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Cell death is a universal biological process in almost every physiological and

pathological condition, including development, degeneration, inflammation, and

cancer. In addition to apoptosis, increasing numbers of cell death types have

been discovered in recent years. The biological significance of cell death has long

been a subject of interest and exploration and meaningful discoveries continue

to be made. Ferroptosis is a newfound form of programmed cell death and has

been implicated intensively in various pathological conditions and cancer

therapy. A few studies show that ferroptosis has the direct capacity to kill

cancer cells and has a potential antitumor effect. As the rising role of immune

cells function in the tumor microenvironment (TME), ferroptosis may have

additional impact on the immune cells, though this remains unclear. In this

study we focus on the ferroptosis molecular network and the ferroptosis-

mediated immune response, mainly in the TME, and put forward novel insights

and directions for cancer research in the near future.
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1 Introduction

1.1 Discovery history of ferroptosis

The homeostasis of living entities is delicately regulated by the cell death of damaged

cells and survival of properly working cells in a spatio-temporal manner. Cell death can

take the form of either non-programmed cell death or programmed cell death (PCD).

Necrosis is a non-programmed form of cell death that is induced by repeated freezing and

thawing or other forms of physical tissue damage, and was identified as early as 1951 (1).

Studies on cell death have increased in the past 50 years following the discovery of

apoptosis (2). It has been found that apoptosis is closely involved in numerous biological

conditions (3, 4), which is the first category of programmed cell death and is regulated by

caspases. Previous researchers have generally considered apoptosis and necrosis to be the

only cell death types of interest. However, this understanding has been challenged and

many scientific discoveries in last two decades have brought to light new forms for cell
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death (5–8). Necroptosis is another fundamental programmed cell

death and is found in the universal biological conditions of

development, inflammation, and cancer (9–11), and pyroptosis is

a Gasdermin D (GSDMD)-mediated PCD that is implicated in

inflammation, immunity, and sepsis and other diseases (12).

