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B cells occupy a vital role in the functioning of the immune system, working in

tandemwith T cells to either suppress or promote tumor growth within the tumor

microenvironment(TME). In addition to direct cell-to-cell communication, B cells

and other cells release exosomes, small membrane vesicles ranging in size from

30-150 nm, that facilitate intercellular signaling. Exosome research is an important

development in cancer research, as they have been shown to carry various

molecules such as major histocompatibility complex(MHC) molecules and

integrins, which regulate the TME. Given the close association between TME

and cancer development, targeting substances within the TME has emerged as

a promising strategy for cancer therapy. This review aims to present a

comprehensive overview of the contributions made by B cells and exosomes to

the tumor microenvironment (TME). Additionally, we delve into the potential role

of B cell-derived exosomes in the progression of cancer.
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1 Introduction

Cancer remains a significant global cause of mortality (1). Historically, cancer research

solely emphasized studying cancer cells. However, with the introduction of the “seed and

soil” concept (2), researchers have redirected their focus towards investigating the

development of cancer cells within TME. The TME fosters cancer cell growth and

progression through its complex composition of ECM, neuroendocrine cells, immune

cells, stromal cells, fibroblasts, and lymphatic networks (3, 4). Immune cells play a

significant role in the survival of tumors, as cancer cell metabolites and secretions from
frontiersin.or01
 g

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1188760/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1188760/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1188760/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1188760&domain=pdf&date_stamp=2023-06-05
mailto:Zhijia.Xia@med.uni-muenchen.de
mailto:yang.fang@charite.de
mailto:tiangang@swmu.edu.cn
https://doi.org/10.3389/fimmu.2023.1188760
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1188760
https://www.frontiersin.org/journals/immunology


Xiong et al. 10.3389/fimmu.2023.1188760
specific TME cells can influence the activation, proliferation,

differentiation, and function of immune cells (5).

Reports suggest that extracellular vesicles (EVs), particularly

exosomes, hold significant potential as a cancer treatment (6).

Standard chemotherapy methods may cause harm to normal cells,

resulting in detrimental side effects (7, 8). In contrast, Targeted

therapy has become a more appealing approach to combatting

tumors as it offers greater specificity and can spare adjacent healthy

tissues (9). The idea of utilizing exosomes for targeted therapy is

intriguing, given that almost all cells produce exosomes (10).

Bioengineered exosomes have garnered considerable attention due

to their exceptional stability, extensive tissue penetrability, potent

targeting capability, and precise drug modulatory properties (11).

Although there are no standardized protocols for exosome isolation

and purification (12), their potential role in cancer therapy warrants

further investigation into their biological functions.

B cells are present in both secondary lymphoid organs (SLOs)

and tertiary lymphoid structures(TLSs). TLSs, which represent

lymphoid neogenesis sites that occur in most solid tumors (13),

primarily consist of B cell follicles and T cell zones, along with

mature dendritic cells (DCs) (14, 15). Within these lymphoid

structures, there is a rich signaling crosstalk between B cell-

derived exosomes and other cells.
2 B cells and the tumor
microenvironment

In the past decade, immune cells have gained significant attention

in TME research due to their capacity to regulate tumor growth (16).

Despite incomplete comprehension of the role of B cells in cancer

research, their heterogeneity has been demonstrated as indispensable in

the TME (17). B cells are also involved in the formation of TLSs, which

has been instrumental in advancing cancer research (18).
2.1 Immunomodulatory functions of B cells

B cells are a component of the adaptive immune system that can

differentiate into various subsets when subjected to diverse stimuli

and stress conditions (19). The multifaceted nature of B cell subsets,

which is primarily due to the absence of a precise definition of their

transcription factors, makes comprehending their functions a

difficult and complicated process (17).

