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Background: The hyperproliferation featured with upregulated glycolysis is a

hallmark of psoriasis. However, molecular difference of keratinocyte glycolysis

amongst varied pathologic states in psoriasis remain elusive.

Objectives: To characterize glycolysis status of psoriatic skin and assess the

potential of glycolysis score for therapeutic decision.

Methods: We analyzed 345414 cells collected from different cohorts of single-

cell RNA seq database. A new method, Scissor, was used to integrate the

phenotypes in GSE11903 to guide single-cell data analysis, allowing

identification of responder subpopulations. AUCell algorithm was performed to

evaluate the glycolysis status of single cell. Glycolysis signature was used for

further ordering in trajectory analysis. The signature model was built with logistic

regression analysis and validated using external datasets.

Results: Keratinocytes (KCs) expressing SLC2A1 and LDH1 were identified as a

novel glycolysis-related subpopulation. Scissor+ cells and Scissor− cells were

defined as response and non-response phenotypes. In Scissor+ SLC2A1+ LDH1+

KCs, ATP synthesis pathway was activated, especially, the glycolysis pathway

being intriguing. Based on the glycolysis signature, keratinocyte differentiation

was decomposed into a three-phase trajectory of normal, non-lesional, and

lesional psoriatic cells. The area under the curve (AUC) and Brier score (BS) were

used to estimate the performance of the glycolysis signature in distinguishing

response and non-response samples in GSE69967 (AUC =0.786, BS =17.7) and

GSE85034 (AUC=0.849, BS=11.1). Furthermore, Decision Curve Analysis

suggested that the glycolysis score was clinically practicable.

Conclusion: We demonstrated a novel glycolysis-related subpopulation of KCs,

identified 12-glycolysis signature, and validated its promising predictive efficacy

of treatment effectiveness.
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Introduction

Psoriasis, a chronic immune-mediated skin disorder occuring in

approximately 2%–3% of the population worldwide, is characterized

by raised scales and inflammatory eruptions on skin (1).

Histologically, lesional skin is featured with abnormal proliferation

of keratinocytes and is believed to be the main cause of clinical

manifestations. Understanding why psoriatic keratinocytes being

hyperproliferative remains critical for its treatment.

According to previous studies (2, 3), hyperproliferative

keratinocytes in psoriatic lesions are incompletely differentiated and

metabolically activated. In general, hyperproliferative cells require

energic support to meet their self-accelerating cellular processes (2). A

phenomenon termed “the Warburg effect” is well studied that cancer

cells are dependent on glycolysis for energy production (4, 5). Glycolysis

is a major source of energy generation, supporting rapid proliferation in

many cells (6, 7). In psoriasis, skin cells undergo complete turnover

within three or four days, whereas in healthy skin, this process takes one

month (8). The pathologic proliferation of keratinocytes is one of the

pathophysiological hallmarks of psoriasis (2). Previous research has

indicated that enhanced glucose metabolism is essential for proliferating

keratinocytes (9). Upregulated glucose transporter 1 (GLUT1)

expression is correlated with increased Psoriasis Area and Severity

Index (PASI) score, implying that it could be a target for abnormal

hyperproliferation (10). Further research into glycolytic molecules

linked to psoriasis pathogenesis is required.

Although metabolites can be directly determined by liquid

chromatography-mass spectrometry technology, higher requirements

of sample storage and easier degradation of targets are common. As a

result, methods for determining the metabolic status via gene

expression have been developed. Bulk RNA sequencing (bulk RNA-

seq) represents the average of gene expression patterns at the whole

population level, and the development of single-cell RNA sequencing

(scRNA-seq) technologies allows the transcriptome profiling to be

investigated at a single-cell resolution. By applying up-to-date single-

cell sequencing, the metabolic reprogramming of single cell can even be

identified via bioinformatic methods.

