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Alterations in the composition or function of the gut microbiota are associated

with the etiology of human diseases. Drug-microbiota interactions can affect

drug bioavailability, effectiveness, and toxicity through various routes. For

instance, the direct effect of microbial enzymes on drugs can either boost or

diminish their efficacy. Thus, considering its wide range of metabolic capabilities,

the gut microbiota is a promising target for pharmacological modulation.

Furthermore, drugs can alter the microbiota and the mechanisms by which

they interact with their host. Individual variances in microbial profiles can also

contribute to the different host responses to various drugs. However, the

influence of interactions between the gut microbiota and drugs on treatment

efficacy remains poorly elucidated. In this review, we will discuss the impact of

microbiota dysbiosis in the pathogenesis of rheumatoid arthritis (RA), and we will

attempt to elucidate the crosstalk between the gut microbiota and disease-

modifying anti-rheumatic drugs (DMARDs), with an emphasis on how drug-

microbiota interactions affect the treatment efficacy in RA. We speculate that

improved knowledge of these critical interactions will facilitate the development

of novel therapeutic options that use microbial markers for predicting or

optimizing treatment outcomes.
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1 Introduction

Rheumatoid arthritis (RA) is one of the most common immune-mediated disorders. Its

primary manifestation is inflammatory arthritis, characterized by symmetric, polyarticular

pain and swelling, frequently affecting peripheral joints (1). Despite recent significant

advances in RA therapy, overall remission remains unsatisfactory, and once bone or joint
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degradation has started it is virtually impossible to reverse (2). The

poorly defined RA pathogenetic mechanisms may be related to the

intricate relationship between genetic, environmental, and

immunological responses, resulting in immune system

dysregulation and lack of autoimmune tolerance.

Over the past years, a growing number of evidence from

epidemiological and translational research suggests that

interactions between mucosal sites and dysbiotic microbiota may

play a causal role in RA development (3, 4). Notably, altered

composition of microbial flora has been observed in the

preclinical stages of RA patients. Furthermore, the gut contains

more innate and adaptive immune cells than any other organ in the

body (5, 6). The intricate linkages between altered gut microbiota

and an immune system genetically predisposed to autoimmunity

may be the basis of inflammatory arthritis. These changes in the gut

microbiota may result from a systemic inflammation that affects the

gut, or from an interplay between the environment and the innate

immune system in individuals genetically prone to RA (7).

Nevertheless, studies in early-stage RA patients and results from

murine models indicate that these changes may predate the onset of

arthrit is , and consti tute a vei led trigger of systemic

inflammation (3).

The emergence of new innovative technologies has facilitated

the investigation of the gut microbiota, which is pivotal in

determining the clinical features and therapeutic responses of RA

patients (8). Great advances have been made in relation to microbial

diversity and the investigation of the bacterial metagenome in RA
Frontiers in Immunology 02
by sequencing analysis of the bacterial 16s ribosomal RNA (rRNA)

and metagenomics (8, 9). In particular, a wide range of bacterial

species associated with the RA clinical presentation spectrum has

been identified in RA patients (10). Additionally, cohort studies

have aided in establishing a link between gut microbiota and

therapeutic response variability in RA (3, 10). Therefore,

understanding the mechanisms of the effects disease-modifying

anti-rheumatic drugs (DMARDs) exert on the gut microbiota, the

consequences of gut dysbiosis in regulating treatment efficacy, and

the approaches to restore microbial symbiosis in RA is crucial.
2 Microbiota and immune
dysfunction in RA