B cells assume a pivotal role in antibody production and antigen

presentation to facilitate effective immune responses among other

immune cells (20, 21). After antigen recognition, B cell activation

occurs through activation of B cell receptors (BCRs) and Toll-like

receptors present on the surface of them. Subsequently, activated B cells

differentiate into plasma cells through two distinct pathways. In the first

pathway, plasma cells differentiate outside the lymphoid follicle, exhibit

lower affinity for antigens, and have shorter lifespans. In the second

pathway, B cells migrate into the follicle and establish a germinal center

(GC) that differentiates into long-lived plasma cells andmemory B cells

(22–24). Plasma cells produce IgM antibodies that contribute to

humoral immune responses. Moreover, B-cell-associated
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immunoglobulins, including IgG, IgE, and IgA, have been extensively

reviewed in the literature with respect to their subclasses (21). IL-10

promotes plasma cell production through CD40 activation and is

superior to IL-4 (25). Recent studies have found that tumour-associated

neutrophils in TME rely on TNF-a to recruit B cells and regulate B cell

differentiation into plasma cells via the BAFF pathway (26).

Memory B cells exhibit signaling molecules, such as MHC and

co-stimulatory molecules, along with cytokines (IL-6, TNF, GM-

CSF) on their surface, which stimulate T cells, thereby amplifying

the immune response (24). Upon a second exposure to antigens,

memory B cells produce high-quality antibodies (27).

B regulatory (Breg) cells are distinct in that their primary function

is to suppress the immune system (28). Breg subsets containing IL-10

and IL-35 have the ability to suppress effector T cells (both CD4 and

CD8), NK cells, and neutrophils (29). Additionally, Bregs regulate

levels of extracellular metabolites such as ATP, ADP, AMP, and

adenosine in TME, resulting in the suppression of T and B cell

proliferation, forming a complex network (30, 31).

Tumor-infiltrating B cells (TIBs) participate in the development

of TLSs, which stimulate an active anti-tumor response via antigen

presentation (32, 33). Activated TIBs release enzymes or receptors

to kill cancerous cells, leading to their lysis (34). B cells secrete

angiogenic factors to stimulate the activation of STAT3 and

facilitate angiogenesis (35). In prostate cancer, TIBs may produce

lymphotoxin (LT), and high levels of LT can lead to CR-CAP and

adversely affect treatment outcomes (36).
2.2 B cells in cancer therapy

Surface markers CD19, CD20, and CD37 are expressed at varying

levels by B cells during development. Although studies indicate that

targeting these molecules therapeutically holds promise for B-cell

cancers (37), their potential efficacy against other cancer types

remains largely unexplored. Mediation by CD19 increases antigen

presentation by B cells, consequently improving the T cell response

(38). Attracting B cells, CXCL13 functions as a chemokine (36, 39).

Tumor-induced Bregs (tBregs) serve as a marker of tumor persistence

(40). CD20 is expressed on both anti-tumor B cells and tBregs, and

targeting CD20 B cells with CXCL13-coupled CpG-ODN can enrich

and inactivate tBregs, thereby controlling tumor immune escape (41).

This approach minimizes the potential side effects of B-cell depletion

methods. In bladder cancer, CXCL13 expression can be used as a

surrogate marker for tumor TLSs and correlates with the response to

immune checkpoint inhibitors (ICIs) in patients (42). Additionally, in a

subset of patients with soft tissue sarcoma, B-cell-enriched TLSs was

associated with a better response to anti-PD-1 blockade therapy and

increased survival rates (43).

However, the inhibitory mechanisms of tumors mediated by

TLSs and B cells in ICI therapy remain poorly understood (44). It is

noteworthy that within GCs, B cells are activated to produce

antibodies, while Bregs and Tregs produce cytokines such as IL-

10, IL-35, and TGF-b to suppress T cell function (18). Furthermore,

chemotherapy (45) and vaccination (46) have also demonstrated

associations with TLSs.
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B cell-enriched TLSs have been found to exhibit tumor-

suppressing properties (47). Infiltration of CD19/CD20 B cells has

now emerged as a promising target for immunotherapy of

hepatocellular carcinoma (48). Thus, combining immunotherapies

such as cancer vaccines, cytokine therapies, and immune

checkpoint inhibitors (ICIs) with strategies targeting B cells and

TLSs may represent promising new anti-tumor approaches.
3 Exosomes and tumor
microenvironment

Exosomes facilitate substance transfer between cells, activating

signaling pathways (49). The secretion of exosomes by B cells is

among the most important ways in which they influence the TME.

