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causes and potential treatment
measures of renal cell carcinoma

Jian-wei Yang †, Shun Wan †, Kun-peng Li †, Si-Yu Chen
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Mounting evidence suggests that the gut microbiota plays a crucial role in the

development and treatment of various cancers. Recent research on the urinary

microbiota challenges the long-standing belief that urine is sterile, as urinary

microbiota has been implicated in the development of bladder and prostate

cancers, similar to the role of gut microbiota in cancer development. Although

the precise involvement of microbiota in the proliferation and differentiation of

renal cell carcinoma (RCC) remains unclear, dysbiosis is considered one possible

mechanism by which microbiota may contribute to RCC development and

treatment. This review summarizes potential mechanisms by which gut

microbiota may contribute to the development of RCC, and provides evidence

for the involvement of urinary microbiota in RCC. We also explore the role of gut

microbiota in RCC treatment and propose that the composition of gut

microbiota could serve as a predictive marker for the potential efficacy of

immune checkpoint inhibitors (ICIs) in RCC patients. Additionally, evidence

suggests that modulating the abundance and distribution of microbiota can

enhance the therapeutic effects of drugs, suggesting that microbiota may serve

as a promising adjuvant therapy for RCC. Overall, we believe that further

investigation into the gut and urinary microbiome of RCC patients could yield

valuable insights and strategies for the prevention and personalized treatment

of RCC.

KEYWORDS
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1 Introduction

Renal cell carcinoma (RCC) is a solid tumor that originates in the renal parenchyma

and is resistant to chemotherapy. According to cancer statistics from 2017, RCC accounted

for 4.1% of all newly diagnosed cancers, and its incidence has been on the rise (1).

Currently, RCC is the sixth most common cancer in men and the tenth most common

cancer in women. Moreover, up to 17% of patients are found to have distant metastasis at

the time of diagnosis (2, 3).
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Microbiota is a normal component of the human body’s

ecology, with approximately 4×1013 bacterial microorganisms and

up to 3×103 species. Nearly 97% of these microorganisms reside in

the colon and participate in normal human physiological processes,

but they may also contribute to some pathological reactions (4). At

the same time, numerous studies have demonstrated that dysbiosis

of the microbiota may be a pathogenic factor for some tumors. For

example, Helicobacter pylori-induced type B gastritis is associated

with an increased risk of cancer, and Propionibacterium acnes has

been found to induce inflammation and may be closely associated

with the development of gastric and prostate cancers (5–8).

It is well known that the function of T cells in cancer patients

and physiological immune responses against tumor-associated

antigens (TAAs) are often suppressed by the interaction between

immune checkpoints and their ligands. Immune checkpoint

inhibitors (ICIs) regulate the dysfunctional immune system by

blocking the interaction between cytotoxic T lymphocyte-

associated protein 4 (CTLA-4) or targeting programmed cell

death 1 (PD-1) and its ligand programmed cell death-ligand 1

(PD-L1), thereby inducing CD8-positive T cell killing of cancer cells

(9). ICIs have played a critical role in treating kidney cancer,

advanced melanoma, and non-small cell lung cancer patients.

Recent studies suggest that the diversity of gut microbiota may be

related to the efficacy of ICI therapy.

However, there is currently a lack of research on the role of

microbiota in the occurrence and treatment of kidney cancer.

Therefore, this review aims to provide new insights into the

prevention and personalized treatment of this tumor by

summarizing the relationship between gut and urogenital

microbiota and the occurrence and treatment of renal cell

carcinoma based on existing literature.
2 Description of microbial
detection technologies

Next-generation sequencing (NGS) is widely acknowledged as a

crucial method for detecting microbial communities (10). The main

microbial detection technologies in NGS are shotgun whole-

genome sequencing (WGS) and 16S rRNA amplicon sequencing.

