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The induction of an effective immune response is critical for the success of

mRNA-based therapeutics. Here, we developed a nanoadjuvant system

compromised of Quil-A and DOTAP (dioleoyl 3 trimethylammonium propane),

hence named QTAP, for the efficient delivery of mRNA vaccine constructs into

cells. Electron microscopy indicated that the complexation of mRNA with QTAP

forms nanoparticles with an average size of 75 nm and which have ~90%

encapsulation efficiency. The incorporation of pseudouridine-modified mRNA

resulted in higher transfection efficiency and protein translation with low

cytotoxicity than unmodified mRNA. When QTAP-mRNA or QTAP alone

transfected macrophages, pro-inflammatory pathways (e.g., NLRP3, NF-kb,

and MyD88) were upregulated, an indication of macrophage activation. In

C57Bl/6 mice, QTAP nanovaccines encoding Ag85B and Hsp70 transcripts

(QTAP-85B+H70) were able to elicit robust IgG antibody and IFN- ɣ, TNF-a,
IL-2, and IL-17 cytokines responses. Following aerosol challenge with a clinical

isolate of M. avium ss. hominissuis (M.ah), a significant reduction of

mycobacterial counts was observed in lungs and spleens of only immunized

animals at both 4- and 8-weeks post-challenge. As expected, reduced levels of

M. ah were associated with diminished histological lesions and robust cell-

mediated immunity. Interestingly, polyfunctional T-cells expressing IFN- ɣ, IL-
2, and TNF- a were detected at 8 but not 4 weeks post-challenge. Overall, our

analysis indicated that QTAP is a highly efficient transfection agent and could

improve the immunogenicity of mRNA vaccines against pulmonary M. ah, an

infection of significant public health importance, especially to the elderly and to

those who are immune compromised.
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1 Introduction

Nucleic acid (NA) vaccines have demonstrated improved safety

and tolerability compared to traditional vaccines (1–4), especially

with the worldwide use of an mRNA vaccine to control the SARS-

CoV-2 pandemic. Unlike live-attenuated vaccines (LAV), NA

vaccines encode individual or a myriad of immunogenic antigens

to trigger protection without the untoward effect of other factors

encoded by the LAV. However, NA vaccines are often less

immunogenic than LAV and therefore need to be formulated

with an adjuvant to boost their immunogenicity (5–7). Over the

past few decades, progress has been made toward identifying novel

adjuvants to boost the immune response generated by NA vaccines

against both infectious and non-infectious diseases (5, 8–11)

including a class of lipid nanoparticles (LNPs) to help with the

delivery of vaccine antigens. LNPs have been used as both adjuvants

and delivery vehicles for mRNA vaccine constructs (12–14). The

LNPs protect mRNA from host endonucleases and promote

efficient cellular uptake of constructs for efficient protein

translation in cells (15–17). LNPs made from cationic lipids such

as 1,2-di-O-octadecenyl-3-trimethylammonium-propane

(DOTMA) and its biodegradable analog DOTAP are part of

mRNA-based vaccine formulations against several cancers and

autoimmune encephalomyelitis (18, 19). Recently, LNP adjuvants

were used in two mRNA-based vaccines created by BioNTech/

Pfizer and Moderna that targets SARS-Cov-2 virus and have shown

protective efficacy in both animal and human studies (20, 21). In

this report, we developed a nanoadjuvant system of both Quil-A

and DOTAP called QTAP. The developed QTAP nanovaccine

adjuvant was tested against M. ah causing pulmonary infection in

immunocompromised patients.

Adjuvant systems are a combination of immune stimulants that

enhance the immunogenicity of vaccine antigens. A purified version

of Quil-A (QS-21) has been shown to be less toxic in both mice and

humans and is part of approved vaccines against malaria

(Mosquirix) and shingles (Shingrix) with high immunogenicity

and protective efficacy (22, 23). The QS-21 stimulates both

antibody-based and cell-mediated immune responses, eliciting a

Th-1-biased immune response with the production of high titers of

antibodies (IgG2a and IgG2b, in addition to IgG1), as well as

antigen-specific cytotoxic T lymphocytes (24). These studies

clearly demonstrate the importance of adjuvants in vaccine

formulations especially against challenging pathogens. Combining

the efficacy of mRNA vaccines, delivery functions of LNPs, and the

inflammatory effect of adjuvants may be a suitable approach to

enhance the overall efficacy of nucleic acid-based vaccines.

The application of mRNA vaccines against intracellular

pathogens for which no effective vaccine has been developed

remains unexplored (25). Currently, there is no licensed vaccine for

M. ah infection, a significant health problem for the aging and

immunocompromised population (26, 27). In pursuit of addressing

this problem, several platform technologies were tested before

including nucleic acid (NA) vaccines (28–30). Mycobacteria rely on

a plethora of antigens to drive its virulence in the host making vaccine

development a challenge (31, 32), and M. ah is not an exception.