Here we collected scRNA-seq data from several recent studies

(11–13) and analyzed the glycolysis level in diverse cell types,

especially epidermal keratinocytes. Moreover, the phenotypes in

GSE11903 were applied to recognize the specific subpopulations

responsible for treatment. We sought to investigate the molecular

signature and calculated the glycolysis score. According to the gene

expression data and clinical information, an individual therapeutic

effect assessment was performed. Before a long-term treatment
Abbreviations: PASI, Psoriasis Area and Severity Index; GLUT1, glucose

transporter 1; bulk RNA-seq, bulk RNA sequencing; scRNA-seq, single-cell

RNA sequencing; GEO, Gene Expression Omnibus; EGA, Genome-phenome

Archive; UMIs, unique molecular identifiers; UMAP, Uniform Manifold

Approximation and Projection; KEGG, Kyoto Encyclopedia of Genes and

Genomes; DEGs, differentially expressed genes; ROC, Receiver Operating

Characteristic Curve; AUC, the Area Under the Curve; KCs, keratinocytes;

MAC/DC, macrophages/dendritic cells; FIB, fibroblasts; EC, endothelial cells;

MELAN, melanocytes; MTX, methotrexate; BS, Brier score.
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regimen, gene expression studies could identify a potential

therapeutic response at the molecular level.
Methods

Data acquisition

Single-cell transcriptome profiling from E-MTAB-8142 (11),

which using skin biopsies from 24 patients with psoriasis (12

lesional samples, 12 non-lesional samples), and 40 healthy control

subjects, was obtained via the European Bioinformatics Institute

(https://www.ebi.ac.uk/). We also collected the scRNA-seq data

including 5 patients with psoriasis and 3 healthy control subjects

from GSE150672 (12) via the Gene Expression Omnibus (GEO)

database (https://www.ncbi.nlm.nih.gov/geo/) and collected single-

cell transcriptome profiling of normal and inflamed human

epidermis from EGAS00001002927 (13) via the Genome-

phenome Archive (EGA) database (https://ega-archive.org). RNA-

seq datasets can be accessed on GEO: GSE30999 (14), GSE41664

(15), GSE78097 (16), GSE13355 (17), GSE14905 (18), GSE69967

(19), GSE11903 (20), GSE85034 (21).
Data filtering and preprocessing

The following criteria were used to filter cells: (1) the total number

of unique molecular identifiers (UMIs) per cell; (2) the number of

detected genes per cell; and (3) the ratio of mitochondrial genes. The

UMI count ranged from 200 to 50000, and the number of genes

detected per cell ranged from 10% to 90% of total detected levels. High-

quality cells were reserved if the proportion of mitochondrial genes was

<10%. Doublets were detected by the packageDoubletFinder (22). Cells

identified as doublets were excluded.
Cell type recognition

Based on the top 15 principal components and the top 2000

variable genes, batch effects among the datasets were eliminated

using the RunHarmony function (23). Uniform Manifold

Approximation and Projection (UMAP) (24) with a resolution of

0.5 coordinate FindAllMarkers function in Seurat was then used for

cluster-specific genes.
Scissor selected cells

In the GSE11903 dataset of psoriasis treated with etanercept, we

observed responders and non-responders. Combined with the

phenotypes collected from GSE11903, the new approach Scissor

(version 2.0.0) was executed to recognize the phenotype-related

cells from single-cell data (25). Logistic regression with the

parameter a 0.05 was set in the process. Scissor+ cells and

Scissor− cells will be linked to the responder and non-responder

phenotypes, respectively.
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Pathway activity calculation

Pathway of glycolysis/gluconeogenesis was obtained from

Kyoto Encyclopedia of Genes and Genomes (KEGG) database

(http://www.genome.jp/kegg). According to the published articles,

the major genes in the Th17/Th22 pathway were then defined and

summarized. The AUCell package uses the “Area Under the Curve”