These techniques can be used to obtain taxonomic features of

microbial populations by analyzing the complete DNA

information of microorganisms collected using microbial DNA

isolation kits. WGS separates all bacterial DNA sequences in a

microbial community, aligns these sequences with a metagenomic

database, and classifies the microbial population. 16S rRNA

amplicon sequencing amplifies specific regions in the 16S rRNA

gene through polymerase chain reaction (PCR) and identifies

different bacterial communities by comparing relatively non-

conserved sequences in the rRNA sequence database. Both WGS

and 16S rRNA amplicon sequencing technologies provide two key

parameters: alpha diversity and beta diversity. Alpha diversity

describes the microbial community distribution within a single

sample, while beta diversity describes the differences in microbial

diversity between two different samples. While both techniques
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have their own advantages, 16S rRNA amplicon sequencing is more

cost-effective than WGS. However, WGS provides higher accuracy

and is better at describing microbial species richness (11). To

mitigate potential degradation of microbial DNA caused by

environmental factors, it is essential to promptly process

biological samples. Additionally, both techniques should prevent

reduced microbial DNA abundance resulting from sample storage,

as this can negatively impact detection accuracy. In addition, in

clinical samples such as body fluids and swabs, the high background

of host DNA can also interfere with the detection of

microorganisms (12). Using microbial enrichment and host gene

depletion techniques to pretreat samples can also increase the

sensitivity of WGS and compensate for its potential limitations

(13, 14).
3 The relationship between renal cell
carcinoma and microbiota

It is widely believed that the occurrence and development of

RCC are the result of multiple factors, and the microbiota may act

as a risk factor to promote RCC.Previous studies suggest that

microorganisms can induce tumorigenesis through several

primary mechanisms (1): pathogenic microorganisms directly

interact with host tissue cells, causing tissue cell death and repair,

and driving normal tissue cells to transform into tumor cells by

affecting genome stability, anti-cell death, and proliferation

signaling (15, 16) (2); pathogenic microorganisms can cause local

tissue inflammation, and inflammatory molecules produced by

inflammatory cells such as reactive oxygen species, reactive

nitrogen species, cytokines, and chemokines can promote tumor

growth and metastasis (17) (3); disruption of the microbial

homeostasis can result in some bacteria or their components

failing to trigger an effective host inflammatory response, while at

the same time, some microorganisms can cause impaired activation

of immune cells and subsequent immune defects to avoid

destruction by the host immune system, thereby protecting

tumors from immune cell attack (18–20) (4); bioactive metabolic

products or secretions released by pathogenic microorganisms can

cause changes in the living environment of host tissue cells, leading

to the destruction of normal biological barriers of host cells, and

these products can also regulate tumor occurrence through the host

circulatory system away from the site of microbial growth (21–

23). (Figure 1)

In a study conducted in China, Chen and colleagues

investigated the gut microbiota composition of 51 ccRCC patients

and 16 healthy individuals using 16S rRNA sequencing analysis.

The study firstly revealed significant differences in the distribution

of gut microbiota between the ccRCC patients and the healthy

control group. The researchers also identified five bacterial taxa,

including Blautia, Streptococcus, [Ruminococcus] torques group,

Romboutsia, and [Eubacterium] hallii group, which were found to

be widely present in the gut of ccRCC patients. These five bacterial

taxa were able to accurately differentiate between ccRCC patients

and healthy individuals with an AUC of 93.3%, suggesting that they
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could be potential biomarkers for ccRCC. Moreover, in vitro

experiments of the study demonstrated that S. lutetiensis, a

member of these microbial taxa, promoted the proliferation,

migration, and invasion of ccRCC (24). In another study, Heidler

et al. firstly used 16S rRNA sequencing to detect bacteria in the

kidney tissues of 10 RCC patients who underwent laparoscopic

nephrectomy and had no history of urinary tract infection in the

past 6 months (25). Their study, along with those conducted by Liss

andWang et al., demonstrated that microbial communities not only

existed in the kidney tissues but also showed significant differences

in b-diversity between benign and malignant tissues (26, 27).

As the initial part of the digestive tract, the oral microbiota is

closely associated with the gut microbiota. Epidemiological

evidence and the detection of same microbiota in the oral and

urogenital systems have recently led to the discovery of the oral-

urogenital axis. It is believed that oral microbiota may contribute to

the onset and progression of urogenital system malignancies. The

ecological imbalance of the oral microbiome has been identified as

the primary factor leading to the development of periodontitis (28).