Previously, RNA as a booster to protein vaccines against M. ah
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showed protective efficacy in mice (33). We suggest that mRNA

vaccines targeting a complex pathogen such asM. ah would require a

mixture of antigens combined with an efficient adjuvant system to

provide protective immunity, as suggested before (33). In this report,

we describe our efforts towards the development of nanoadjuvant

systems with improved physicochemical characteristics and their

application to generate protective immunity against aerosol

challenges with M. ah. To the best of our knowledge, this is the

first nanoadjuvant system that combines DOTAP, Quil-A (QTAP),

and mRNA at a ratio that ensures efficient cellular uptake, mRNA

delivery, protein translation, enhanced immune activation and elicits

protective immunity in a murine challenge model. Not only QTAP-

based constructs were more stable for prolonged times at different

storage temperatures, but also, they were able to efficiently transfect

immune cells and induce their activation without antigens. Moreover,

when antigens were added, the QTAP adjuvanted mRNA (QTAP-

Ag85B+Hsp70) increased macrophage activation and generated

localized immunity in immunized mice with the presence of

polyfunctional T-cells and reduced tissue colonization with the

challenge strain of M. ah. Together, these results provide clear

evidence of the novel QTAP as a transfection and vaccine

nanoadjuvant system that can efficiently deliver mRNA constructs

and elicit a protective immune response against M. ah infection and

potentially other intracellular pathogens.
2 Materials and methods

2.1 Bacterial cultures and plasmids

For all challenge studies, a Mycobacterium avium subspecies

hominissuis clinical isolate from the collection of the Wisconsin

State Laboratory of Hygiene (designated M. ah W14 or M. ah) was

grown and its genome sequenced as detailed before (34). For

culturing, M. ah W14 was grown in Middlebrook 7H9 broth (BD

Biosciences, Sparks, MD, USA) supplemented with 10% DC (2%

glucose, 5%, and 0.85% NaCl) in a shaking incubator at 37°C.

Bacterial cultures were harvested and stored as before (35).

Sequences for mycobacterial genes (hsp70, Ag85B), green

fluorescent protein (GFP) from jellyfish Aequorea Victoria, and

Luciferase (Luc) gene from firefly luciferase were downloaded from

GenBank and amplified followed by cloning onto an expression

vector pCMV from our laboratory collection, as described before

(36). These vectors were used as templates for in vitro RNA

synthesis using HiScribe® T7 ARCA mRNA Kit (with tailing)

(NEB, Ipswich, MA, USA).
2.2 Animal vaccinations

To examine nanovaccine safety and immunogenicity,

preparations of QTAP-mRNA encoding mycobacterial antigens

(Ag85B and Hsp70) were evaluated in 3-weeks old C57BL/6 mice.

Mice were purchased from Jackson Laboratory (Bar Harbor, ME,

USA) and randomly divided into 3 groups (N=14/group),

inoculated through the subcutaneous route with 3 doses (15 mg
frontiersin.org
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each) of QTAP-mRNA encoding different antigens (Ag85B

+Hsp70) at 5-weeks intervals while other groups were inoculated

with PBS or 15 mg of QTAP alone to serve as controls. Mice were

monitored for general distress, depression, or inappetence and

weight changes over the course of the 15 weeks. At each

vaccination time-point, blood samples were collected, and serum

was separated for cytokine analysis. For some groups used to

examine vaccine protective immunity, mice (N=3) were

euthanized from each group at 5 weeks after final immunization

to harvest lung and spleen for flow cytometry and histopathology.

The remaining 12 mice in each group were infected with 100 CFUs

of M. ah through the aerosol route. After 48 h, mice (N=2) were

euthanized from each group, and their lungs and spleen were

harvested and homogenized for infection dose determination by

CFU count. At 4 and 8 weeks post-challenge, mice (N=5) were

euthanized from each group and their organs (lung, spleen, liver)

were harvested and homogenized for flow cytometry,

histopathology, and CFU enumeration as detailed before (36, 37).
2.3 Preparation and characterization of
QTAP nanovaccines

Modified mRNA was synthesized using the HiScribe™ T7

ARCA mRNA Kit (with tailing) (New England BioLabs (NEB)

E2060S) and Pseudouridine-5’-Triphosphate - (TriLink N-1019)

(San Diego, CA, USA). Briefly, capped modified mRNAs were

synthesized by co-transcriptional incorporation of Anti-Reverse

Cap Analog (ARCA, NEB #S1411) using T7 RNA Polymerase in

the presence of 10 mM Pseudo-UTP. This is followed by DNase I

treatment to remove template DNA, and treatment with poly (A)

polymerase for poly (A) tail addition. The resulting mRNA is

purified by column purification, quantified by Nanodrop, and

quality assessed using gel electrophoresis.

To prepare QTAP-mRNA, DOTAP (18:1 TAP (DOTAP)

890890) was purchased from Avanti Polar Lipids (Birmingham,

AL, USA) without purification and dissolved in 2% glucose water to

a final concentration of 10%. The Quil-A (VET-SAP, Desert King)

stock solution of 0.2% was made in nuclease-free water. For each

preparation, mRNA, Quil-A, DOTAP, and the buffers were

combined at a nitrogen to phosphate (NP) ratio of 4.05 to form

QTAP-mRNA. Size distribution and zeta potential of QTAP-

mRNA in aqueous dispersion were measured by dynamic light

scattering (DLS) on a Malvern Zetasizer instrument at 25°C. For

zeta potential measurement, an aliquot (5 ml) of QTAP-NPs was
diluted in Alpha-q water and placed in a disposable capillary zeta

potential cell, available from the Zetasizer Nano series (38).

Transmission Electron Microscopy was performed at the Medical

School Electron Microscopy Facility of the University of Wisconsin-

Madison using a Philips CM120 transmission electron microscope

(FEI, Eindhoven, the Netherlands) at 80 kV. For encapsulation

efficiency QTAP-NPs loaded with mRNA were resuspended in

600 ml of 0.05 M phosphate-buffered saline (PBS, pH 7.4) at 37°

C. At each time point, suspensions were removed and centrifuged at

14,000 relative centrifugal force for 10 min. The supernatant was

removed and replaced with PBS and returned to incubation.
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Supernatant samples were quantified for released mRNA from the

QTAP using a NanoDrop spectrophotometer and compared to the

total mRNA used (39, 40).
2.4 Cell viability and transfection
efficiency of QTAP

Cell viability following mRNA transfection was measured using

MTT assay (Millipore Sigma 11465007001, Burlington, MA, USA).