Animal studies have demonstrated that alterations in the gut

microbiota can affect local and systemic immunity, thereby

resulting in joint inflammation (11, 12) (Figure 1). Antibiotics

treatment has been shown to worsen arthritis in collagen-induced

arthritis (CIA) mice, and to elevate levels of proinflammatory

cytokines such as interleukin (IL)-6, interferon (IFN)-gamma, and

IL-17 (13). Desulfovibrio, Prevotella, Parabacteroides, Odoribacter,

Acetatifactor, Blautia, Coprococcus, and Ruminococcus genera were

abundant, and levels of serum IL-17 and splenic CD4+ Th17 cells

were elevated in arthritic mice, suggesting that the gut microbiota

composition differs between CIA-susceptible and CIA-resistant

mice (13). IL-17 and IL-1b production, and toll like receptor-2
FIGURE 1

Interactions between the gut microbiota and disease-modifying anti-rheumatic drugs: implications for treatment efficacy in rheumatoid arthritis. The
gut microbiota plays a critical role in the pathogenesis of rheumatoid arthritis (RA). The dynamic gut microbiota composition helps regulating host
autoimmunity. Expansion of some opportunistic commensal bacteria may influence RA development by modifying the host’s microbiome, metabolic
profile, and immune responses. The microbiota and its metabolite-associated signals are responsible for the activation and function of different
immune cells. Autoreactive cells (e.g., Th1 and Th17 cells) are activated in lymphoid tissues, leading to inflammatory cytokine responses and
production of autoantibodies. Certain disease-modifying anti-rheumatic drugs (DMARDs), such as methotrexate (MTX), sulfasalazine (SSZ), and
etanercept (ETN), can directly affect the growth of gut microbiota. Furthermore, alteration of the gut microbiota may also contribute to the
treatment efficacy of DMARDs by various mechanisms. CPDG2, carboxypeptidase-G2; DAMPA, 2,4-diamino-N(10)-methylpteroic acid; ETN,
etanercept; MTX, methotrexate; SSZ, sulfasalazine; Th1, T helper 1 cells; Th17, T helper 17 cells.
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(TLR2) and TLR4 activation, are increased in IL-1RA knockout

mice, whereas these inflammatory responses are suppressed under

germ-free conditions, attenuating arthritis development (14–16).

Nevertheless, the clinical scores of these IL-RA knockout germ-free

mice improved upon colonization with Bifidobacterium bifidum

compared with those maintained under standard conditions (15).

Maeda et al. discovered that transferring gut microbiota of RA

patients to germ-free arthritis-prone SKG mice led to an increase in

Th17 cells and severe arthritis. Further evidence revealed that co-

culturing SKG dendritic cells with Prevotella copri resulted in

activation of autoreactive cells in the gut and exacerbated joint

inflammation in response to RA autoantigens (17). Pianta et al.

reported that CD4+ T cells recognizing the autoantigens Filamin A

and N-acetylglucosamine-6-sulfatase also recognized similar

sequences from Prevotella, Butyricimonas, and Parabacteroides

(18). Interestingly, they also identified antibodies against P. copri

in new-onset RA patients, but not in healthy adults (18). Moreover,

P. copri-specific IgA responses were strongly associated with serum

concentrations of Th1- and Th17-related cytokines. This indicates

that the immune response to elevated P. copri in the gut may be

pivotal in initiating RA. Together, these findings suggest that the

microbiota may function as a molecular mimic that triggers

autoimmune responses in animal models and RA patients.
3 Gut dysbiosis contributes to
different clinical features of RA

Chiang et al. used metagenomic analysis to investigate the gut

microbiota of RA patients with variable clinical characteristics,

and observed that those with positive anti-cyclic citrullinated

peptide antibodies had reduced microbial diversity and higher

abundance of the Blautia, Akkermansia, and Clostridiales genera

(19). A functional link between genes and the arginine deiminase

enzyme was also discovered, suggesting a significant role in RA

onset (20). This raises the possibility that some gut bacteria may

be responsible for protein citrullination and may contribute to the

abnormal autoimmunity in RA. The discovery of 21 citrullinated

peptides in colon tissues of RA patients suggests that the colon

contents create a tolerance site owing to loss of intestinal integrity.

The presence of citrullinated antigens may trigger and perpetuate

immune responses in RA (21). Patricia et al. investigated the

relationship between gut microbiota and inflammatory activities

in RA patients (22) and reported that the gut microbiota

composition varies with RA disease activities. Despite notable

variances across participants, Collinsella was strongly associated

with cumulative inflammatory burden in RA patients, which is

consistent with previous observations (20, 23). Cheng et al.

conducted a large-scale cohort study and demonstrated dynamic

changes in the gut microbiota and plasma metabolome, as well as

their persistent involvement in RA pathogenesis throughout the

four distinct RA stages (24). More importantly, they presented

solid evidence confirming that microbial invasion of the joint

synovial fluid occurs in the fourth stage of RA. Thus, a stage-

specific intervention of microbial dysbiosis and metabolic
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di sorders i s warranted for improved RA prognos i s

and prevention.
4 Crosstalk between the gut
microbiota and different DMARDs

4.1 Application of disease-modifying
anti-rheumatic drugs in RA

DMARDs are encouraged by international clinical practice

guidelines for the therapeutic management of RA (25). These can

be administered as a single agent or in combination with other

DMARDs, such as methotrexate (MTX), sulfasalazine (SSZ), and

leflunomide (LEF). Corticosteroids (Cs) can be either gradually or

intermittently administered in conjunction with DMARDs (25).