(AUC) to calculate the activity level of gene sets using a rank-based

scoring method and computes a gene set activation score for each

cell. Following that, the AUCell package (version 1.8.0) (26) was

used to calculate the activity of glycolysis/gluconeogenesis or the

Th17/Th22 pathway for individual cells.
Differential gene expression analysis

We performed a differential gene expression analysis on a per

cluster of keratinocytes for lesional vs non-lesional psoriasis samples,

then retained differentially expressed genes (DEGs) with adjusted P

value < 0.05 & abs avg_log2FC >0.25. DEGs were extracted, and further

functional enrichment analysis was carried using the clusterProfile

package (version 3.18.1) (27). Based on the metabolic pathways from

KEGG database, package fgsea (version 1.16.0) was performed to

calculate the normalized enrichment score (28).
Single-cell trajectory analysis

We were interested in the role of glycolysis/gluconeogenesis in

keratinocytes, thus focusing on downstream extraction and

visualization of keratinocytes. Package monocle (version 2.6.4)

(29) was utilized to construct pseudotime trajectories. Overlapped

genes between DEGs and glycolysis/gluconeogenesis gene set were

determined as gene signature and then were used for ordering in a

semi-supervised manner.
Calculation of gene signature score

Overlapped genes were identified between DEGs and the

glycolysis/gluconeogenesis gene set, and logistic regression was

performed using the glm function. To ensure the algorithm was

robust, well-correlated genes were selected in the model (P<0.05).

Furthermore, we used the following method to calculate each

patient’s signature score: score=k∑gene. In this formula, “gene”

refers to the gene expression level of each gene signature, and “k”

refers to the coefficient for each gene signature.
Scoring classifier

To estimate and visualize the performance of the gene signature

score, the Receiver Operating Characteristic Curve (ROC) was

depicted and the Area Under the Curve (AUC) was calculated.

Calibration curves were depicted for calibration visualization.
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Decision curve analysis (DCA) was conducted to assess the

clinical benefits. pROC (version 1.18.0), rms (version 6.2-0), and

rmda (version 1.6) were used in this part.
Statistical analysis

Significance between non-responders versus responder

phenotype was compared through the t-test. The statistical

difference between normal, non-lesional, and lesional groups was

analyzed using ANOVA approaches. Spearman’s correlation

coefficients were calculated using the corrplot package (version

0.84). Our analyses were performed with R software, R version 4.0.5.
Results

Single-cell RNA-seq profiling and
screening of marker genes

The study workflow was shown in Figure 1. We integrated the

selected datasets using Seurat’s standard workflow and identified

201915, 59700, and 83799 cells from normal, non-lesional psoriasis,

and lesional psoriasis samples, respectively. Using graphical

unsupervised clustering, we recognized seven clusters of cells

(Figure 2A) and defined them according to the signature

expression of marker genes (Supplementary Figure 1A).

First-level analysis showed that keratinocytes (KCs) were

recognized by KRT genes. T cells were distinguished by coordinate

upregulation of CD3D, CD3G, and CD3E, and macrophages/

dendritic cells (MAC/DC) showed high HLA levels. Fibroblasts

(FIB) highly showed expressions of COL1A1, DCN, and LUM.

Finally, endothelial cells (EC) were recognized by the VWF and

PECAM1 levels. Melanocytes (MELAN) indicated elevated for

transcripts known to be expressed in melanocyte pigment synthesis

pathway. A cluster of cells expressed ACTA2 and TAGLN were

recognized as pericytes. We determined the relative proportion of

subpopulations in all samples, suggesting increased T cells in lesional

psoriasis versus in normal skin (P<0.05, Supplemental Figure 1B).