In addition, several studies have suggested a significant association

between periodontitis and an increased risk of urological cancers

such as prostate cancer (SIR: 3.75, 95%CI: 0.95-10.21) (29) and

bladder cancer (HR=5.06, 95%CI: 2.32-11.0) (30). However, the

relationship between periodontitis and kidney cancer remains

controversial. Michaud et al. conducted a prospective cohort

study of 48,375 men and followed up with them after eight years,

revealing that periodontitis may increase the risk of developing

kidney cancer (HR=1.49, 95%CI: 1.12-1.97) in the initial study and

showed a similar trend in the follow-up analysis (HR=1.06, 95%CI:

0.61-1.85) (30, 31). However, it is important to note that studies by

Nwizu, Wen, and Ma have reported no correlation between

periodontitis and the incidence of kidney cancer (32–34). These

inconsistent conclusions may be due to differences in the race and

gender of the study populations, which could lead to variations in
Frontiers in Immunology 03
the oral microbiota. This underscores the importance of expanding

sample sizes and data in the sample bank to further investigate the

relationship between periodontitis and kidney cancer, given the

diverse distribution of microbes.

The conventional belief that urine is a sterile body fluid has been

challenged by recent research. It has been suggested that a reduction

in the abundance and diversity of the urinary microbiome may

increase the risk of urological tumors, including bladder and

prostate cancer. Although the existing evidence does not allow us

to infer causality, two hypotheses have been proposed to explain the

relationship between the urinary microbiome and urological

tumors. The first hypothesis is that the urinary microbiome may

directly impact the development and progression of urological

tumors, while the second hypothesis suggests that urological

tumors may affect the diversity of the gut microbiome. Regardless

of the scenario, significant alterations in the urinary microbiome of

urinary system tumors compared to the normal population have

been observed, suggesting the enormous potential of urinary

microbiome as a non-invasive biomarker in the diagnosis,

treatment, and prognosis of urinary system tumors. In a clinical

study involving 12 patients with RCC, significant differences were

observed in the urinary microbiota composition compared to

healthy individuals (35). However, due to the current scarcity of

clinical evidence directly demonstrating the relationship between

the urinary microbiome and RCC, it is imperative that we further

collect urine samples from both RCC patients and healthy control

groups for clinical experiments. This will enable us to ascertain the

differences in microbiome distribution between the two groups and

confirm the relationship between the microbiome and RCC (36).

Although direct clinical evidence demonstrating a causal

relationship between urinary microbiome and RCC is scarce, it

has been discovered that many urologic disorders resulting from

urinary microbiome dysbiosis, such as urinary tract infections and

kidney stones, can increase the risk of developing RCC. In a
FIGURE 1

The mechanism of microbiome on renal cell carcinoma and its possible effect on treatment.
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questionnaire survey of 372 RCC patients and 2,248 individuals in

the general population, Parker et al. found that individuals with a

history of kidney or bladder infection were more likely to develop

RCC (OR=1.9, 95%CI:1.5, 2.5). Moreover, male smokers with a

history of urinary tract infections had a significantly higher risk of

RCC (OR=9.7, 95%CI:5.0, 18.1) (37). This view was further

supported by Dhote, who summarized all possible risk factors for

RCC (OR=1.2-1.7) (38). In a recent study, Gupta et al. put forward

the concept that dysbiosis could contribute to the formation of

kidney stones and subsequently increase the risk of developing

RCC. This hypothesis sheds light on the association between

urinary tract infections and RCC and suggests that the

microbiome may play an active role in the development of RCC

(39). Through the application of 16S rRNA sequencing on the gut

microbiota of healthy individuals and kidney stone patients,

researchers found a significant reduction in the gut microbiota

diversity of the latter group. Furthermore, the abundance of pro-

inflammatory bacteria was found to be substantially higher in

kidney stone patients than in healthy individuals (40). The

presence of urinary dysbiosis has also been observed to lead to

significant structural differences in urinary microbiota between

kidney stone patients and healthy individuals. Such differences in

microbial composition may cause a potential increase in pro-

inflammatory bacteria, resulting in the formation of kidney stones

(41). Pol et al. established a correlation between the formation of

kidney stones and an elevated risk of RCC (HR: 1.39, 95%CI 1.05-

1.84), proposing that the chronic stimulation and recurrent

infections caused by the stone may recruit inflammatory cells and

promote cell damage and proliferation, thereby promoting the

development of cancer (42).
4 Microorganisms and treatment of
renal cell carcinoma

