PF, delivering the

complete landscape of IgM and IgG in the peripheral blood of

patients and healthy controls. Because PF is the only known

autoimmune disease that is also endemic, comparing healthy

controls from the endemic and non-endemic areas provides new
Frontiers in Immunology 06
insights into the still unknown environmental triggers, such as

pathogens and antigens related to living conditions (53). In parallel,

comparing healthy individuals with patients helps distinguish

pathogenic from non-pathogenic characteristics in the B-

cell repertoire.

We observed that individuals from the endemic area exhibited a

remarkably lower clonotype diversity than controls from outside

this area. Different parameters, such as MIG and clonotype counts,

frequencies, and diversity indexes, highlight these differences. Our

study demonstrated a small repertoire diversity in all individuals

from the endemic region, regardless of whether they were healthy or

PF patients. By contrast, we showed that repertoires in most

individuals from the non-endemic area consist of low-frequency

clonotypes, consistent with a low selective constraint in this

environment. In sharp contrast, medium frequency and

hyperexpanded clonotypes are more frequent in patients and

controls from the endemic area, indicating intense and persistent

environmental immunostimulation.

We also observed that patients with non-treated PF exhibited

more medium-frequency IGHM clonotypes, which could result from

an early response against recent, new antigens exposed in the skin
FIGURE 4

Principal coordinate analysis (PCoA) based on the beta diversity of the CDR3 amino acid sequence. For IGHM, we considered the complete
repertoire, showing a tendency of clustering (endemic vs. non-endemic, p = 0.11). For IGHG, we only analyzed the clonotypes with medium to high
frequencies, showing a significant clustering between regions (endemic vs. non-endemic, p = 0.003).
TABLE 2 Comparison of the IGHV usage in individuals with active pemphigus foliaceus and without disease.

Isotype Gene segment
Frequency

p-value
Without disease Active disease

IGHM IGHV1-69 0.076 0.052 0.036

IGHV2-5 0.008 0.014 0.038

IGHV3-73 0.006 0.011 0.032

IGHV5-51 0.026 0.037 0.002

IGHG IGHV1-58 0.001 0.002 0.021

IGHV3-23 0.098 0.080 0.017

IGHV3-30 0.097 0.115 0.043
fron
Active disease = patients with active PF, with (n=5) and without treatment (n=5); without disease = healthy individuals from the endemic area (n=6) and patients in remission (n=6).
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lesions, as suggested by Grando et al. (54). The high frequency of

IGHG hyperexpanded clonotypes in patients is characteristic of an

ongoing intense immune response against specific antigens (55).

Besides, the reduction of hyperexpanded clonotypes in treated

patients is consistent with the immunosuppression caused by the

treatment. Overall, our results indicate that the immune repertoire is

shaped differently in the PF endemic area, possibly determined by an

environmental factor driving the expansion of specific clonotypes

while decreasing the overall clonotype diversity. These observations,

taken together with the previously mentioned studies (12, 13, 22),

which had different hypotheses and methodological approaches,

reinforce the idea that environmental factors overstimulate the

immunological repertoire and trigger PF in the endemic region.

In the PCoA based on beta-diversity, the separate clustering of

individuals from endemic and non-endemic areas is due to the

greater similarity between CDR3 sequences in individuals from the

endemic area, which results in a lower UniFrac distance between

their clonotypes. This result indicates similar selective constraints

and stimulation by the same environmental factor during immune

repertoire development (56). Past studies support this observation

by showing that patients and healthy individuals from the

indigenous community of Limão Verde, located within the

Brazilian endemic PF region, exhibited high anti-DSG1 IgG

levels, possibly due to a constant exposition to an antigen that

elicits immune responses generating autoantibodies. This immune

response can culminate in pathological autoimmunity in genetically

susceptible individuals. By contrast, anti-DSG1 levels are lower in

healthy individuals from other Brazilian localities and other

countries (57).

Studying IGHV usage is crucial because these gene segments

encode the immunoglobulin CDR1 and CDR2 regions, which,

together with CDR3 (58), are critical for antigen binding and

define antibody-antigen affinity (59). IGHV utilization during

immunoglobulin rearrangement is not entirely random (60), and

some IGHV segments are differentially used in the repertoire of

healthy individuals, while others are overrepresented in some

diseases (61). The PCA based on the IGHV gene segment usage

separated individuals with and without active PF, indicating

differential gene usage among these two groups. Some of the gene
Frontiers in Immunology 07
segments that exhibited higher frequency in patients with active

disease, such as IGHV2-5, V3-73, and V3-30, have been previously

identified in anti-DSG autoantibodies from patients with PF and PV

(31, 32). It is important to note that our results show a shift in the

complete repertoire of patients with active PF compared to

individuals without disease. However, our analysis does not

account only for the pathogenic anti-DSG1 antibodies, as visible

by the fact that IGHV3-23 gene segment has higher expression in

our control group, but has also been found previously in anti-DSG1

clonotypes. This differential IGHV usage in individuals with skin

lesions may be implicated in developing pathogenic antibodies,

which could target self-antigens in susceptible individuals, not only

DSG1 but also other skin molecules.

An interesting feature in immunoglobulin repertoire studies is

the analysis of the length of the CDR3 region, as it can indicate

repertoire unbalance (52). We found that patients presented a

deviation from normality in their distribution of CDR3 length,

with an overrepresentation of clonotypes with longer CDR3

sequences. Similar findings were observed in other autoimmune

diseases, such as immunoglobulin A nephropathy, Crohn’s disease,

and systemic lupus erythematosus (62, 63). Longer CDR3 sequences

have been associated with more flexible and more polyreactive

antibodies (64) and thus could be more prone to autoreactivity (65).