Ferroptosis is a newly identified type of iron-dependent non-

apoptotic cell death that was discovered in the last 10 years by

Stockwell (7, 13, 14). By reviewing its discovery history, we can

obtain a comprehensive understanding of ferroptosis. First, a novel

compound, erastin, was identified to selectively kill engineered cancer

cells expressing oncogenic RAS and small T oncoprotein in a non-

apoptotic manner through compounds screening for engineered

human tumor cells (13). This first discovery led to much more

comprehensive studies. Interestingly, using the synthetic lethal

screening modality in vitro, Stockwell found that the introduction

of oncogenic RAS into cancer cells leads to increased levels of cellular

labile iron pool by upregulating transferrin receptor gene TfR1 and

downregulating ferritin genes FTH and FTL. This non-apoptotic cell

death is inhibited by iron chelator, which indicates that it is iron-

dependent. In addition, two other compounds, RSL3 and RSL5, were

identified as inducers of this novel form of cell death. RSL5 and

erastin both lead to this cell death by targeting voltage-dependent

anion channel 3 (VDAC3), whereas RSL3 induces death in a

VDAC3-independent manner (14). VDACs are mitochondrial

pores that transport small metabolites and ions. Furthermore,

ferroptosis is named to represent this iron-dependent non-

apoptotic cell death after one more key study (7), in which

ferroptosis was proven to have unique morphological, bioenergetic,

and genetic traits that are distinct from previous identified types of

cell death. Cells undergoing ferroptosis have the morphological

features of small and shrunken mitochondria under electron

microscope scan. In terms of bioenergetics, ferroptosis does not

consume much intracellular adenosine triphosphate (ATP) nor rely

on mitochondrial electron transport chain (ETC) to generate reactive

oxygen species (ROS). Lipid peroxidation was found to be another

characteristic of ferroptosis. As for genetic features, six high-

confidence genes were found to significantly change in cells

undergoing ferroptosis. These were IREB2 (iron response element

binding protein 2), RPL8 (ribosomal protein L8), CS (citrate

synthase), ATP5G3 (ATP synthase F0 complex subunit C3), ACSF2

(acyl-CoA synthetase family member 2), and TTC35

(tetratricopeptide repeat domain 35) (7). There are other

landmarks in the history of ferroptosis. Glutathione peroxidases 4

(GPX4), a key component of keeping intracellular reducing state,

plays a crucial role in the regulation of ferroptosis (15). P53, a

canonical tumor suppressor, sensitizes ferroptotic cancer cell death

(16). BAP1, another tumor suppressor, also sensitizes ferroptotic

tumor cell death by repressing the amino acid antiporter system Xc-

expression, which is important for synthesizing cellular reduced

glutathione (GSH) to protect lipids from peroxidation and

ferroptosis (17). Thus, ferroptosis is closely associated with

conventional tumor suppressors’ activities and is an endogenous

mechanism that represses the survival of tumor cells. Inversely,

tumor cells utilize various mechanisms to evade ferroptosis, such as

upregulating ferroptosis suppressor protein 1 (FSP1) (18). In
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addition, prominin 2 promotes ferritin-containing exosomes to

transport iron out of cells and protects cancer cells from ferroptosis

stress (19). Primary tumor growth relies on the inhibition of

endogenous ferroptosis. Drug-resistant and highly mesenchymal

cancer cells depend on GPX4 activity to repress ferroptosis and

survive (20, 21). Furthermore, immunotherapy-activated CD8+ T

cells induces the ferroptosis of tumor cells by secreting interferon

gamma (IFN-g) and inhibiting system Xc- on the cell membrane (22).

Radiotherapy also directly induces the ferroptosis of tumor cells,

which is also a novel junction of synergy between radiotherapy and

immunotherapy (23). Recently, it was also found that dihydroorotate

dehydrogenase (DHODH) is an alternative way to protect against

ferroptosis aside from GPX4 and FSP1 (24). All the above milestones

comprise a sketch of the discovery history of ferroptosis (Figure 1).
2 Molecular network of ferroptosis

2.1 General portrayal of ferroptosis
molecular network

From the above introduction to the discovery history of

ferroptosis, we can conclude that ferroptosis is an iron-dependent

programmed form of cell death that is induced by lipid peroxidation

and the breaking of the intracellular reducing state maintained by

amino acid and antioxidation metabolism. Thus, ferroptosis is by

nature a form of metabolic cell death mainly involved in iron

metabolism, lipid metabolism, and amino acid and antioxidation

metabolism. In general, iron overload can induce the Fenton

reaction and lead to the significant accumulation of oxygen free

radicals in cells. When the oxidizability induced by oxygen free

radical overpowers the reducing state that is mainly maintained by

GPX4 and system Xc- activity, arachidonate lipoxygenases (ALOXs)

are activated and turn polyunsaturated fatty acids (PUFAs) into

peroxidative lipids; this is known as lipid peroxidation. Lipid

peroxidation can lead to cell plasma membrane remodeling and

perforation, after which cell normal structure is destroyed. Finally,

ferroptosis occurs (Figure 2).
2.2 Iron metabolism

As shown above, iron overload is the critical initial procedure

for ferroptosis, and iron metabolism is heavily involved in the

cancer microenvironment. Malignant cells rely on high levels of

intracellular iron to fulfill the biosynthesis of DNA and proliferation

(25). However, accumulated iron in tumor cells is a double-edged

sword, as excessive labile iron in cytoplasm can also elicit the

Fenton reaction, which induces lipid peroxidation and lipid

toxicity (26). Iron-dependent lipid peroxidation can generate an

overload in the levels of oxygen free radicals, which eventually leads

to ferroptosis. A number of genes and proteins implicated in iron

metabolism have been reported to regulate ferroptosis. When

inducing ferroptosis, the iron-starvation response is activated and

results in the downregulation of ferritin (genes: FTH1 and FTL;
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function: store intracellular iron) and ferroportin (function: export

iron out of the cell), and the upregulation of transferrin receptor

(gene: TfR1; function: import iron into the cell) (14), which leads to

the accumulation of intracellular free iron pool. The iron–sulfur

cluster biosynthetic enzyme NFS1 maintains the iron–sulfur co-

factors level and serves as an upstream regulator to control the iron-

starvation response and limit the effect of high levels of oxygen

tension in a lung adenocarcinoma context. NFS1 suppression

sensitizes lung adenocarcinoma cells to ferroptosis by stimulating

the iron-starvation response, stabilizing TfR1 mRNA and inhibiting

FTH1 expression (27). Another critical mediator is nuclear receptor

coactivator 4 (NCOA4), which is required for transporting ferritin

to lysosomes to degrade, resulting in the release of ferritin-bound

iron to increase intracellular iron levels (28). Heme oxygenase-1

(HO-1), a main source of intracellular iron, has been proven to play

a decisive role in erastin-induced ferroptosis, and the inhibition of
Frontiers in Immunology 03
HO-1 prevents erastin-triggered ferroptosis in HT-1080