Additionally, exosomes secreted by other cells and cancer cells also

play pivotal roles (50, 51). Therefore, it can be speculated that

exosomes hold great potential for advancing the exploration of new

therapeutic pathways in cancer (Figure 1A).
3.1 The biological characteristics and
functions of exosomes

Exosomes, a type of extracellular vesicles, have been extensively

studied (52–55). Exosomes are generated through the intracellular

process of inward budding of multivesicular bodies, followed by

their subsequent release into the extracellular space through fusion

events with the plasma membrane (56). The secretion of exosomes

is regulated by the RAB family (57, 58). Secretion of exosomes can

be divided into an ESCRT mechanism and a RAB31-mediated

mechanism independent of ESCRT (59). Despite being previously

viewed as waste materials, exosomes are now acknowledged as vital

components of the intercellular communication network (60).

Exosomes, containing biologically active substances can be found

in bodily fluids and are discharged by originating cells (54, 61).

Exosomes are structurally more stable than parent cells due to their

higher concentration of lipid components (62). CD81 and CD63 are

common exosome markers, and along with CD82 and CD37, are

highly abundant transmembrane proteins in exosomes. Exosomes

also carry a diverse range of membrane signaling proteins (63).

These signaling molecules can be delivered to target cells by

exosomes (64), making them an integral component of

TME communication.

As researchers continue to investigate exosomes, their overall

functions have become increasingly evident. In a normal

physiological context, exosomes contribute to the maintenance of

immune response, cell proliferation, maturation, and homeostasis

(65). Exosomes have been identified to play crucial roles in various

processes within TME, including but not limited to immune

regulation, promotion of cancer cell proliferation, metastasis, drug

resistance, and angiogenesis (66, 67).

Exosomes can facilitate crosstalk between B cells and other cells,

making them a potent target for cancer treatment (Table 1).
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3.2 application of exosomes in
cancer therapy

Exosomes are widely recognized as significant biomarkers for

cancer diagnosis, prediction, and monitoring (78). Due to their

stability and prevalence in circulation, they serve as valuable

indicators for liquid biopsy techniques (79), enabling more

accurate and less invasive treatments (80). Considering the active

cross-talk of exosomes between immune and cancer cells, they can

be utilized for immunotherapy to promote (81, 82) or suppress (83,

84) tumor proliferation. Additionally, cancer vaccines based on

exosomes have also been developed (85).

Compared to other types of extracellular vesicles (microvesicles,

membrane particles, apoptotic bodies), the majority of the biological

components, lipids, and proteins of exosomes are relatively clear (86).

In comparison to synthetic nanovesicles (polymeric nanoparticles,

liposomes, and solid lipid nanoparticles), exosomes possess more

membrane proteins, stronger biocompatibility, and a longer

circulation half-life naturally (87). They can easily pass through the

plasma membrane, blood, and blood-brain barrier (88) to infiltrate

tumor tissues (89), which allows for precise and targeted therapeutic

interventions (90). Consequently, emerging research is focused on the

development and design of bioengineered exosomes.

Bioengineered exosomes can be designed to target specific cells,

provide therapeutic cargo, and regulate the immune system (11).

Certain surface-adhesive proteins and carrier ligands allow

exosomes to attach to target cell surfaces and efficiently deliver

them into the cells (91). Exosomes can efficiently deliver drugs like

paclitaxel (92), transport siRNA (93, 94). But the presence of the

blood-brain barrier (BBB) limits the access of small molecule drugs

to glioma tissue (95). Exosomes derived from brain endothelial cells

can transport drugs to BBB, which may become a breakthrough for

the treatment of brain cancer (96).