Statistics indicate that approximately one-third of patients with

RCC who underwent targeted therapy eventually developed

advanced disease. Prior to the advent of ICIs, tyrosine kinase

inhibitors (TKIs), such as sunitinib, sorafenib, and bevacizumab,

were used as first-line standard treatment, with a median survival

time of 22 months (95% CI, 20.2-26.5 months) (43). Recent studies

have shown that the use of ICIs, such as nivolumab plus

ipilimumab, has resulted in better overall survival rates in

advanced RCC patients as compared to TKIs. Additionally,

patients treated with ICIs have reported more favorable treatment

outcomes, such as fewer symptoms and improved Health-Related

Quality of Life (HRQoL), compared to those treated with sunitinib

(44, 45). However, despite the much higher overall survival time

and response rate of ICIs or combination therapy compared to

traditional TKIs, a considerable number of patients still develop

primary resistance or do not respond, leading to tumor

progression (46).

Recent studies have revealed that microbiota can modulate the

therapeutic response of various tumors by regulating their own

immune response. For instance, in colorectal cancer, the level of F.

nucleatum has been found to increase and enhance the effectiveness
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of PD-L1 blockade (47). In addition, symbiotic Bifidobacterium has

been shown to promote the efficacy of anti-PD-L1 in melanoma

(48). As ICIs do not directly kill tumor cells and instead mediate

their therapeutic effects by inducing T cell activation, it has been

hypothesized that the microbiota, which plays a critical role in

regulating systemic immune responses, may enhance the efficacy of

ICIs in treating RCC. Current research on enhancing the efficacy of

RCC drugs and predicting treatment response outcomes through

microbiota has yielded promising results, indicating that the critical

role of the microbiota in RCC is gradually being uncovered.

However, the current focus of microbiota research in RCC

treatment lies predominantly on the gut microbiota, while the

study of the relationship between urinary microbiota and RCC

treatment outcomes remains largely unexplored. This review will

emphasize the relationship between the gut microbiota and RCC

treatment, providing a theoretical foundation and research

framework for future investigations on the correlation between

urinary microbiota and RCC treatment.
4.1 The gut microbiome can affect kidney
cancer treatment, and antibiotic use can
impact the efficacy of ICIs

Multiple studies have shown that the microbiome can modulate

the corresponding immune responses in the human body. Certain

bacteria can enhance the therapeutic effects of drugs on tumors and

exhibit anti-tumor capabilities by producing metabolites that

induce immune responses or by directly counteracting the tumor

microenvironment (TMEs) (49). Recent research on the microbial

metabolite butyrate has shown that it can directly enhance the anti-

tumor response of CD8 T cells by promoting the IL-8 signaling

pathway and the ID2-dependent pathway (29). Furthermore,

MAGER et al. found that the microbial metabolite adenosine

enhances the therapeutic efficacy of ICIs in tumor treatment and

may be utilized in the development of microbiota-based adjunctive

therapies (50). Additionally, certain B vitamins produced by the

microbiota, such as vitamin B6, are believed to effectively enhance

cell-mediated immune responses, regulate T cell activation and

differentiation (51, 52), and improve the therapeutic efficacy of

chemotherapy drugs by inducing and strengthening anti-cancer

immune responses (53). Research by Paulos et al. has also shown

th a t m i c r ob i a l c omponen t s o r p r odu c t s , s u c h a s

lipopolysaccharides, can promote dendritic cell activation and, in

conjunction with TLR4 binding, enhance the anti-tumor function

of CD8 T cells (54).