fibrosarcoma cells (29). However, in hepatocellular carcinoma

cells (HCCs), the knockdown of HO-1 by small interfering RNA

facilitates ferroptosis induced by sorafenib and erastin (30). Thus,

the role of HO-1 in ferroptosis is still in debate and is specific to

different cells. In addition, the p62-Keap1-nuclear factor erythroid

2-related factor 2 (NRF2) pathway serves as an upstream modulator

regulating HO-1 and FTH1 stability and protecting HCCs from

ferroptosis (30). Fanconi anemia complementation group D2

(FANCD2) also protects bone marrow stromal cells from

ferroptosis by regulating the genes or proteins in iron metabolism

(31). Divalent metal transporter 1 (DMT1) is another key regulator

involved in iron metabolism and it has four isoforms. DMT1A1,

one of the isoforms, is localized on the apical cell membrane and has

the function of non-transferritin-bound ferrous iron uptake.

DMT1A/B-II, localized at the endosomal membrane, imports
FIGURE 2

Molecular network of ferroptosis.
FIGURE 1

Milestones in the discovery history of ferroptosis.
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ferrous iron from endosome to cytosol (32). Importantly, human

poly (rC)–binding protein 1 (PCBP1) acts as an iron chaperone that

delivers ferrous iron to ferritin for storage in the cytoplasm (33),

which can protect cells from labile ferrous iron-related oxidative

damage. However, the relationship between DMT1, PCBPs, and

ferroptosis has not yet been explored and needs further study.

Phosphorylase kinase G2 (PHKG2) is another mediator of cellular

labile iron pool tha facilitates ferroptosis (34). In a word, these

markers in iron metabolism probably have a close relationship with

ferroptosis and can be utilized for further investigation.
2.3 Lipid metabolism

Iron-associated Fenton reaction is the catalyzer for ALOXs

activity, resulting in lipid peroxidation and ferroptosis. In

addition, PUFAs are the specific substrates for this biochemical

reaction. The bis-allylic position in PUFAs is the critical site for the

production of peroxidation and determines the radical chain

reaction of lipid peroxidation (34). Acyl-CoA synthetase long

chain family member 4 (ACSL4) and lyso-phosphatidylcholine

acyltransferase (LPCAT) play important roles in the esterification

of PUFAs into membrane phospholipids, which are the key signals

for the stimulation of ferroptosis (35, 36). PUFAs insert into cell

membrane phospholipids and formulate PUFAs-containing

membrane phospholipids, such as phosphatidylethanolamines

(PEs) containing arachidonic acid (C20:4) and adrenic acid

(C22:4) (36). Recently, polyunsaturated ether phospholipid

(PUFA-ePL) was found to be another important substrate for

lipid peroxidation reaction, eventually leading to ferroptosis (37).

PUFAs-containing PE phospholipids on cell membranes are

oxidated by the ALOXs family (34, 36, 38). There are six ALOX

genes in the human ALOXs family: ALOXE3, ALOX5, ALOX12,

ALOX12B, ALOX15, and ALOX15B. These six genes have different

expression levels in various cell lines and tissues. The human renal

carcinoma cell line G-401 expresses all six ALOX genes. The

silencing of all six ALOX genes drives G-401 cell resistance to

ferroptosis inducer imidazole ketone erastin (IKE) treatment rather

than (1S, 3R)-RSL3 stimulation (34). IKE inhibits system Xc- on cell

membrane to exhaust cellular GSH and inhibits GPX4 indirectly

(like erastin function), whereas (1S, 3R)-RSL3 suppresses GPX4

activity directly in the absence of cellular GSH exhaustion (39).