To further characterize KC, we performed the second-level

clustering analysis of them. Based on UMAP (Figure 2B), five

subpopulations were identified: ‘KC1’, ‘KC2’, ‘KC3’, ‘KC4’, and

‘KC5’. As shown in Figure 2C, ‘KC1’ expressed high levels of KRT1

and KRT10 and corresponded to suprabasal keratinocytes

(KRT1+KRT10+ KC). ‘KC2’ were defined as basal keratinocytes for

their high expression levels of KRT5 and KRT14 (KRT5+ KRT14+

KC). Due to the significant expression of KRT1, KRT10, KRT6A, and

KRT16, a cluster of KC3 were recognized as inner root sheath (IRS)-

sebaceous cells (KRT6A+KRT16+ KC). And the UBE2C - and TOP2A

-expressing KC4 were annotated as proliferating keratinocytes

(TOP2A+UBE2C+ KC). Genes involved in glycolysis and

inflammation (LDH1, SCL2A1, S100A2, IGFBP3, and SERPINB2)

were highly expressed in the ‘KC5’, leading us to define them as a

glycolysis-related subpopulation (LDHA+SLC2A1+ KC).
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Identifying the responder and non-
responder keratinocyte subpopulations

Application of biologics have exhibited favorable results in

psoriasis therapy but also showed varied responses in some

patients. We analyzed clinical phenotypical features provided by a

psoriasis dataset to investigate the mechanism underlying different

responses. Scissor analysis was performed on 35405 keratinocytes

from psoriasis samples. A total of 3565 Scissor+ cells associated with

the responder phenotype and 3720 Scissor− cells related to the non-

responder phenotype were recognized (Figure 3A). To characterize

the transcriptional features, 61 upregulated genes and 51

downregulated genes were differentially expressed in Scissor+ cells

versus Scissor− cells (Figure 3B). Notably, we found that numerous

ATP-related genes were among the overexpressed genes listed

above. Consistently, several ATP synthesis pathways were

enriched in Scissor+ cells through GO enrichment analysis

(Figure 3C). ATP production includes three important cellular

processes——glycolysis, oxidative phosphorylation, and beta-

oxidation. By performing Gene Set Enrichment Analysis (GSEA),

we confirmed the significant metabolic pathways based on the

ranked matrix of putative differentially expressed genes

(Figure 3D). In 85 metabolic pathways, the top five were

oxidative phosphorylation, the TCA cycle, propanoate

metabolism, pyruvate metabolism, and glycolysis.

AUCell was used to calculate metabolic pathway activity in

Scissor+ and Scissor− cells to evaluate their metabolic status. As

shown in the heatmap (Figure 3E), the glycolysis pathway was

especially intriguing in LDHA+SLC2A1+ KC. In addition, the

glycolysis score of Scissor+ cells were significantly higher than

that of Scissor− cells and other background cells, revealing an
Frontiers in Immunology 04
important role of glycolysis in response to biologic psoriasis

treatment (P=0.017).
Estimation of glycolysis in keratinocytes

The glycolysis status in keratinocytes was observed. In

comparison with normal samples, the glycolysis score was

significantly higher in psoriasis samples in KRT5+ KRT14+ KC,

KRT1+KRT10+ KC, and LDHA+SLC2A1+ KC (all P<0.001,

Figure 4A). Next, combined with the above-observed specific

makers of glycolysis in LDHA+SLC2A1+ KC, we suspected that

glycolysis stands out.

To investigate the gene signature of lesional phenotype,

differential gene expression analysis was performed between non-

lesional and lesional samples. The top 100 upregulating DEGs in

lesional LDHA+SLC2A1+ KC were enriched in biological processes

related to keratinocyte differentiation, cornification, keratinization,

and epidermis development (Figure 4B), as well as the KEGG

pathway of IL-17 signaling (Figure 4C).
Pseudo−time trajectory reconstruction

To focus on glycolysis in developmental decision-making within

individual cells in disease progression, we identified 12 overlapped

genes (BPGM, ALDH3A2, ALDH2, ALDH3A1, HK2, LDHB,

ALDH1A3, PKM, LDHA, ALDH7A1, GAPDH, and PGK1) between

the DEGs and glycolysis gene set. Pseudotime trajectory analysis in a

semi-supervised manner was executed. Cells from normal samples

were mainly at the start of the projected timeline trajectory, while cells
FIGURE 1

The flowchart of the research.
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from non-lesional and lesional psoriasis samples were positioned in

the middle and the end, respectively (Figure 5A). These results

highlighted that glycolysis gene regulation coordinates trajectory of

disease progression in keratinocytes.