Numerous studies have highlighted the variation in gut

microbiota distribution and abundance among RCC patients with

different responses to treatment. While immune therapies targeting

PD-L1 and PD-1 have revolutionized the treatment and prognosis

of RCC, some patients remain unresponsive. Salgia et al. have found

that patients who benefited from ICIs exhibited higher gut

microbial diversity compared to those who did not (55). A

comprehensive analysis of 44 cohorts showed that the use of

antibiotics (ATBs) in ICIs-treated malignant tumors negatively

correlated with ORR, PFS, and OS, and the duration of ATB
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usage might impact ICI efficacy (56). However, the use of ATBs did

not have a similar effect on patients receiving mTOR inhibitors or

VEGF-T therapy (57). Studies on non-small cell lung cancer,

melanoma, digestive tumors, and RCC have shown that patients

who did not receive ATB or proton pump inhibitors (PPIs) before

ICIs had better PFS than those who did (58). Derosa et al. also

observed that the usage of ATBs in advanced RCC patients

receiving nivolumab monotherapy led to a significant reduction

in the objective response rate. Moreover, their analysis of the gut

microbiota revealed a correlation between dysbiosis and resistance

to cancer immunotherapy in RCC patients (59). These

comprehensive clinical studies have robustly established the

significant influence of gut microbiota composition on the

therapeutic effectiveness of ICIs in the context of RCC.

Additionally, it has been firmly established that ATBs can impede

the desired treatment outcomes in RCC patients. However, the

potential impact of PPIs on the outcomes of ICI treatment in RCC

patients remains inconclusive. Despite the findings by Giordan’s

team, as mentioned earlier, suggesting that PPIs may diminish the

therapeutic efficacy of ICIs, Mollica et al. conducted a study

involving 71 patients and concluded that the use of PPIs does not

impact the treatment outcomes of ICIs in RCC patients (58, 60).

Notably, the negative impact of antibiotics on treatment efficacy is

not universal. Hahn et al. found that prescribing antibiotics

targeting Bacteroides spp. Improved the progression-free survival

(PFS) of patients treated with VEGF-TKIs (61). During the study of

VEGF-TKI targeted drugs, diarrhea was reported as a common side

effect, with the highest incidence observed in patients using

sunitinib (62). Recently, Su et al. found that the severity of

sunitinib-induced diarrhea was negatively correlated with the

diversity of the intestinal microbiota and the diversity of butyrate-

producing bacteria, but positively correlated with the presence of

Bacteroides spp (63).. These findings are consistent with the

correlation between the use of antibiotics targeting Bacteroides

spp. and improved PFS in RCC patients, as mentioned above.

Based on the aforementioned evidence, it is highly plausible that

the differential distribution of gut microbiota contributes to the

varying therapeutic outcomes of ICIs. Additionally, ATB usage may

disrupt the gut microbiota in ICI-treated RCC patients, leading to

suboptimal treatment responses. This suggests that ATBs could

serve as predictive factors for ICIs resistance. Furthermore, these

findings inspire and caution us, indicating that modulation of the

gut microbiota may offer a promising avenue to optimize

the prognosis of RCC patients undergoing ICIs therapy. Hence,

the prescription of ATBs should be approached with caution in

advanced malignant tumor patients undergoing ICIs treatment.
4.2 Gut microbiota may serve as
biomarkers for the efficacy and risk
stratification of kidney cancer treatment

The human body is a complex organism that relies on various

components, among which the gut microbiota plays a crucial role.
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The gut microbiome participates in the absorption of nutrients and

also exerts immunoregulatory functions. Consequently, the gut

microbiota is considered a potential pivotal component in immune

surveillance against cancer and a guiding factor for immunotherapy

of tumors (64). Iida et al. conducted an analysis of mice that were

subjected to an antibiotic cocktail therapy and found that mice

lacking gut microbiota suffered from severe immune deficiencies,

ultimately leading to impaired efficacy of immune therapy which

provides evidence for the correlation between gut microbiota

composition and immunotherapy supported by animal

experimentation (65). In studies of the use of ICIs to treat

advanced melanoma, it has been found that the distribution of gut

microbiota can serve as a biomarker to predict the response and

ultimate outcome of ICI therapy for tumors (66). Similarly, in

melanoma research, Frankel conducted a study using Metagenomic

Shotgun Sequencing to investigate specific human gut microbial

communities associated with the efficacy of ICIs. The study found

that the previously mentioned Bacteroides spp. was enriched in the

clinically beneficial group, suggesting that the microbiomemay serve

as a predictive biomarker for patient treatment outcomes (67).