Moreover, chloroquine (CLQ) and hydroxychloroquine (HCQ) are

also recommended treatments (26, 27). Treat-to-target treatment

(T2T) has recently been proposed as the optimum therapy to

achieve clinical remission in RA patients by the rational use of

medications. T2T comprises the combined use of MTX + SSZ +

HCQ (28). When traditional medications fail to alleviate RA

symptoms, clinicians may use biologic DMARDs (bDMARDs) or

targeted synthetic DMARDs (tsDMARDs) (1, 29, 30). Currently,

conventional synthetic DMARDs (csDMARDs) remain the gold

standard for treating RA worldwide.
4.2 Gut microbiota regulate the csDMARD
metabolic pathway

Despite the recent introduction of various effective therapies,

low-dose MTX remains the cornerstone drug for RA treatment and

is widely accepted to promote the efficacy of biologics (31, 32).

There are three distinct metabolic routes for MTX (33, 34)

(Figure 1). First, 2,4-diamino-N (10)-methylpteroic acid

(DAMPA) is generated as a metabolite of MTX by gut bacteria;

carboxypeptidase-G2 (CPDG2) is a bacterial enzyme that forms

non-toxic metabolites such DAMPA and glutamate by hydrolyzing

MTX (35, 36). Pseudomonas species catalyze the production of

glutamate through CPDG2 from MTX in vitro, suggesting that gut

bacteria may govern the availability of active metabolites of drugs as

well as control their operational mechanisms (37). Second, the

liver’s metabolic pathway is responsible for the biotransformation

of MTX to 7-OH-MTX (38). 7-OH-MTX inhibits the dihydrofolate

reductase (DHFR) enzyme. DHFR is also present in the gut

microbiota, suggesting it may affect the metabolism of drugs, and

vice versa, resulting in a reciprocal interaction between the drug and

microbial metabolism (34, 38). Third, MTX is converted into

polyglutamate within the cells. As it comprises the primary

mechanism of immunomodulation, this route is prioritized over

others (39, 40). Hence, the main active form of MTX relies on gut

homeostasis and intestinal barrier integrity.

Gut microbiota can also indirectly regulate pharmacological

metabolism by preserving the integrity of the intestinal barrier.
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Microbial dysbiosis affects microbial diversity and impacts

translocation, immunomodulation, metabolism, and enzymatic

degradation in the gut (8, 41). High MTX dosages exert anti-

bacterial effects, leading to decreased Bacteroidetes and increased

Firmicutes abundance in the host (42). The abundance of

Bacteroides fragilis, but not that of Lactobacillales, is decreased

after MTX administration in mouse models (43, 44). Furthermore,

the effects of SSZ on the gut microbiota have also been confirmed

despite its use as a monotherapy or in conjunction with MTX (25).

Reduction of SSZ into sulfapyridine and 5-aminosalicylic acid (5-

ASA/mesalazine) facilitates its metabolism by the gut microbiota

through azoreductase-mediated chemical reactions (45). Most 5-

ASA is stored in the colon, recirculated via the enterohepatic

system, and eliminated in the feces (46). Meanwhile, the anti-

inflammatory effects of 5-ASA might be neutralized by microbial

arylamine of N-acetyltransferases (NATs) (47). Sulfapyridine can

be metabolized in the liver by acetylation by the arylamine NAT-2,

hydroxylation, and glucuronidation, all of which contribute to its

anti-microbial activity (48–50). Based on the aforementioned

factors, the abundance of bacteria belonging to Bifidobacterium,

Lactobacillus, Enterococcus, Clostridium, Eubacterium, and

Bacteroides genera, which generate azoreductases, as well as those

that generate NATs, may have a significant effect on the parameters

that define response to RA therapy (51–53).
4.3 Regulatory effects of bDMARDs
on gut microbiota

bDMARDs are routinely prescribed as an alternative therapy

for RA patients who do not respond well to conventional DMARDs.