Baby Hamster Kidney (BHK) cells (American Type Culture

Collection (ATCC), Manassas, VA) were cultured in 96-well

plates and transfected for 24 h at 37°C and 5% CO2. The

medium was removed and replaced with 10 ml of the MTT

labeling reagent (final concentration 0.5 mg/ml) and incubated

for 4 h at 37°C and 5% CO2. A 100 ul of the solubilization solution

was added to each well and incubated at 37°C and 5% CO2

overnight. The absorbance was recorded using an ELISA plate

reader at wavelength 550. To determine transfection efficiency,

BHK cells, HEK293T cells, were cultured in Dulbecco’s modified

Eagle’s medium (DMEM) (Gibco 31966-021, Waltham, MA, USA)

medium supplemented with 10% FBS (Sigma F7524) and penicillin-

streptomycin (Gibco 15140-122) whiles J774.A macrophages were

cultured in RPMI 1640 (Corning 10-040-CM) medium

supplemented with 10% FBS (Sigma F7524) and penicillin-

streptomycin (Gibco 15140-122). Cells were seeded at 300,000

density and incubated at 37°C and 5% CO2 until they reach 70-

80% confluency followed by transfection with QTAP-NPs

encapsulating mRNA. A commercial transfection reagent

TransIT®-mRNA Transfection Kit (Mirus 2250, Madison, WI)

and in-house made DOTAP-NPs were used to transfect an equal

amount of mRNA in separate wells as transfection controls. At 24h,

48h, and 72h post-transfection, media were removed, and cells were

washed with PBS. Cells were lifted from the plate by gently pipetting

up and down and transferred to a 2 ml centrifuge tube and

centrifuged at 1500 g for 5 minutes at 40C. For flow cytometry,

cells were run on a BD LSR Fortessa flow cytometer. Data were

analyzed with FlowJo software (BD Bioscience). The strategy for

gating on GFP+ cells was debris exclusion on the forward scatter

(FSC) vs side scatter (SSC) dot plot, followed by exclusion of dead

cells by fixability dye eFluor 780 (number 65-0865-14; Invitrogen)

staining. From the live cell population, total GFP+ cells were gated.

Finally, the mean fluorescence intensity of the GFP+ population

was determined.
2.5 Western blot analysis

Cells were transfected with mRNA as described above. After

24h of incubation, cells were detached and washed with ice-cold

PBS, lysed with 1% (w/v) SDS, followed by sonication using

Misonix Ultrasonic Liquid Processor sonicator 3000. The total

protein for each sample was separated by SDS-PAGE, and

transferred to a poly(vinylidene difluoride) membrane; proteins

were detected by western analysis with the histidine-tag antibodies

ad detailed before (41).
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2.6 Flow cytometric assessment of
QTAP-mRNA immunogenicity and
protective efficacy

Lungs and spleens collected from vaccinated mice were used for

flow cytometric assessment. Briefly, tissues were excised and placed

in a gentleMACS dissociator M Tube (Miltenyi 130-093-236,

Bergisch Gladbach, Germany) with 3 mL collagenase B (1 mg/

mL) (Roche, Basel, Switzerland) and incubated for 30 min at 37°C.