We analyzed the similarity among the clonotypes in patients

with PF to identify possible CDR3 sequences that could potentially

lead to the discovery of environmental antigens or additional self-

antigens involved in this disease. Although previous studies

focusing on anti-DSG1 antibodies indicated no convergence in

their clonotype sequences (31, 32), we aimed to uncover

distinguishing sequences in the complete PF repertoire using

similarity networks of clonotypes based on the Hamming

distances of the CDR3 sequences. This method computes the

number of mismatched amino acids considering only those

sequences of equal length. The underlying assumption is that

both sequence and length influence the binding properties of the

antibodies to the antigens. Thus, closely related sequences may

imply comparable epitope binding properties and antigen

specificity (66). Accordingly, the CDR3 sequences clustering in

the network analysis could bind the same autoantigen or
FIGURE 5

Clustering of samples according to the disease status. We performed a principal component analysis with the frequencies of the IGHV gene
segments that were differentially used between groups (see Table 2). Shaded areas represent sample groups (pink: individuals with active disease;
green: individuals without disease). The group with active disease includes non-treated and under-treatment patients. The group without disease
includes controls from the endemic area and patients in remission. PF: Patients with pemphigus foliaceus
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environmental antigen. This applies especially to the PF-relevant

antibodies in network A, composed exclusively of clonotypes from

patients. It is important to acknowledge the limitation that the

epitopes bound by these clonotypes are unknown. However, we

provide a comprehensive overview of the clonotypes present in PF

patients of the endemic region of Brazil, which may facilitate the

recognition of relevant clonotypes in future research efforts and

e luc ida te d i sease -as soc ia ted mechani sms by tes t ing

functional hypotheses.

Previous studies have shown that the IgG1 isotype is primarily

present in healthy individuals and patients before disease onset and

that most of the pathogenic anti-DSG1 antibodies in patients with

PF are IgG4 (67). For this reason, we wanted to evaluate if there was
Frontiers in Immunology 08
also a change of IGHG gene segment expression in the entire

repertoire. However, our library preparation method could not

distinguish between IGHG3 and IGHG4 gene segments.

Nevertheless, our observation that IGHG segments (IGHG1,

IGHG2, and IGHG3/4) presented similar distribution among

patients and controls (Supplementary Figure S4B) indicates no

differential switching from IgG1 to IgG4 in patients when

considering the whole repertoire. Another limitation of the

present study is the small number of subjects in each group due

to the difficulty in accruing samples from such an uncommon

disease and patients in specific testing conditions. However, the

individuals were carefully chosen to ensure that they were

representative of the target population. For this reason, we believe
FIGURE 6

CDR3 length distribution in the study population groups. The curves represent the distribution of the CDR3 region’s length. Control samples from
the non-endemic region (represented as thick light-blue curves) were compared to samples from the endemic region. Deviations from the Gaussian
distribution were only observed in patients (p < 0.05, Shapiro-Wilk normality test). The vertical dotted line represents the CDR3 median length. aa =
amino acid.
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our results are reliable and provide valuable insights into the

repertoire of individuals living in the endemic area of PF in Brazil.
Conclusions

We comprehensively characterized the immunoglobulin

repertoires of patients with endemic pemphigus foliaceus and

compared them to those of controls from both endemic and non-

endemic Brazilian areas. The immunoglobulin repertoire is

profoundly distinct in the endemic area, as we observed lower

clonotype counts, lower diversity, and a higher proportion of

medium and hyperexpanded clonotypes in both patients and

controls. The significant differences in the immunoglobulin

repertoire of controls from the non-endemic and endemic areas

and the similarity between patients and controls from the endemic

area likely result from the antigen that triggers endemic PF. This
Frontiers in Immunology 09
antigen is characteristic of the endemic region and could be

derived from a pathogen or a hematophagous insect’s salivary

protein. The immune response to this antigen culminates in a

pathogenic autoimmune response only in genetical ly

susceptible individuals.

Patients with PF exhibited a deviation from the normal

distribution of CDR3 lengths and a higher frequency of longer

CDR3 sequences, a characteristic previously associated with

autoreactive antibodies. Additionally, patients from the endemic

area with active disease exhibited a differential usage of IGHV

segments. Specifically, IGHV3-30 was more frequent in patients

with lesions. We identified one cluster of clonotypes that could

belong to antibodies involved in PF pathogenesis. Further

investigation of this cluster and its consensus sequence might be

worthwhile in future studies focusing on identifying the

environmental trigger, especially under the recent suggestion that

a virus might also trigger PF. In addition, these clusters might
B

C

D

EA

FIGURE 7

Similarity networks among clonotypes of patients and controls from the endemic area. (A) Network consisting solely of clonotypes from patients
(PF). (B-E) Networks consisting predominantly of clonotypes from patients with a few from controls (CT) from the endemic area (Details of the
network composition and clonotype sequences are shown in Supplementary Table. S5). The networks were constructed based on CDR3 amino acid
sequences of IGHG clonotypes. The nodes represent unique clonotype sequences and are labeled with the sample IDs. Each clonotype differs from
the adjacent clonotype by the quantity of amino acid residues indicated by the numbers between nodes (Hamming distances). The amino acid
consensus sequences indicate the similarity between clonotype sequences in each network. Letter heights indicate the conservation in each
position, with the most frequent amino acid placed on top.
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inform about self-antigens besides DSG1 and might contribute to

identifying targets for therapeutical B cell depletion.
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