bDMARDs successfully delay RA progression, alleviate symptoms,

and improve the overall quality of life by targeting specific

proinflammatory cytokines, such as tumor necrosis factor-a
(TNF-a), IL-1, and IL-6 (1). As a TNF-a inhibitor, etanercept

has a favorable impact on the gut microbiota. Etanercept

administration in RA patients was related to a decline in the

amount of Clostridiaceae and Deltaproteobacteria and an

increased abundance of Cyanobacteria (54). In CIA mice,

etanercept treatment decreased diversity and richness of the

microbial community; notably, Escherichia and Shigella became

more prevalent, whereas Clostridium XIVa, Tannerella, and

Lactobacillus became less common (55). However, our

understanding of the impact of biologics on the gut microbiome

remains limited. Further research is required to address these

knowledge gaps by establishing the mechanisms by which

bDMARDs influence the intestinal microbiota diversity in RA.
4.4 Regulation of gut microbiota by
traditional Chinese medicine

Traditional Chinese medicine (TCM)-based treatments have

considerable therapeutic efficacy and cause few side effects in RA
Frontiers in Immunology 04
(56, 57). Moreover, the potential success of TCM in treating RA

may be partially attributed to its ability to alter the composition of

the gut microbes (58, 59). Qingluo Tongbi decoction limits

inflammatory responses controlled by the gut microbiota and

effectively treats arthritis in AIA mice (60). Total paeony

glucosides significantly improved microbial taxonomic diversity

and increased the relative abundance of some preferable

commensal bacteria in CIA rats (61). Xie et al. recently found

that the protective effects of ASPS are mediated through the fecal

microbiota and inhibited by a concomitant antibiotic cocktail,

indicating that gut microbiota may be associated with ASPS (62).

Tripterygium wilfordii, a classical Chinese herbal medicine, is

commonly used to treat RA in China. It can reduce inflammation

and bone damage in RA through various approaches (63). Intestinal

microbes, such as Holdemania fliformis and Bacteroides, are

particularly abundant in RA patients; however, the abundance of

these bacteria reduced substantially after treatment with glycosides

from T. wilfordii. Furthermore, the microbiome of RA patients

treated with MTX and T. wilfordii is abundant in Prevotella

intermedia compared with those treated with T. wilfordii or MTX

alone (64). Another independent study revealed that during

incubation with Tripterygium glycosides and their active

components, the gut microbiota produced various metabolites in

the tryptophan (Trp) and phenylalanine (Phe) pathways, including

two potentially favorable Trp metabolites: indole propionic acid and

indole acetic acid (65). Taken together, these findings suggest that

Tripterygium wilfordii can impact the host-microbiome

composition and modulate metabolite production, underlining

their considerable therapeutic potential in RA.
5 Impact of gut microbes on the
treatment efffcacy of csDMARDs in RA

To date, the pathogenesis of RA remains obscure and

conventional therapy either yields inadequate clinical efficacy or

has severe adverse events. For example, up to 50% of RA patients

who received MTX treatment could not acquire a clinically

satisfactory outcome (66, 67); this inadequacy may be attributed

to gut microbiota dysbiosis, suggesting that drug metabolism is

closely associated with the gut microbiota.
5.1 The feedback loop between gut
microbiota and csDMARDs

Treatment with DMARDs affects the gut microbiota

composition; furthermore, a feedback loop may exist between

DMARDs and their effects (8) (Figure 1). Significantly, the

Firmicutes and Bacteroidetes phyla could increase owing to RA

treatment, which is a desired outcome in this respect (42, 68, 69).

Dysbiosis can be caused by either the intrinsic ability to consume a

xenobiotic or by extrinsic variables such as drug combination,

prescription dosage, or treatment duration. Hence, further
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investigation into this area is required for the development of

optimum RA treatment strategies. Increased abundance of

Clostridium perfringes in the gut microbiota was observed in an

RA patient cohort nonresponsive to standard drug treatment (70).

In contrast, the amount of Clostridium perfringens was reduced in

RA patients who responded well to drug treatment (70, 71). These

observations suggest that the microbiota may influence clinical

responses to RA treatment. SSZ administration is also associated

with decreased E. coli and Bacteroides abundance, which highlights

its anti-bacterial properties (72). Moreover, nonresponse to RA

therapy has been linked to MTX consumption, and is currently

attributed to increased abundance of Clostridia and decreased

abundance of Bacteroidia (68, 73–75). Certain Bacteroides species

may be more vulnerable or resistant to csDMARDs, and Bacteroides

have been demonstrated to possess anti-microbial resistance genes

(76, 77).