Single-cell were prepared by gently squeezing through a 70-mm cell

strainer (Falcon) after lysing RBCs using 1X BD Biosciences BD

Pharm Lyse™ (San Jose, CA, USA). For intracellular cytokine

staining, 106 cells were stimulated with M. ah purified protein

derivative (PPD) (1 mg/ml) and IL-2 (400U/ml) while an equal

concentration of IL-2 was added to the remaining replicate as

unstimulated control. After 16h incubation at 37°C, 5% CO2,

Brefeldin A (1 mL/mL, GolgiPlug, BD Biosciences) was added,

and the cells were further incubated for an additional 6 h at 37°C,

37°C, 5% CO2. Fluorochrome-labeled antibodies against the cell-

surface antigens CD4 (BUV 496, GK1.5), CD8a (BUV395, 53-6.7),

and intracellular antigens IFN-g (APC, XMG1.2); TNF-a (BV421,

MP6-XT22); IL-2 (PE-CF594, JES6-5H4); IL-17 (FITC, TC11-

18H10.1) were purchased from BD Biosciences; Biolegend (San

Diego, CA, USA); eBioscience (San Diego, CA, USA); or Invitrogen

(Grand Island, NY, USA). Before antibody staining, the cells were

stained for viability with Dye eFluor 780 (eBiosciences, San Diego,

CA, USA). After stimulation, the cells were stained for surface

markers and then processed with the Cytofix/Cytoperm kit (BD

Biosciences, San Jose, CA, USA). To stain for cytokines, the cells

were first stained for cell-surface molecules, fixed, permeabilized,

and subsequently stained for the cytokines. All samples were

acquired on an LSR Fortessa flow cytometer (BD Biosciences, San

Jose, CA, USA). Data were analyzed with FlowJo software (TreeStar,

Woodburn, OR, USA). Results are expressed as the difference in the

percentage of stimulated cells with that of unstimulated cells. At

least 100,000 events were collected for each sample. A Boolean

gating strategy was applied for the determination of cytokine-

secreting T cells.
2.7 ELISA assay

Serum samples were collected from animals at designated times

and stored at -80°C until use. After thawing, sera were 1:10 diluted

with buffer (PBS-Tween 0.05% with 1% BSA) to obtain a working

concentration for the ELISA. ELISA plates (96-well) were coated

withM. avium purified protein derivatives (PPD) at a concentration

of 10 µg/mL in carbonate-bicarbonate buffer (pH 9.6). The plates

were incubated overnight at 4°C, washed with PBS-Tween 0.05%,

and blocked with 200 µL of blocking buffer (PBS-Tween 0.05% with

3% BSA) for 1 hour at room temperature. After blocking, plates

were washed and 100 µL of the diluted serum samples were added to

each well for 2 hours at room temperature. After incubation, the

plates were washed and 100 µL of HRP-conjugated anti-mouse IgG
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antibody (diluted 1:5000 in sample diluent buffer) was added to

each well. The plates were then incubated for 1 hour at room

temperature, washed and 100 µL of TMB substrate solution was

added to each well. After 10-15 minutes of incubation at room

temperature, protected from light, color development was stopped

by adding 50 µL of 2M sulfuric acid to each well. Plates were read at

450 nm using a microplate reader.
2.8 Statistical analysis

Statistical analyses were performed using GraphPad software

(La Jolla, CA, USA). Nanoparticle size, protein expression,

thermostability, and cytotoxicity were compared using ordinary

one-way ANOVA where *p < 0.05, **p < 0.01, ***p < 0.001, and

****p < 0.0001 were considered significantly different among

groups. Serum cytokine and cellular immune assays were

compared using an ordinary one-way ANOVA test where *, p <

0.05; **, p < 0.01 were considered significantly different

among groups.
3 Results

3.1 Characterization of
QTAP-mRNA nanovaccine

To facil itate the characterization of QTAP-mRNA

nanovaccines, we first formulated modified mRNA-encoding

reporter genes such as luciferase (Luc) or GFP proteins using

QTAP encapsulation. The mRNA was modified with the

substitution of at least 66% of the native uridine nucleotides to

Pseudouridines (Y) as suggested before (42, 43). The Y-mRNA

integrity and purity were assessed by gel electrophoresis and

formulated into the Quil-A adjuvanted DOTAP LNPs (QTAP).

Transmission electron microscopy (TEM) analysis of QTAP-

mRNA encoding GFP showed a few particles (~95 nm in size)

which are spherical with no observed particle aggregation

(Figure 1A). Also, dynamic light scattering (DLS) of the QTAP-

mRNA complex displayed an average particle size of ~75 nm with a

zeta potential of 34 (Figure 1B). The encapsulation efficiency (EE%)

of QTAP nanoparticles (NP) was > 90%. The release kinetics of

mRNA from QTAP NPs showed sustained release of up to 80% of

the mRNA cargo within the first 30 days of testing (Figure 1C).

To test the stability of QTAP, we encapsulated Y-mRNA

encoding Luc protein in QTAP and incubated the complex at

different temperatures. At all temperatures, QTAP-mRNA is

stable for up to 72h with no significant difference to freshly

prepared QTAP-mRNA (Figures 1D, E). Interestingly, after 3

weeks, QTAP-mRNA remains stable at 4 0C, -20 0C, and -80 0C

whereas at 37 0C and RT, the stability was reduced significantly after

72h (Figure 1F). The luciferase activity suggests that QTAP-mRNA

forms nanostructures that are stable at higher temperatures and can

deliver the mRNA cargo in a sustained release manner.
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3.2 The combination of DOTAP and Quil-A
enhances the delivery of functional
modified mRNA in cells

To determine the ability of QTAP to efficiently deliver

functional Y -mRNA, BHK cells were transfected with Y-mRNA

encoding either Luc or GFP proteins. At 24h post-transfection, Y
modified mRNA resulted in a 4-fold increase in luciferase

expression (Figure 2A). Similarly, luciferase activity was higher in

QTAP-mRNA compared to DOTAP-mRNA transfected cells

(Figure 2B). Cells transfected with QTAP encapsulating Y-mRNA

encoding GFP showed a higher number of cells expressing GFP

than unmodified constructs at 48h (data not shown) suggesting that

enhanced protein expression is not dependent on QTAP

encapsulation but Y presence. Moreover, complexation of Y-

mRNA encoding GFP with the neoadjuvant (QTAP) showed a

significant increase in the number of GFP-expressing cells

compared to DOTAP control at 72 h (Figure 2C). When flow

cytometry was used, the number of cells expressing GFP was higher

in QTAP-mRNA transfected cells than in DOTAP-mRNA

transfected cells (Figure 2D). Overall, these findings illustrate the
Frontiers in Immunology 05
ability of the novel QTAP delivery platform to transfect mRNA

efficiently in cells leading to detectable protein expression in vitro.
3.3 QTAP NPs encapsulating modified
mRNA of mycobacterial Ag85B activate
macrophages and are not cytotoxic