Concurrently, studies by VÉTIZOU and ROUTY also

demonstrated the potential of the microbiome as a predictive

biomarker for patient treatment outcomes (68, 69). In the

treatment of renal cell carcinoma, patients who responded to ICIs

had higher microbial diversity and distinct microbiota, as mentioned

earlier. Therefore, it is worth exploring whether the characteristics of

gut microbiota can be utilized to predict the therapeutic outcomes of

kidney cancer patients in advance. This approach not only can

prevent tumor progression and metastasis caused by ineffective

treatment, but also benefit patients by changing treatment plans in

a timely manner. Table 1 summarizes the gut microbiota expression

profiles in different clinical response groups to therapeutic agents, as

observed in three studies investigating the relationship between ICIs

and the efficacy of renal cancer treatment. Upon analyzing the high-

expressing bacterial species in the clinical benefit group, it was

observed that Akkermansia muciniphila (Akk) was highly

expressed in the clinical benefit groups of ICIs in three study

cohorts. Akk is an anaerobic bacterium that resides in the

intestinal mucosal layer and uses intestinal mucin as the sole

source of carbon and nitrogen required for survival (72). It also

exhibits inhibitory effects on the growth of other mucin-degrading

bacteria that are pathogenic (73). Akk has been shown to secrete

substances that can inhibit tumor growth and increase treatment

efficacy in multiple in vitro experiments (74, 75). Furthermore, the

presence of Akk in the intestine can increase the microbial diversity

of patients by promoting the growth of other symbiotic bacteria (76).

Recent studies have suggested that Akk is associated with the clinical

benefit of ICIs in non-small cell lung cancer (NSCLC) and can serve

as a novel prognostic factor for NSCLC ICI treatment (77). However,

the role of Akk in RCC is currently unknown, and further clinical

trials are needed to confirm its relationship with the immunotherapy

benefit in RCC. In addition, more samples should be collected to

validate the potential of Akk as a prognostic and risk stratification

biomarker for RCC.
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4.3 Gut microbiota as an adjuvant therapy
for renal cell carcinoma

As our understanding of the microbiota and RCC continues to

evolve, new insights and treatment strategies have emerged for

preventing and managing RCC. Given the mounting evidence

linking gut microbiome composition to ICI response, it is

reasonable to explore methods for modulating the microbiota to

promote a microbial composition that is more conducive to ICI

response. This could involve maintaining gut microbial balance or

selectively targeting individual microbes for modulation. As

previously mentioned, the overuse of broad-spectrum antibiotics

may reduce treatment efficacy in kidney cancer patients and

exacerbate treatment side effects due to microbial imbalance.

Nonetheless, by analyzing the gut microbiota of patients with

varying treatment responses, we can identify specific microbial

communities that are associated with favorable or unfavorable

outcomes, and selectively deplete or augment these communities

using targeted antibiotics or other interventions to improve

treatment response and reduce side effects (78). Fecal microbiota

transplantation (FMT) is a widely used therapeutic approach for

managing several conditions, such as inflammatory bowel disease,

metabolic disorders, Clostridioides difficile infection, and obesity.

Since gut microbiota is considered a potential modulator of ICIs

response, and the use of antibiotics has been found to weaken the
Frontiers in Immunology 06
efficacy of ICIs, it has been suggested that FMT could potentially

transfer the beneficial gut microbiota from ICI responders to non-

responders, supplementing beneficial bacteria and overcoming

resistance. Clinical trials involving FMT have been conducted in

melanoma patients, and it is exciting to note that among the

enrolled cohort of 16 melanoma patients who exhibited resistance

to anti–PD-1 therapy and received adjunctive FMT therapy, three

individuals achieved objective responses (OR), while three others

experienced sustained stable disease (SD) for over 12 months (79).

This notable transformation can be attributed to the discernible

modifications in the composition of gut microbiota in the resistant

patients, subsequently exerting a profound influence on the

intricate tumor microenvironment. In the context of RCC, studies

have shown that FMT may possess similar capabilities to inhibit

resistance to anti-tumor drugs, as observed in the aforementioned

melanoma studies. In one experiment, fecal samples from

nivolumab-responsive RCC patients were transplanted into RCC-

bearing mice that were resistant to the drug. The results indicated

that FMT effectively suppressed drug resistance in the mice and

improved the function of mucosa-associated invariant T (MAIT)

cells, which enhanced immunity against the tumor (59, 80). The

findings of FMT suppressing drug resistance in RCC-bearing mice

are promising, but its efficacy in treating RCC resistance in humans

remains to be confirmed by further clinical trials. In a clinical trial

involving 20 patients who experienced severe diarrhea after using
TABLE 1 The distribution of gut microbiota between the clinical benefit group and clinical non-benefit group.