Immune suppressive factors can inhibit the function of immune

cells (97–100). By transporting cargo that neutralizes these immune

suppressive factors, exosomes can enhance the body’s anti-tumor

immune response and improve the efficacy of cancer

immunotherapy. An investigation has demonstrated that the T-cell

suppressive effects of exosomes can be mitigated by the administration

of anti-TGF-b (101). Franz L and colleagues conducted a PD-1 blockade
experiment using EV secreted by glioblastoma, which almost reactivated

T cells and suppressed tumor progression (102). In the HNSCC

microenvironment, the T-cell inhibitory effect of circulating PD-L1

exosomes can be blocked by PD-1 antibodies (103). However, the

interference of molecules carried by exosomes in immunotherapy may

be related to mechanisms of drug resistance (104, 105).
4 B-cell-derived exosomes and the
tumor microenvironment

The investigation of B cell-derived exosomes initiated with the

initial characterization of these vesicles in 1996 (106). Through their

surface effector molecules, these exosomes can signal to various cells

to regulate the TME (Figure 1B).
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4.1 The biological components of
exosomes released by B cells

Mass spectrometry analysis has uncovered a wealth of constituents

in exosomes originating from B cells, including MHC-I, MHC-II,

CD20, CD45, and BCR complexes (comprising surface Ig, CD19, and
Frontiers in Immunology 04
Tetraspanins), as well as chaperones such as heat shock protein 70 and

90, integrins and other proteins (107–109). Furthermore, these

exosomes also express cholesterol, sphingomyelin, and ganglioside

GM3 (107). Addition of macrophage-derived exosomes to naive

monocytes induces cell differentiation (110), however this

mechanism is unclear in B cells and B cell exosomes. When B cells
B

A

FIGURE 1

Biology of exosomes and the role of their cargo in the tumor microenvironment. (A) Exosomes are produced in dependence on the ESCRT mechanism
or a RAB31-mediated pathway independent of the ESCRT mechanism. Exosomes carry a variety of proteins and effector molecules that can determine
the direction of tumour development and tumour metastasis, promote tumour angiogenesis and participate in tumour drug resistance.Engineered
exosomes carry cargoes of interest that also have multiple roles closely related to tumours. (B) B cells release exosomes through endocytosis of the
plasma membrane, the formation of early endosomes and late endosomes, and fusion of polyvesicular bodies with the plasma membrane. In addition to
MHC protein and quadruple transmembrane protein, the surface of B cell-derived exosomes contains special FasL proteins, integrins, C3, CD19, CD39,
CD73, etc., which can regulate immune cells (T cells) or affect the survival of tumor cells through special factors.
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are activated, they release a greater amount of exosomes (111, 112),

which carry more effector molecules (77, 108, 109). CD45 is a key

positive regulator of the BCR-mediated signalling pathway (113, 114)

and, interestingly, is absent from T-cell-derived exosomes (115, 116).

Triggering the classical NF-kB pathway via downstream of BCR is able

to increase HLA expression in B-cell exosomes (111). However, these

two regulatory pathways may be linked and need to be explored in

further experimental studies.

4.2 Mechanism of involvement of
components of B cell-derived exosomes in
the tumour process

4.2.1 Proteins
MHC-II molecules in exosomes are predominantly located in

SLOs and are expressed exclusively by professional APCs, including

B cells (117). The presence of CD20, CD81, and HSC70 is associated

with MHC-II on the plasma membrane, which promotes antigen

presentation and T cell activation (118). CD20 can form complexes

with both MHC-II and CD40 (119), while the R21 monoclonal

antibody selectively recognizes CD20 on B cells. Additionally, R21

mAb can induce lfa-1-dependent cell adhesion but inhibits MHC-II-

mediated lfa-1-dependent cell adhesion. It’s worth noting that CD40

may interfere with mAb binding to CD20 by competitively binding

with it (119).