To examine how a QTAP nanovaccine can modulate cells,

macrophages (J744A.1) were transfected with QTAP followed by

flow cytometric acquisition. Western blot analysis ofM. ah antigens

Ag85B and Hsp70 showed increased protein expression from BHK

cells after transfection with QTAP-mRNA (Figure 3A). Cells

expressing CD80 (Figure 3B) and CD86 (Figure 3C) were

significantly higher when transfected with QTAP-Y-mRNA-

Ag85B than DOTAP-Y-mRNA-Ag85B. Interestingly, transfection

of cells with either QTAP alone or QTAP-Y-mRNA-Ag85B

resulted in the upregulation of inflammatory pathways in cell

culture (Figure 3D) compared to DOTAP controls. Overall, the

novel QTAP NAS can activate macrophages toward an

inflammatory state. Finally, we also analyzed the cytotoxicity of
A B

D E F

C

FIGURE 1

QTAP forms nanoparticles and releases RNA cargo in a sustained manner with high stability. (A) Electron microgram of QTAP and DOTAP-
encapsulated mRNA measured by TEM. (B) DLS data of NPs measured at 25°C with Zetasizer software. (C) In vitro sustained release kinetics of
packaged mRNA measured at pH-7.4, 37°C. (D–F) Relative expression of Luc protein in BHK cells transfected with QTAP-encapsulated Luc mRNA
stored at different temperatures measured by luminometry. Data were plotted in GraphPad Prism and one-way ANOVA was used to examine
differences between samples.
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QTAP-Y-mRNA using MTT cytotoxicity assay on two different cell

lines (BHK and J774). The viability of both BHK and J774 cells

transfected with DOTAP and QTAP encapsulating Ag85B Y-

mRNA was not significantly affected compared to the negative

control (Figures 3E, F). On the other hand, Mirus mRNA

transfection reagent significantly reduced cell viability in both

cells at the same time point. Although at this time point we

observed higher transfection efficiency in cells transfected with

Mirus mRNA transfection reagent encapsulating Y-mRNA

encoding GFP, it also resulted in lower viability in both cells.

Additionally, evaluation of reactive oxygen species (ROS)
Frontiers in Immunology 06
production in macrophages showed QTAP-mRNA ROS levels

comparable to DMSO. However, DOTAP-mRNA has higher ROS

levels than both DMSO and QTAP-mRNA (data not shown).
3.4 QTAP-based mRNA nanovaccine
is safe and elicits a robust immune
response in mice.

The safety and immunogenicity of QTAP encapsulating

modified mRNA encoding Ag85B and Hsp70 were evaluated in
A B

D

C

FIGURE 2

QTAP nanovaccine can efficiently deliver modified mRNA leading to higher protein expression in cells. (A, B) Relative expression of Luc protein in
BHK cells transfected with QTAP-encapsulated Luc mRNA determined by luminometry. (C) Fluorescence microscope image of GFP expression in
BHK cells transfected with either DOTAP or QTAP-encapsulated GFP mRNA. (D) Transfection efficiency of DOTAP and QTAP-encapsulated GFP
mRNA in BHK cells measured by flow cytometry. Data were analyzed and plotted in GraphPad Prism and statistical differences calculated by One-
way ANOVA. Asterisks indicate statistical significance, where *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.
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C57Bl/6 mice (Figure 4A). Mice were monitored for clinical signs

such as inflammation at the site of vaccine injection, depression, or

inappetence. No clinical signs were observed in all groups over the

course of 15 weeks. Although QTAP-mRNA vaccinated mice

showed hair loss at the posterior and dorsal regions, we observed

no clinical severities in these groups. The weight of mice vaccinated

with either QTAP only or QTAP-mRNA groups did not differ from

PBS inoculated mice (Figure 4B). ELISA titers in blood indicated

that QTAP-mRNA (Ag85B + Hsp70) elicited significant levels of

IFN-g, TNF-a, and IL-17 specific cytokines compared to PBS

control group. Interestingly, the QTAP-only group showed

elevated cytokine levels relative to the PBS group suggesting that

QTAP by itself is immunogenic (Figures 4C–E). Overall, these

findings demonstrate the adjuvant effect of QTAP alone which is

amplified by the encapsulated mRNA. Histopathological analysis of

the lungs shows no pathological damage (data not shown). At 4
Frontiers in Immunology 07
weeks post-final vaccination, we quantified the percentage of CD4+

and CD8+ T cells in the lungs and spleen of mice from all groups

and analyzed the population of Th-1 (IFN-g, TNF-a, IL-2) and Th-

17 (IL-17A) cytokine-producing T cells by flow cytometry

(Figure 5). The results indicate that QTAP and QTAP-mRNA

elicit significantly higher proportions of CD 4 T cells secreting

pro-inflammatory cytokines in mice compared to the PBS group.

However, there were no significant levels of these cytokines in CD8

T cells (data not shown). Interestingly, humoral immune response

characterized by the presence of IgG antibodies were detected at

significantly higher levels in the sera of QTAP-mRNA immunized

mice compared to the control groups. This increase in IgG response

was detected as early as 5 weeks after the second vaccine dose and

up to at least 4 weeks post-challenge (Figures 5E, F). Overall, these

results suggest that QTAP encapsulating modified mRNA encoding

mycobacterial Ag85B and Hsp70 is safe and immunogenic in mice.
A B

D

E F

C

FIGURE 3

QTAP encapsulating mRNA-Ag85B is not cytotoxic and activates macrophages. (A) Protein expression of modified vs non-modified mRNA
determined by Western blot analysis using anti-histidine antibody lane 1-10: Ladder, negative control, GFP, modified Ag85B, modified Hsp70,
modified GFP, unmodified Ag85B, unmodified Hsp70, positive control (SARS-Cov-2 histidine-tagged Nucleocapsid protein). (B, C) Macrophages
transfected with QTAP-Ag85B mRNA were used to examine the cellular expression of macrophage activation markers CD80 and CD86 measured by
flow cytometry. (D) Activation of macrophage inflammatory pathways in response to QTAP-Ag85B mRNA stimulation determined by One-step qRT-
PCR using gene-specific primers. (E, F) BHK and J774 cells were transfected with QTAP-mRNA-Ag85B (1 ug) for 24 hr after which viability was
determined by MTT cytotoxicity assay. All data were analyzed and plotted in GraphPad Prism and statistical differences were calculated by One-way
ANOVA. The black line and error bars show mean ± SD. Asterisks indicate statistical significance, where *p < 0.05, **p < 0.01, ***p < 0.001, and
****p < 0.0001.
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3.5 Immunization with QTAP nanovaccine
protects mice against Mycobacterium
avium ss. hominissuis infection