Correlation analysis suggested that mRNA expression of

overlapped genes and Th17/Th22 score were correlated across a

variety of ranges from R= -0.29 to 0.37 (all P<0.001, Figure 5B).

Eight were positively associated with the lesional phenotype,

whereas eight were negative with the non-lesional phenotype.

This minimum set of genes indicated candidate targets for further

investigation and therapy for psoriasis.

Multivariate logistic regression analysis was performed on these

12-glycolysis gene signature, and a glycolysis-related model was

established. The model performed well in distinguishing between

non-lesional and lesional psoriasis samples. The model had a good

discrimination for distinguishing non-lesional and lesional psoriasis
Frontiers in Immunology 05
samples (AUC=0.905, 95%CI 0.898-0.912; BS=11.5, 95%CI 11.1-

12.0). The calibration curve showed the agreement between the

observed and expected numbers predicted by the model

(Figure 5C). Finally, we performed decision curve analysis to

assess the clinical impact of the model. As shown in Figure 5D,

the decision curve suggested the clinical net benefit of the use of our

glycolysis-related model if the threshold probability is over 0.05.
Glycolysis gene signature score to evaluate
the clinical changes

To further examine the clinical relevance of the above

signatures, we chose six independent psoriasis datasets obtained

from GEO and performed score calculation using the 12 genes. In

comparison to healthy and non-lesional psoriasis samples, lesional
A

B C

FIGURE 2

Single-cell landscape of normal and psoriasis human skin. (A) UMAP visualization of eight cell types. (B) UMAP representation of five clusters of
keratinocytes. (C) A dot plot displaying critical marker transcripts used to distinguish keratinocytes. UMAP, Uniform manifold approximation and project.
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psoriasis samples has highest scores (all P<0.05, Figure 6A).

Moreover, there was a progressive decline of signature scores over

time during treatment, including etanercept, tofacitinib, and

methotrexate (MTX) (Figure 6B).
Frontiers in Immunology 06
In the dataset GSE85034, we observed a time-dependent and

concomitant decrease in both signature score and PASI score

(Figure 6C). Furthermore, spearman’s correlation analysis showed

that PASI clinical score was positively associated with the glycolysis
frontiersin.o
A B

DC

E

FIGURE 3

Scissor identification results on psoriasis keratinocytes. (A) UMAP visualization of the Scissor-selected cells. The red and blue dots show Scissor+ and
Scissor− cells, representing responder and non-responder phenotypes, respectively. (B) Volcano plot of differential gene expressions in Scissor+ cells
versus Scissor− cells. (C) GO enrichment analysis of differential gene expressions between Scissor+ cells and Scissor− cells. (D) GSEA plot of the up
and down metabolic pathways. The adjusted P value <0.05. (E) Heat map of enriched metabolic pathways. The red and blue elements suggest the
activated and repressed pathways in keratinocytes. GO, gene ontology; GSEA, Gene set enrichment analysis.
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gene signature score (R=0.449, Figure 6D).
Glycolysis gene signature score to assess
the therapeutic efficacy

Non-responders and responders differed significantly in

glycolysis score from week 2 forward for patients treated with

tofacitinib in the GSE69967 dataset (Figure 7A). Furthermore, the

decline in glycolysis score was more pronounced in responders than

in non-responders. Similar results were observed in GSE85034

dataset, which included patients receiving methotrexate or
Frontiers in Immunology 07
adalimumab (Figure 7B). At week16, the difference between non-

responders and responders was statistically significant. Next, we

sought to investigate whether glycolysis score could predict future

treatment response.