It is not surprising that exosomes are present in TLSs, as B cells

are abundant in these structures (120). CD20 can form complexes
Frontiers in Immunology 05
with BCR to participate in signal transduction (121), ultimately

initiating immune responses. Additionally, CD20 can activate B

cells through calcium channels (122), and the resulting stimulated

calcium channels may induce the release of a large number of

exosomes (108). Some of the mechanisms of CD20 are not yet clear

(37). The augmented abundance of CD20-positive B lymphocytes in

sentinel lymph nodes is indicative of a favorable prognosis in cases

of breast cancer (123). CD20 accumulates at the tumour-liver

border in patients with colorectal cancer (124), where it may act

as a prognostic marker for the tumour.

These indications suggest that these complexes may be crucial

factors in MHC-II or antigen-mediated B cell responses.

B cell-derived exosomes express MHC-II and form a complex

(PMHC-II) with peptide antigens. The notion that B-cell exosomal

exosomes may transport PMHC-II, proposed more than 20 years ago

(106), is confirmed. Exosomes released by most primary B cells express

PMHC-II. When antigen-loaded B cells meet specific T cells, B cell

activation stimulates exosome release, while stimulating pMHC-II to

escape intracellular degradation. pMHC-II interacts with the TCR and

activates naive CD4 T cells to initiate an immune response (125).

However, exosomes from mature DCs only activate naïve T cells as

inefficient APCs (126).
4.2.2 ncRNAs
B-cell exosomes have emerged as viable candidates for the

delivery of miRNA-155. When miRNA-155 inhibitor-loaded
TABLE 1 Exosome crosstalk between B cells and other cells.

Other cell-derived exosomes act on B cells

Tumor
type Source In vivo/

in vitro Action type/specific axis Effect Effects on
tumors Ref.

—— DC In vivo Stimulate B cell proliferation CD8 + T cell response was induced Kill cancer cells (68)

—— Mature DC In vivo Binds to B cell receptors Induces T cell proliferation —— (69)

—— T cells In vivo ——
Promote B cell proliferation and

differentiation
—— (70)

——
Mesenchymal

cells
—— TGF-b1 is produced Regulates B cell proliferation and survival —— (71)

HCC Tumor cells In vitro HMGB1-TLR2/4-MAPK
Induction of B cells to become TIM-1Breg,

impairing CD 8T cell function
Promote HCC
progression

(72)

HNSCC plasma In vitro ——
Inhibits the proliferation, viability and

function of B cells
Helps immune

escape
(73)

B-cell-derived exosomes act on other cells

Tumor
type

Target cells
In vivo/in

vitro
Action type/specific axis Effect Effects on tumors Ref.

Ovarian
cancer

cancer cell In vitro miR-330-3p/JAM2 axis Inducing mesenchymal procedures
Promote the growth

of cancer cells
(74)

—— T cell In vivo Rab27a expression is up-regulated Impaired CD8T cell response
Promote tumor

survival
(75)

—— T cell In vivo
C3 fragments are deposited on the

surface of the cell membrane
Enhance T cell response, conducive to the

development of immune response
Inhibits tumors (76)

—— Macrophages In vivo
Enhances lipopolysaccharide

stimulation
Reduces the release of TNFa

Promote tumor
survival

(77)
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exosomes were administered to miRNA-155 knockout mice, a

notable reduction in TNF-a production was observed in mouse

RAW macrophages (77). After treatment with rituximab, a

downregulation of miR-155 levels in exosomes was observed

(127). This study highlights the potential of B cell-derived

exosomes as therapeutic vehicles.