To investigate the protective efficacy of the novel QTAP

nanovacc ine , we analyzed the bacter ia l burden and

histopathological changes in vaccinated and challenged mice at

different times post-challenge (Figure 4A). Bacterial counts showed

that vaccination of mice with QTAP-mRNA resulted in a significant

reduction in bacterial burden in the lungs and spleen at both

timepoints (Figures 6A–D) with little pathological damages of the

lung airways (Figures 6E, F). In unvaccinated mice, we observed

pre-granuloma structures at 4 weeks post-infection and fully

formed granuloma-like structures at 8 weeks post-challenge with

extensive damage to the lung airways. Analysis of the spleen showed

no noticeable pathological damage in both groups.

To characterize the immune response of protection, vaccinated

mice challenged withM. ah resulted in a higher number of CD4+ T-

cells secreting IFN-g, IL-2, TNF- a, and IL-17A cytokines compared

to PBS and QTAP-only groups at 4 weeks post-challenge

(Figures 7A–D). At 8 weeks post-challenge, CD4+ and CD8+
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(data not shown) T-cells secreting IFN-g, TNF-a, and IL-2,

remain significantly higher in the vaccinated group with no

apparent difference in IL-17A among the groups (Figures 7E–H).

A similar profile for CD8+ T cell response was detected at this

timepoint (data not shown). Interestingly, QTAP-mRNA

immunized mice had poly-functional CD4 T cells secreting IFN-

g, IL-2, and TNF- a in only their lungs at 8 weeks post-challenge

(Figure 7I). These findings suggest that the novel QTAP-mRNA

nanovaccine is protective against M. ah infection in mice.
4 Discussion

Recently, mRNA vaccines have attracted great attention since

their successful use to combat the COVID-19 pandemic (44, 45).

Despite this success, it remains unknown whether the same

approach can be used to target more challenging pathogens such

as mycobacteria. Unlike SARS-CoV-2, mycobacterial pathogens use

complex pathogenic mechanisms consisting of a plethora of

virulence factors for evasion of host immune pathways that

enable them to either cause disease or remain persistent in the
A B

D FC

FIGURE 4

QTAP-mRNA is both safe and immunogenic in mice. (A) Immunogenicity of QTAP encapsulating 15 ug of mRNA (Ag85B + Hsp70) was determined
in 2-weeks old C57Bl/6 mice using three-dose vaccination at 5 week intervals. (B) Mouse weight was measured every week and presented as
standard deviation. Serum from vaccinated mice collected after the final vaccine dose and used for cytokine ELISA targeting IFN-g (C), TNF-a
(D), and IL-17 (E). All data were analyzed and plotted in GraphPad Prism and statistical differences were calculated by One-way ANOVA. Dots
represent individual mice (n = 10-14/group) and the black line and error bars show mean ± SD. Asterisks indicate statistical significance, where
*p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.
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lungs (46, 47). This presents a challenge for designing effective

vaccines against mycobacteria. However, the mRNA vaccine

technology allows for the careful design of vaccine constructs

with the flexibility to include different antigens to target multiple

pathogenic pathways (44, 48). We hypothesize that vaccines

targeting mycobacterial pathogens should be rationally designed

to include multiple antigens to match the complexity of the

intracellular life cycle of the bacteria. Indeed, it has been

previously shown that RNA vaccine (repRNA-ID91/ID91+GLA-

SE) encoding four M. ah antigens produced significant cellular and

humoral immune responses leading to reduced bacterial burden

(33). The same group showed that repRNA-ID91/ID91+GLA-SE

provided similar protection against M. tb infection in mice (29).

However, the highest protection generated by this vaccine was

when it is used in a prime (RNA)-boost (protein) regimen

(29, 33). Beyond design, mRNA vaccines require sufficient

immunostimulatory adjuvants to achieve optimal protective

efficacy (49, 50). A recent study has shown that those LNPs made

from DOTAP, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine

(DPPC), and cholesterol alone failed to provoke inflammatory

responses such as pro-inflammatory cytokine production and

inflammatory cell infiltration in mice (51). On the other hand,
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LNPs made with recombinant hemagglutinin (HA) and

neuraminidase proteins induce inflammatory responses for

influenza seasonal Flu vaccines (51). These findings demonstrate

the limitation of LNPs alone in eliciting optimal immune response

while also highlighting the importance of additional adjuvants in

eliciting pro-inflammatory immune responses which is a pre-

requisite for protection against mycobacterial infections (52). The

repRNA-ID91/ID91+GLA-SE vaccine-mediated cellular and

humoral immune response leading to protective immunity

against both M. ah and M. tb is associated with the GLA-SE

adjuvant (29, 33). The primary goal of the studies reported here

was to evaluate the novel QTAP nanoadjuvant platform for the

development of effective mRNA vaccines targeting M. ah infection

in mice. The initial studies focused on the mRNA delivery capability

of QTAP nanoadjuvant to efficiently entrap and deliver mRNA in

cells and elicit an inflammatory profile suitable for the control of

mycobacteria in mice.