Variability in DMARDs responses is associated with the

presence of bacterial enzymes that catalyze their metabolism.

Overexposure to a protein with DHFR activity restores sensitivity

to intracellular MTX in strains of medication-resistant Escherichia

coli. MTX may share compatibility with bacterial DHFR, as in the

case of Escherichia coli and Lactobacillus casei (78–80).

Consequently, MTX is deposited in cells harboring mutations in

acrA or tolC, which have rendered the efflux pump resistant to

multiple AcrAB treatments that rely on tolC inactivity (81).

Furthermore, MTX can be converted into MTX polyglutamate by

the gut flora (44). Some patients may not respond to the initial

strategy of orally administered medicine because the production

pathway of tetrahydrofolate reductase, dictated by intestinal

metagenomes such as Bacteroides, might compete with the DHFR

and MTX metabolism in the host, thereby disturbing the anti-

inflammatory effects of MTX (68).
5.2 Underlying mechanisms of gut
microbiota on the treatment
efficacy of MTX

In addition to discovering the close association between

treatment efficacy and gut microbiota dysbiosis, several studies

have comprehensively explored the underlying mechanisms,

including immune regulation and metabolic modulation. Herein,

we have exemplified the role of MTX, the anchor drug of RA

treatment, to illustrate the interactions between gut microbiota and

treatment responses. Nayak et al. reported that MTX significantly

modifies the human gut microbiome. Despite differing drug

susceptibility between strains, the action mechanism against

DHFR is seemingly conserved in human and bacterial cells (42).

The gut microbiota of RA patients responded differently to MTX

treatment in terms of alterations in bacterial taxa and abundance in

gene families. Immune activation was suppressed after

transplanting post-treatment samples into germ-free mice

exposed to inflammatory triggers, permitting the detection of

MTX-modulated bacterial taxa associated with intestinal and
Frontiers in Immunology 05
splenic immune cells (42). Artacho et al. revealed a significant

correlation between the abundance of gut bacterial taxa and their

genes, particularly orthologs involved in methotrexate and purine

metabolism, with clinical responses (82). Additionally, they created

a microbiome-based model that predicts MTX non-response in a

different set of patients. Intriguingly, clinical response was strongly

associated with MTX levels remaining after ex vivo incubation with

distal gut samples from pre-treatment RA patients, implying a

direct impact of the gut microbiota on MTX metabolism and

therapeutic efficacy. More recently, using machine learning Han

et al. discovered that the composition of genes involved in MTX

metabolism differed significantly between the response and non-

response groups (83). These genes were predominantly related to

Firmicutes and Bacteroidetes. Furthermore, they demonstrated that

the catabolic ability of the drug in the gut microbiota is closely

associated with the response mechanism to MTX in RA patients,

and proposed that metabolic capability is a critical component in

determining the host response to MTX.
6 Conclusion and perspectives

The gut microbiota has been extensively studied over the last

decades, and its importance in health and disease states has been

established. Gut microbiota influence almost every biological

process within the host, and microbiota dysbiosis is associated

with compromised immunologica l to lerance and RA

development. Moreover, alterations in the gut microbiota have

been linked to RA disease activity, even before clinical arthritis

onset. Analyzing the gut microbiota has provided novel insights

into variables that promote or limit the sensitivity to disease, and

has become a feasible method for predicting and reducing RA

occurrence. The human gut microbiota and its enzymatic products

can also directly and/or indirectly influence drug bioavailability,

clinical efficacy, and toxicity. Conversely, certain medications and

active ingredients can influence the immune system by modifying

the gut microbiota composition, thus strengthening the host

defenses. Despite significant abnormalities in specific microbial

communities being associated with RA progression, several

critical aspects must be addressed to facilitate development of gut

microbiota-targeted treatments. First, future studies need to

establish the causes of dysbiosis and to determine exactly how

and when gut dysbiosis influences RA development. Second, the

association of the disease with altered microbial composition and

the mechanistic pathways influencing RA development must be

elucidated, to acquire effective diagnostic, prognostic, and

therapeutic targets. Third, it is necessary to understand the

mechanism of the effects DMARDs exert on the gut microbiota

and the implications of gut dysbiosis on the modulation of

treatment response, in order to optimize therapeutic strategies

that restore microbial symbiosis in RA patients. Collectively,

further research into these unresolved topics would help promote

treatment efficacy, reduce toxicity risk, and improve RA

clinical outcomes.
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