MiR-330-3p has been identified as a key factor in tumor

progression. It targets TPX2, which negatively regulates TPX2

expression to inhibit melanoma cell proliferation (128). In

addition, miR-330-3p from plasma cell-derived exosomes is a

critical regulator of ovarian cancer stroma and promotes tumor

metastasis through the JAM2 pathway (74). TPX2 (129) and JAM2

(130, 131) have been described as associated with cancer

progression. However, the ability of miR-330-3p to target these

proteins may suggest a potentially important role for our B-cell

exosome miR-330-3p.
4.3 B cell-derived exosomes are taken up
by other cells

4.3.1 Follicular dendritic cells
In vitro isolated B cell-derived exosomes specifically bind

follicular dendritic cells (FDC) (132). The fate of B cells in GC

depends on the adhesion of the VCAM-1 pathway and is associated

with FDC (133). More importantly, FDC themselves do not express

MHC-II, but rather pick up peptide-loaded MHC-II on the surface

of B cells (134). Exosome binding to FDC may be through

interaction with VCAM-1, which then stimulates T helper cells.

Additionally, tumor-associated FDCs express CXCL13, which

effectively recruits lymphocytes (135). We postulate that in tumor

tissues, FDCs may attract B cells, which then bind to the released

exosomes, leading to antigen presentation. Therefore, FDCs may

represent a physiological target for B cell-derived exosomes (132).

4.3.2 Fibroblasts
Compared to FDCs, fibroblasts exhibit a limited expression of

leukocyte adhesion molecules on their surface (132). Treatment of

fibroblasts with TNF-a induces the upregulation of ICAM-1

expression on their surface, thereby enhancing the adhesion of B

cell-derived exosomes to fibroblast surfaces (136). TNF-a may be a

key factor in inducing exosomes to be adsorbed.

4.3.3 Macrophages
In the subcapsular sinus of the lymph node, B-cell-derived

exosomes are captured by CD169 macrophages, which then

penetrate deep into the paracortex (137). CD169+ cells are

present within B-cell follicles (138) and the T-B cell zone

boundary of the GC (139). The presentation of antigens by

CD169+ cells to CD8 T cells and/or B cells causes them to being

activated (140). Activated B cells may release more exosomes.

Exosome-induced CTL responses (141) are enhanced in CD169+

mice in cooperation with T and B cells, suggesting that exosomes

enter lymphoid organs possibly to reduce the immune response to

autoantigens (137).
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5 Discussion

In recent years, exosomes have gained increasing attention as

important mediators of intercellular communication. While many

studies have focused on cancer cell-derived exosomes for diagnosis,

prognostic testing, and drug delivery, less is known about exosomes

derived from B cells. Fortunately, there are still some relevant

studies targeting B-cell-derived exosomes, as outlined in our

earlier discussion.

As previously outlined, the effective delivery of miRNA-155 by

B cell-derived exosomes has been established. For the delivery of

miR-330-3p, researchers may consider the design of a B cell (142)

transfected with the V600E mutation. Subsequently, lipid

transfection or electroporation can be employed to introduce the

miR-330-3p construct into B cells. In addition, the design of a short

hairpin RNA (shRNA) or small interfering RNA (siRNA) targeting

TPX2 is essential. These molecules should be transfected into B cells

along with miR-330-3p for culture, followed by the isolation of

exosomes. To enhance the yield of exosomes, researchers can

employ additional stimuli, such as TLR3, TLR7, TLR9, and other

motifs discussed earlier.It is crucial to emphasize that researchers

must continually optimize and thoroughly validate the

experimental design at each stage to ensure the exosomes

effectively downregulate TPX2 and inhibit melanoma growth. It

should be noted that miR-330-3p and TPX2 are merely two

components of a complex regulatory network, and their specific

roles and effects on tumor growth are contingent upon various

factors in the experimental context. Furthermore, although the

production of exosomes with multiple engineered cargoes is

theoretically feasible, it may induce cellular stress or potentially

cytotoxic effects, thereby posing challenges for manipulation.

The study of B-cell-derived exosomes for cancer therapy

presents a number of challenges, including inadequate

comprehension of their interactions within the complex milieu of

TME and insufficient clinical investigations to verify their

functionality and potential side effects. We anticipate that with

increasing research into B-cell-derived exosomes, their functions

and the mechanisms underlying their biological components will

soon become clearer.
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