We show that QTAP nanoadjuvant complexed with mRNA

forms nanoparticles (NPs). The physical parameters of QTAP NPs

encapsulating mRNA (~75 nm, positively charged) are consistent

with previous findings suggesting that positively charged NPs with a

size range of 50-150 nm are suitable for induction of sufficient
A B

D E F

C

FIGURE 5

Immunization of mice with QTAP-mRNA Ag85B + Hsp70 is safe and elicits a robust T cell immune response. (A–D) Lung cells harvested after the
final vaccine dose were stimulated with PPD ex vivo and evaluated for CD4 T cell responses by intracellular cytokine staining flow cytometry.
Percent frequency of CD4+ PPD specific cytokine-producing cells four-weeks post final immunization. Serums collected at 5 weeks after the
second vaccine dose (E) and four-week post-challenge (F) were analyzed for IgG response by ELISA. Data were analyzed by FlowJo and GraphPad
prism used for one-way ANOVA analysis. Dots represent individual mice (n = 3/group) and the black line and error bars show mean ± SD. Asterisks
indicate statistical significance, where *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.
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immune response in both mice and non-human primates (53, 54).

Under in vitro conditions designed to mimic cellular environmental

conditions, QTAP NPs released mRNA in a sustained manner over

a long period of time. Indeed, previous studies have demonstrated

that prolonged release is important for sustained induction of

immune response over a long period and enables sufficient

lymphocyte activation and proliferation with cytokine induction

(55). Additionally, when stored at different temperatures, QTAP

NPs protect mRNA from degradation demonstrated by the

expression of encoded proteins in cells after transfection (56).

Most FDA-approved mRNA vaccines and those in clinical trials

require extremely low temperatures for storage (57, 58). This limits

their application in areas of the world that harbors the greatest

burden of infectious diseases with high temperature and limited

access to cold storage. We showed that QTAP NPs can protect

mRNA at even higher temperatures (4-20 0C) than the reported

temperature requirements of current FDA-approved LNP/mRNA

vaccines (57, 58).

QTAP nanoadjuvant encapsulating modified mRNA encoding

either Luc, GFP, Ag85B, or Hsp70 gene showed higher protein

expression and transfection efficiency compared to DOTAP-

mRNA. In BHK cells modified mRNA delivered by QTAP NPs

showed higher protein expression similar to previous reports (42,
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59). Additionally, we showed that the presence of Quil-A in the

LNP/mRNA showed a more than 200% increase in GFP+ cells in

QTAP-transfected BHK cells. As previously reported, mRNA-

based vaccine immunogenicity and protective efficacy are

dependent on the amount of mRNA-derived protein antigens

(55). Moreover, we showed that macrophages exposed to QTAP

nanoadjuvant encapsulating mRNA-Ag85B exhibit elevated

induction of NLRP3 inflammasomes, NF-kb, and My-D88. We

observed that QTAP alone did not lead to any increase in CD80

expression in macrophages. However, although statistically

insignificant, we noticed that QTAP-treated macrophages have a

slight increase in expression of CD86 compared to the negative

control. We expected QTAP-mRNA to have higher expression of

these co-stimulatory molecules because mRNA by itself is

immunogenic. Secondly, QTAP alone showed a slight increase

in activation of both NF-kb and My-D88 compared to both

negative and DOTAP-only controls. Although statistically

insignificant, it is not clear whether such a slight increase in NF-

kb and My-D88 activation has any biological significance. LNP-

based activation of effector immune cells has been shown to be

required for the induction of effective immune response against

pathogens (60–62). Due to these reasons, the DOTAP-mRNA

group is not included in the animal immunization and challenge
A B
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FIGURE 6

Immunization of mice with QTAP-mRNA Ag85B + Hsp70 is protective against M. ah infection for up to 8 weeks. C57BL/6 mice were infected with
M. ah by aerosol route four weeks post final immunization. (A, B) Bacterial burden was determined by colony forming unit (CFU) in the lung and
spleen four- and eight-weeks post-challenge (C, D). Dots represent individual mice (n = 4-5/group) and the black line and error bars show mean ±
SD. Histological assessment was done by H&E staining of lung tissue sections at 4 weeks (E) and 8 weeks (F) post-challenge. Arrowheads represent
granuloma-like structures. Scale bars represent magnification (5x). Asterisks indicate statistical significance, where *p < 0.05, **p < 0.01, ***p <
0.001, and ****p < 0.0001.
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experiments since it has minimal transfection efficiency and

macrophage activation ability.

Mouse vaccination studies indicated that QTAP-mRNA

encoding Ag85B and Hsp70 is safe and highly immunogenic. A

dose of 15 ug in a 3-dose immunization regimen, resulted in no

significant changes in mouse weight. This immunization regimen

elicited robust cell and humoral-mediated immune responses. We

observed that immunization of mice with QTAP-mRNA encoding

Ag85B and Hsp70 produced both Th-1 and Th-17 immune

responses demonstrated by elevated secretion of proinflammatory

cytokines IL-2, IFN-g, TNF-a, and IL-17 by these T cells. Previous

studies have shown that the humoral immune response plays a

crucial role in the protection of the host against mycobacterial

infections. The QTAP-mRNA vaccine elicited a robust antibody

response characterized by elevated IgG levels detected in mouse

sera very early after immunization and lasting even after infection.