To differentiate the non-responders and responders, calibration

curve analyses showed the diagnostic accuracy as follows:

GSE69967 (AUC=0.786, 95%CI 0.693-0.879; BS=17.7, 95%CI

13.7-21.6, Figure 7C) and GSE85034 (AUC=0.849, 95%CI 0.776-

0.922; BS=11.1, 95%CI 8.1-14.1, Figure 7D), showing that this

model is still valid. In addition, we validated the clinical

practicability using DCA (Figures 7E, F). These findings

demonstrated the net benefit of the glycolysis model.
A

B C

FIGURE 4

Glycolysis status in keratinocytes. (A) Display of glycolysis for subpopulations. Y-axis corresponds to glycolysis pathway activity. The X-axis
represents KC population in normal skin, non-lesional and lesional psoriasis samples. (B, C) GO and KEGG enrichment analysis of top-100
differentially expressed genes between non-lesional phenotype and lesional phenotype. GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes
and Genomes ****P<0.0001.
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Discussion

As glucose is a preferred bioenergetic substrate for proliferating

cells, glucose uptake and utilization are essential in the pathogenesis

of psoriasis. Based on the single-cell profiles of psoriasis, we report
Frontiers in Immunology 08
for the first-time status of intracellular glycolysis in a specific

population of keratinocytes and identified a 12-gene prediction

model. The validation of the model paved the way for distinguishing

different tissues, classifying responders and non-responders, and

predicting the effectiveness of therapy.
A

B

DC

FIGURE 5

Construction of 12-gene signature. (A) Distribution of KC5 on the pseudo-time trajectory in a semi-supervised manner. Cells are colored based on
pseudotime and tissue types. (B) The correlation between Th17/Th22 pathway activity and the selected signatures. (C) Calibration curve of the 12-gene
signature model. (D) Decision Curve Analysis of the 12-gene signature model.
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In our study, the expression of SCL2A1 and LDH1 was used to

define a population of glycolysis-related keratinocytes. SLC2A1, one

of the glucose transporters, is overexpressed in proliferating

inflammatory cells and keratinocytes. In several models, SLC2A1

deletion attenuates inflammatory infiltration (30, 31). According to

recent reports, SLC2A1 plays role in UV-irradiated mouse skin (32),

during wound healing responses (33), and in psoriasis (10). LDH1

inhibition has been shown to reduce the damaging inflammatory

contributions in rheumatoid arthritis and osteoarthritis (34, 35). In

addition to expressing SCL2A1 and LDH1, LDHA+SLC2A1+ KC

exhibited high levels of S100A2, IGFBP3, and SERPINB2, denoting

inflammatory conditions in these keratinocytes.

Several methods have been proposed to identify disease-

relevant cells from single-cell data, which helps to understand the

pathogenic mechanisms. HoneyBadger (36) was carried out to

recognize cancerous cells. Scissor was developed for discerning

phenotype-specific cell subpopulations using phenotype

information from bulk data (37). In our research, we introduce
Frontiers in Immunology 09
treatment response as a phenotype to infer phenotype-relevant cells

from single-cell data. ATP production performed particularly

specific in Scissor+ cells, and oxidative phosphorylation, TCA

cycle, propanoate metabolism, pyruvate metabolism, and

glycolysis were also enriched. In psoriasis, ATP synthesis demand

may be a hallmark of therapy-responding keratinocytes.

Most of these enrichment patterns of DEGs were consistent with

previous studies, including epidermal cell differentiation and the IL-17

signaling pathway. The results outlined here demonstrated changes in

mRNA gene expression pointing to the progression of psoriasis.

Furthermore, an upward trend of glycolysis was observed from

healthy samples to lesional psoriasis samples in keratinocytes. These

results indicated a significant global shift in glycolysis score from

normal to psoriasis and the altered glycolysis level might play an

essential role during psoriasis initiation and progression.