Reference Research
drug

Study
subjects Conclusion

Bacterial Groups with
Clinically Beneficial

Expression

Bacterial Groups without
1Clinically Beneficial Expression

Derosa (59) Nivolumab 69 advanced
renal cell
carcinoma
patients.

The composition of microbiota
is influenced by TKIs and ATBs,
which in turn affect the efficacy
of ICIs.

A.muciniphila; Bacteroides
salyersiae; Eubacterium siraeum

E.bacterium 2-2-44A; C.hathewayi;
Clostridium clostridioforme

Salgia (55) Nivolumab
or
Nivolumab
plus
Ipilimumab

31 patients
with kidney
cancer
receiving
medication.

There is a correlation between
higher microbial diversity and
better treatment outcomes

Bifidobacterium adolescentis;
Barnesiella intestinihominis;
Odoribacter splanchnicus;
Bacteroides eggerthii; Akkermansia
muciniphila(relative abundance
increases)

Bacteroides ovatus; Eggerthella lenta;
Fusicatenibacter saccharivorans;
Flavonifractor_plautii

Routy (70) PD-1/PD-L1
mAb

100 patients
with non-
small cell
lung cancer
(n=60) and
renal cancer
(n=40) who
received PD-
1 inhibitors.

ICIs resistance may be
associated with dysbiosis of gut
microbiota, and the use of ATB
can impact treatment outcomes.

Akkermansia muciniphila;
Firmicutes;Eubacterium
sp.CAG:146; Lachnospiraceae;
Erysipelotrichaceae bacterium 5-2-
54FAA; Cloacibacillus porcorum

Parabacteroides distasonis; Bacteroides
nordi; Blautia; Bacteroides clarus;
Clostnidiales bacterium VE202-14;
Firmicutes bactenum CAG 227

Dizman (71) VEGF-TKI 21 patients
with
metastatic
renal cell
carcinoma.

Dietary interventions can
influence the gut microbiota of
patients with mRCC receiving
VEGF-TKI therapy, and the
composition of the gut
microbiota can serve as a
predictor of the clinical benefit
level in mRCC patients
undergoing VEGF-TKI
treatment.

Akkermansia muciniphila;
Faecalibacterium prausnitziil;
Bacteroides caccae; Barnesiella
intestinihominis; Eubacterium sp
CAG 251; Roseburia faecis;
Anaerostipes hadrus; Streptococcus
salivarius; Streptococcus
parasanguinis; Blautia coccoides ;
Phascolarctobacterium faecium

Bacteroides vulgatus; Bifidobacterium
longum; Lactobacillus vaginalis;
Acidaminococcus intestine; Flavonifractor
plautii; Actinomyces graevenitzii;
Clostridium saccharolyticum;
Bifidobacterium adolescentis; Bacteroides
ovatus; Ruminococcus bicirculans;
Eubacterium callanderi; Eubacterium
eligens; Megasphaera sp MJR8396C;
Acutalibacter muris
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tyrosine kinase inhibitors, the use of FMT was found to markedly

alleviate diarrhea symptoms compared to a placebo group (81).

Currently, FMT is only used to treat TKI-induced diarrhea caused

by dysbiosis. Clinical studies are needed to establish the safety and

efficacy of FMT for treating RCC resistance (82).

Newer evidence indicates that the consumption of probiotics

may be linked to a reduced risk of adenomas, while a higher intake of

yogurt may be associated with a decreased occurrence of colorectal

tumors (83). Additionally, the combined use of Clostridium

butyricum therapy (CBT) with ICIs has been found to have a

positive impact on the therapeutic efficacy of lung cancer patients

(84). Considering the potential benefits of manipulating the gut

microbiota to enhance the response to ICIs in RCC, CBM588, a live

bacterial supplement containing butyrate-producing clostridia, was

investigated as an adjunct therapy. Previous research has shown that

CBM588 can effectively increase the abundance of Bifidobacterium

spp in the intestine (85), which may have a positive impact on the

efficacy of ICIs in RCC treatment. The results of the study showed

that the addition of CBM588 as a live bacterial supplement to the

standard ICIs treatment for RCC led to a significant increase in the

abundance of live Bifidobacterium spp in the gut microbiome.