Additionally, we showed that the vaccine was not associated with any
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pathology in the lungs compared to the PBS control group. However,

a mild increase in lung infiltrating lymphocytes was seen with no

apparent pathological damage of the airway in the vaccinated group.

Previously, protein vaccine boosted with RNA against M. ah

challenge in mice showed reduced lesions in the lung compared to

naïve control (33). However, the vaccinated mice had more than 40%

of their lungs affected by lesions (33). In the case of QTAP-mRNA,

we did not observe such widespread lesions in the lungs even though

the vaccine contains only two mycobacterial antigens.

Interestingly, immunized mice challenged with M. ah

demonstrated significantly reduced bacterial burden in both the

lungs and spleen at both 4- and 8-weeks post-challenge. The T cell

response profile at these time points was similar to the pre-challenge

profile. At 4 weeks post-infection, we observed a significant increase

in lung infiltrating IL-2, IFN-g, TNF-a, and IL-17 secreting CD4

but not CD8 T cells in the vaccinated group. These findings are like

the results of previous RNA vaccines against both M. ah and M. tb
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FIGURE 7

Mice immunized with QTAP-mRNA Ag85B + Hsp70 elicit a robust immune in the lungs upon infection with M. ah up to 8 weeks. C57BL/6 mice were
infected with M. ah by aerosol route four weeks post final immunization. After four- and eight-weeks post-challenge, mice were euthanized for lung
and spleen and were evaluated for CD4 T cell responses by intracellular cytokine staining flow cytometry. (A–D) Percent frequency of CD4+ PPD
specific cytokine-producing cells at four weeks post-challenge. (E–H) Percent frequency of CD4+ PPD specific cytokine-producing cells at eight weeks
post-challenge. (I) Percent frequency of CD4+ PPD specific cytokine-producing IFN-g, IL-2, and TNF- a cells at eight weeks post-challenge. Data were
analyzed by FlowJo and GraphPad prism used for one-way ANOVA analysis. Dots represent individual mice (n = 4-5/group) and the black line and error
bars show mean ± SD. Asterisks indicate statistical significance, where *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.
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in mice (29, 33). InM. tb andM. ah infections, continuous exposure

to the bacteria causes exhaustion in CD8 T cells thereby inhibiting

their cytokine secretory capability (63–65). From these findings, in

the presence of active CD4 T cell response to M. ah in vaccinated

mice, the absence of CD8 T cell response did not seem to stop the

reduction in infection burden. However, we cannot disqualify the

absence of CD8 T cell response as a limiting factor ofM. ah control.

We hypothesize that augmentation of CD8 T cell response will

strengthen the protective efficacy of mRNA vaccines against

mycobacterial pathogens. Further studies using CD8 T cell

depletion will help to decipher the role of CD8 T cells in the

QTAP-mRNA nanovaccines mediated protection againstM. ah. At

8 weeks post-challenge, a similar T cell response was observed in

CD4 T cells. However, we noticed that IL-17 was highly elevated in

the PBS group unlike at 4 weeks post-challenge, while IL-2, IFN-g,
TNF-a, and IL-17 cytokines maintained similar levels in the

vaccinated mice from 4 to 8 weeks. This profile might be due to

the Th-1/Th-17 imbalance previously reported in active

mycobacterial infections where a shift towards excessive IL-17

response causes extensive neutrophil recruitment and tissue

damage (66–69). Indeed, we observed extensive pathological

damages only in the lungs of unvaccinated mice with large

granuloma structures. Also, unlike the 4-week post-challenge

time-point, CD8 T cell responses in the vaccinated mice were

enhanced at 8 weeks post-challenge characterized by a significant

increase in IL-2, IFN-g, TNF-a cytokines levels. However, the level

of cytokines secreted by CD4 T cells was higher than CD8 T cells.

This observation supports previous findings that in the case of

mycobacterial infections such as M. tb, the primary immune

response responsible for protective immunity against infection is

CD4 T cell-mediated (70) with evidence of poor CD8 T cell-

mediated protection (71). Recent studies have shown that CD8 T

cells recognize M. tb and have cytolytic functions and produce

inflammatory cytokines highlighting their important role in M. tb

control (72, 73). In other studies, CD4 T cells have been shown to

help prevent CD8 T cell exhaustion duringM. tb infection, and that

in the absence of CD4 T cells, CD8 T cell-mediated protection is

underestimated (63, 74). These findings demonstrate the

importance of both classes of T cells and demonstrate the synergy

between CD4 and CD8 T cells in the control of M. tb infection. In

our case, we showed that the novel QTAP-mRNA vaccine elicits

predominantly CD4 T cell response during the early phases of

infection whereas the late phase of infection is characterized by both

CD4 and CD8 T cell response in vaccinated mice. Additionally, at 8

weeks post-infection, we demonstrated more than 1.5 log reduction

of bacterial CFUs in the lungs of the vaccinated mice.

Overall, we show that the use of the novel QTAP nanoadjuvant

for the delivery of mRNA vaccine constructs targeting M.ah is

highly effective in eliciting protective immunity. The QTAP

nanoadjuvant is a promising system for the effective delivery of

mRNA vaccine constructs for both in vitro and in vivo models with

the added value of thermostability at higher temperatures. While

LNP-mRNA vaccines targeting mycobacterial pathogens may prove

effective, QTAP nanoadjuvanted mRNA-based vaccines will likely

provide long-lasting immunity.
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