BJeLR or HT-1080 cell line does not express the ALOX5, ALOX12,

ALOX12B, or ALOX15 genes but does express ALOXE3 and

ALOX15B. The silencing of ALOXE3 and ALOX15B in the BJeLR

or HT-1080 cell lines rescues erastin-induced ferroptosis, which

also confirms that ferroptosis that occurs after GSH exhaustion

requires ALOXs (34). In addition, ALOX12 and ALOX15 are

specific downstream markers of ferroptosis that work by

activating apoptosis-inducing factor (AIF). Cell death is

completely prevented by inhibiting ALOX12 and ALOX15, or

silencing AIF (38). The detailed role of AIF in ferroptosis needs

further study. Supplement of PUFAs together with transforming

growth factor-b1 (TGF-b1) synergistically inhibit B16 cell growth,
Frontiers in Immunology 04
and this effect can be completely reversed by the antioxidant

vitamin E, but adding PUFAs alone does not inhibit B16 cell

growth (40). As vitamin E is a potential anti-ferroptosis agent

(41, 42), further study is needed to confirm whether TGF-b1-
mediated B16 cell growth inhibition and enhancement by PUFAs

is due to the inducement of ferroptosis. In addition, mevalonate

metabolism is implicated in ferroptosis pathway (43). However, the

total net effect of mevalonate pathway on ferroptosis is still

undetermined and requires further study (43, 44).
2.4 Amino acid and
antioxidation metabolism

The intracellular reducing state is an aspect of homeostasis that

is crucial to the maintenance of normal function in living beings.

Superoxide anion radical (O2•–) and hydrogen peroxide (H2O2) are

the two main types of reactive oxygen species (ROS) (45). Oxidized

lipid is another important kind of ROS. The influences of ROS on

inflammation, cancer, senescence, and other pathologic conditions

are prevailing and vital (46–48). In cells, there are certain

mechanisms that regulate ROS levels. Amino acid metabolism,

especially that of cystine and glutathione, has the key function of

controlling ROS and maintaining an antioxidant state in normal

cells. The cystine and glutathione metabolic pathway under normal

circumstances is as follows. System xc– on the cell membrane is

made up of the disulfide-linked heterodimers SLC3A2 and xCT and

serves as the bidirectional channel to transfer cystine into cells and

export intracellular glutamate out at a 1:1 ratio. Subsequently,

intracellular cystine and glutamate are synthesized into GSH by

glutamate-cysteine ligase (GCL) and glutathione synthetase (GSS).

Some cells take advantage of the transsulfuration pathway to

produce cysteine from methionine, thus bypassing the system xc–

function of importing cysteine. GSH is the cofactor of GPX4 in its

reduction of phospholipid hydroperoxides to phospholipids, which

is the unique function of GPX4 (49). GPX4, a member of the

glutathione peroxidases family (GPXs), is the core mediator to

maintaining an antioxidant state in cells. The disruption in the

above antioxidant mechanism by inhibiting key targets such as

system xc–, GCL, and GPX4 generates the accumulation of ROS and

lipid peroxides, leading to ferroptosis (7, 15). GPX4 is the key

regulator in the ferroptosis pathway (15). By using 60 different

human cells in the NCI-60 cell line panel, it was found that

intracellular nicotinamide adenine dinucleotide phosphate

(NADPH) abundance is negatively correlated with ferroptosis

sensitivity (50). All ROS are generated by mitochondrial electron

transport chain (ETC) complexes and NADPH oxidases. While in

ferroptosis, cells eliminated from the mitochondria still retain their

sensitivity to ferroptosis, indicating that ROS generated by

mitochondria are dispensable for inducing ferroptosis (7).

However, inhibiting ETC complexes in mitochondria blocks

ferroptosis induced by system xc– inhibition, but not by GPX4

suppression (51). The true underlying mechanism remains obscure,

and the role of mitochondria in ferroptosis is still undetermined
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and, furthermore, more comprehensive studies are needed. In

addition, the inhibition of thioredoxin reductase (TXNRD)

activity induces ferroptosis through upregulating Ptgs2 expression

(52). In a word, amino acid and antioxidant metabolism, and

associated key regulators, are closely related to ferroptosis.
2.5 Glucose metabolism and regulation of
ferroptosis by cancer suppressor gene

Glucose metabolism has a close correlation with ferroptosis.

The tricarboxylic acid (TCA) cycle, the fundamental form of

glucose metabolism, has close links with ferroptosis. The

mitochondrial TCA cycle and ETC complexes promote cysteine-

deprivation-induced (CDI) ferroptosis by inducing oxidative

phosphorylation (OXPHOS) and producing cellular lipid

peroxides (51). Glutaminolysis is also deeply implicated in the

regulation of ferroptosis through its replenishing of TCA cycle

intermediates such as a-ketoglutaric acid (a-KG). Glutamine is

absorbed in cells by SLC1A5 transporters on the cell membrane.