A total of 12 common transcriptome signature were defined. Note

that not only the current signature is relevant for Th17/Th22 pathway

activity, but also involved in the classification in the multivariable
A

B DC

FIGURE 6

Estimation of glycolysis score. (A) Boxplot presenting the difference of glycolysis score among healthy skin, non-lesional psoriasis samples, and
lesional psoriasis samples in GSE30999, GSE41664, GSE78097, GSE13355, and GSE14905. (B) The declining tendency of glycolysis score with
treatment time in GSE11903, GSE41664, GSE69967, and GSE85034 cohorts. (C) The decreasing tendency of PASI scores with treatment time in
GSE85034 cohort. (D) The correlation between glycolysis score and PASI score in GSE85034 cohort. *P<0.05, ***P<0.001.
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model. Furthermore, monocle can be performed to define and recover

biological progression between cellular states, including differentiation,

proliferation, and reprogramming (29). Using a semi-supervised

algorithm based on these 12 genes, a branch of healthy cells was

separated from a two-phase keratinocyte differentiation trajectory.
Frontiers in Immunology 10
Taken together, pseudotime trajectory analysis reveals the

significance of glycolysis in disease progression.

Skin samples from psoriatic patients witness significant

metabolic reprogramming, which is closely linked to phenotypic

variation and progression. According to studies based on
A

B

DC

FE

FIGURE 7

Distinguishment of responders and non-responders using glycolysis score. (A, B) Boxplot showing the distribution of glycolysis score between
responders and non-responders in GSE69967 (patients treated with tofacitinib) and GSE85034 (patients treated with methotrexate or adalimumab)
cohort, respectively. (C, D) Calibration curve of the glycolysis signature in GSE69967 and GSE85034 cohort. (E, F) Decision Curve Analysis of the
glycolysis signature in GSE69967 and GSE85034 cohort. *P<0.05, **P<0.01.
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metabolomics, metabolites such as choline, glutamic acid, lactic

acid, urocanic acid, and saturated fatty acids have been identified as

psoriasis biomarkers (38, 39). The levels of amino acids were also

associated with the severity of psoriasis and the effects of anti-TNFa
treatment (40). Notedly, the glycolysis pathway in our research

appeared to be more intrigued and performed especially higher level

in Scissor+ cells than other cells. As a result, the metabolic shift

reflects not only the pathologies of the disease but also the

therapeutic response.

Here, different responses to diverse therapies were observed,

including etanercept, tofacitinib, and MTX. We observed a

decreasing glycolysis score over time, indicating that the glycolysis

score can be viewed as an evaluation approach. Rather than being used

as a predictive index, the glycolysis score can help discriminate between

responders and non-responders. After receiving therapy with

tofacitinib or MTX, responders had a greater decrease in glycolysis

scores and a more favorable therapeutic profile. The glycolysis score

assists in determining whether psoriasis patients are receptive to

treatment, hence avoiding potential side effects and lowering

expenditures. Our research sheds new insight on the utilization of an

individual’s molecular data to create a customized treatment.

There are some limitations. Although we present a comprehensive

transcriptome profile of glycolysis level analysis and identified

significant genes, all our findings were based on public data sets and

lacked some validation by experiments. Second, the biases from the

retrospective studies might be inevitable, but we validated the results in

several databases and demonstrated the reliability to a certain extent.

Third, we have restricted our study to keratinocyte glycolysis.

Hexokinase activity in dendritic cells has been linked to IL-23 and

psoriasis-like inflammatory responses (41). It is imperative to conduct

further research to investigate whether other cell types, particularly

immune cells, exhibit altered glycolysis status.

We demonstrated characteristic changes in the glycolysis level

in psoriasis across all available single-cell data, implying glycolysis

status may be associated with disease severity and therapeutic

response. Furthermore, we investigated specific glycolytic markers

and validated their diagnostic and prognostic efficacy in the five

cohorts. Glycolysis score used for prediction of treatment outcome

may further benefit psoriasis populations.
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(A) Dot plot displaying the specific marker genes selected to classify
subpopulations. (B) Plot of the proportion of cells in different

subpopulations from normal, non-lesional psoriasis samples, and lesional
psoriasis samples.
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