Moreover, patients who received CBM588 as an adjunct to ICIs

had a significantly longer progression-free survival compared to

those who received ICIs alone (12.7 months vs 2.5 months, HR: 0.15,

95% CI 0.05-0.47, P < 0.001). Although the sample size was limited

and the difference was not statistically significant, there was a higher

response rate in patients who received CBM588 (20% vs 0%, P =

0.6588) (86). Moon and colleagues discovered that yeast extracts can

effectively suppress the growth of RCC cells in vitro by regulating

ironmetabolism. These findings suggest that yeast extracts may have

potential as an adjunct therapy for RCC (87).

FMT and live bacterial supplementation have shown potential

in treating various cancers by improving the response efficiency of

ICIs and reducing treatment-related side effects. Despite these

promising findings, the efficacy of FMT and live bacterial

supplementation in RCC patients has yet to be supported by

sufficient clinical evidence. Further clinical trials are needed to

establish the effectiveness of these methods in treating RCC.
5 Unresolved issues
Fron
(1) Current studies are predominantly based on case-control

designs, which may potentially introduce selection bias.

Moreover, given the limited sample size in current RCC

research and the potential confounding factors such as diet,

social environment, age, ethnicity, and geographical

location that may influence microbiome analysis, large-

scale prospective studies with robust control of

confounding variables would provide the most convincing

evidence for establishing the relationship between gut and

urinary microbiome and RCC. This direction is of utmost

importance for future research in this field.
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(2) The inconsistency of reference databases currently poses a

challenge for microbial population identification through

16S rRNA and WGS sequencing. Complementing

sequencing data with proteomics and metabolomics can

enhance the accuracy of microbial detection, thereby

improving future research outcomes.

(3) Differences in urinary microbiota composition have been

observed in patients with bladder and prostate cancer,

suggesting a potential role in cancer pathogenesis.

Urinary tract infections have also been linked to the

occurrence of kidney cancer. However, current evidence

on the relationship between urinary microbiome and

kidney cancer is limited to one study involving only 12

patients. Further large-scale studies are required to confirm

this hypothesis.

(4) The gut microbiome has shown potential as an adjuvant

therapy in RCC immunotherapy, but its mechanism of

action remains incompletely understood due to the

microbiome’s diversity and individual variations, as well

as the complex microbial interactions.

(5) Akk has demonstrated the ability to inhibit tumor growth

in various in vitro cancer models. Moreover, it is a

dominant bacterial species found in the gut of ICI

responders, and understanding its mechanisms of action

may offer potential strategies for reversing ICI non-

responsiveness in RCC.
6 Summary

With the advancement of technology, the types and numbers of

microbiota are no longer a constraint on human exploration.

Increasing evidence from studies on human gut microbiota

suggests that gut microbiota is involved in regulating various

pathological and physiological processes. The microbiome

represents a new field in oncology, and our understanding of it is

gradually deepening and expanding. The possibility of using

microbiota for cancer treatment and prevention is also increasing.

In this review, we summarize the relationship between the

microbiome and RCC development, as well as the relationship

between gut microbiota and treatment, providing a theoretical basis

and ideas for further exploring the role of the microbiome as a

pathogenic factor in RCC and as a potential modulator of ICIs

response in RCC patients through prospective clinical and animal

experiments. Based on the existing clinical evidence, we believe that

the gut and urinary microbiota may play a promoting role in the

development and progression of RCC. However, due to the

interactive relationship between microorganisms and the initial

stage of research on urinary microbiota in RCC patients, there is

an urgent need for randomized controlled trials to explore the

causal effects of these hypotheses. Overall, further exploration of the

microbiome can increase our understanding of the mechanism of

RCC development, which is crucial for providing personalized
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treatment options for patients, increasing patient sensitivity to

treatment, and ultimately increasing clinical benefits.
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