Subsequently, glutamine is transformed to glutamate by

glutaminase (GLS1) in the cytoplasm. Glutamine can also enter

mitochondria and form glutamate by glutaminase (GLS2).

Glutamate in mitochondria can be turned into and subsequently

supply a-ketoglutaric acid (a-KG) for TCA cycle through its

reaction with glutamic-oxaloacetic transaminase 1 (GOT1).

Suppressing glutamine uptake by the SLC1A5 transporter, or

inhibiting glutamine transformation to glutamate by GLS2, or

restraining glutamate conversion to a-KG in mitochondria, all

inhibit ferroptosis (53). In addition, as we know, fumarate

hydratase (FH) is an enzyme in the TCA cycle that catalyzes the

transformation of fumarate into malate and has the function of

suppressing cancer and the DNA damage response pathway (DDR).

Intriguingly, FH-inactivated renal cell carcinoma (HLRCC) exhibits

oxidative stress promotion, and metabolic alteration, and increased

sensitivity to ferroptosis through the mechanisms of inducing

fumarate accumulation, the succination of GPX4 proteins at the

C94 site, and the inhibition of GPX4 function (54). On the other

hand, FH-inactivated HLRCC also demonstrates the fumarate

accumulation-related attenuation of NRF2 degradation (54),

which is the notable protective factor in the inhibition of

ferroptosis (30, 55, 56). The net effect of ferroptosis on FH-

inactivated HLRCC is still unknown, and further, more

comprehensive studies are needed to determine the impact of

fumarate hydratase on ferroptosis in other cancers. This entry

point is interesting and reflects the in-depth correlation between

glycometabolism and ferroptosis through post-translation

modulation in the form of succination, which is a promising

future research direction. In addition to, FH as cancer suppressor

gene involved in cancer cell ferroptosis, two other cancer suppressor

genes, p53 and BAP1, have the direct function of repressing the

expression of system xc-, inhibiting cystine uptake, and sensitizing

cancer cells to ferroptosis (16, 57, 58). In a word, cancer suppressor

genes utilize ferroptosis, by means of glycometabolism

modification, as a critical endogenous way of inhibiting

tumor growth.
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3 Ferroptosis’ role in tumor
immune microenvironment

Ferroptosis has not only a complex molecular network but also

vital functions in many pathologic conditions, including acute

kidney injury, cardiomyopathy, traumatic nerve injury, and

neurodegenerative diseases (59–62). In addition, as ferroptosis

was firstly discovered using high-throughput compounds

screening for killing tumor cells (13), it has been intensely studied

by those in the tumor research field over the years. Some intractable

cancer cells that are resistant to apoptosis, necroptosis, pyroptosis,

and other cell death types, have been found to be susceptible to

ferroptosis. A therapy-resistant state, depending on the lipid

peroxidase pathway, can be induced in cancer cells by ferroptosis

(21), meaning that ferroptosis is potentially a viable way to cure

cancer. This topic can be dissected into two main aspects; one is the

effect of ferroptosis on tumor cells themselves, and the other is the

role of ferroptosis in the tumor microenvironment (TME). The first

aspect has been continuously explored since the discovery of

ferroptosis. In subcutaneous xenograft mouse tumor models,

Stockwell found that the ferroptosis inducer (1S, 3R)-RSL3 can

suppress tumor growth in athymic nude mice (15). Another study

showed that IKE, a ferroptosis inducer, exerted an antitumor effect

in an immunodeficient mouse lymphoma model (63). However,

recent research has demonstrated that the compound of

ferroptocide can induce ferroptosis in an immunocompetent

murine model of breast cancer, but not in immunodeficient mice

(64). Zou reported that cyst(e)inase alone, an ferroptosis inductive

agent, could not suppress ovarian cancer ID8 growth, but that the

combination of cyst(e)inase and anti-PD-L1 could inhibit ID8

development (22). These studies indicate that ferroptosis has the

direct effect of killing tumors and also of activating an antitumor

immune microenvironment. On the other hand, many kinds of

tumor cells are equipped with various defense mechanisms to

withstand ferroptosis, such as transporting iron out of cells by

way of exosomes, or halting lipid peroxidation by way of ferroptosis

suppressor protein 1 (FSP1) (18, 19). However, the metabolic

vulnerability of tumors provides therapy opportunities (65), and

drug-tolerant persistent cancer cells rely on GPX4 activity to resist

treatment (20). Thus, inhibiting GPX4 to induce ferroptosis is

considered to be a useful means of taking advantage of this

“Achilles heel” to inhibit cancer progression. Although there is

increasing interest in utilizing ferroptosis to kill tumor cells directly

and suppress tumor growth, the role of ferroptosis in the TME

remains obscure. In consideration of the pivotal role of TME in

cancer progression, the aim of this review is to investigate the

potential impact of ferroptosis on TME, in order to highlight a

crucial and valuable field for future investigation.
3.1 Ferroptosis associated innate
immune response

The role of ferroptosis in the TME was first explored in cell

death-related immunological studies. From the first and second
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Cold Spring Harbor Symposium and the notable work of

immunologist CA Janeway, Jr., a more comprehensive and

profound conception of immunity from an evolutionary

perspective was put forward, in particular Burnet’s crucial clonal

selection theory, which posited that the first signal of class I major

histocompatibility complex molecules (MHC-I) was their

interaction with T-cell receptors, that the second signal was a co-

stimulator to activate T cells, and that the initial signal of pattern

recognition receptors (PRRs) to recognize pathogen-associated

molecular patterns (PAMPs) and damage-associated molecular

patterns (DAMPs) by antigen-presenting cells (APCs) was also

vitally important for immune system function (66). Cross-priming

is the prevailing and critical model used by APCs, mainly dendritic

cells (DCs), to process extrinsic protein antigens and present to T

cells through MHC-I (67). The self/non-self model of immunity

comprises the microbial non-self, missing self, and altered self (68).

The microbial non-self contains extrinsic invading pathogens, and

in the missing self contains cells with decreased expressions of

MHC-1, CD47, or sialic acid, which are “do not eat me” signals.

Dying cells belong to the altered self and release DAMPs, which are

“find me” and “eat me” signals that either stimulate or suppress

immune responses. In addition, there is an emerging theory in the

field of cancer research regarding the association of dying cancer

cells with immune responses through their mimicry of pathogen

defense responses. Immunogenic dying cancer cells exhibit

behavior that is similar to pathogen-infected dying cells, on the

one hand releasing chemokines such as CXCL1, CCL2, and

CXCL10 (pathogen response-like chemokine signature, PARC)

that recruit neutrophils as first responders to phagocytose dying

cells. On the other hand, dying cancer cells release DAMPs,

including ATP, nucleic acids that can be recognized by APCs,

activates neutrophils and eventually facilitates nitric oxide-based

respiratory burst and hydrogen peroxide release, which causes the

death of residual viable cancer cells (68, 69). In this way, the altered

self-mimicry of dying cells can be perceived by the innate immune

cells to clear residual dying cells. Numerous clinical studies have

shown that T cell-infiltrated tumors respond sensitively to

immunotherapy (70, 71), whereas in non-T cell-infiltrated

tumors, other means of maximally expediting innate immune

activation in the TME are required (72). Immunogenic cell death

(ICD) was found to have an antitumor capacity by activating

immune response (73–76) and is an emerging determinant in

various clinical cancer therapeutic modalities, including radiation

therapy, chemotherapy, molecular targeted therapy, and

immunotherapy (77–81). Whether or not ferroptosis has an

immunoregulatory effect in the TME is still being explored. The

immune system is composed of two main parts: innate immunity

and adaptive immunity. The components of innate immunity

consist of physical/chemical barriers, humoral innate immunity,

and inherent immune cells (82). External protective structures,

external mucous secretions, and specialized skin and mucosa

form physical/chemical barriers. Lysozymes, antimicrobial

peptides, acute phase proteins, complements, cytokines, and

natural antibodies make up humoral innate immunity.

Intraepithelial T lymphocytes, myeloid phagocytic cells, innate

lymphoid cells, phagocytic B cells, non-specific cytotoxic cells,
Frontiers in Immunology 06
and mucosa-associated invariant T cells are types of inherent

immune cells (82). Innate immunity works as the first guard to

kill invading pathogens and mutant cancer cells by phagocytosis,

extracellular traps, and other mechanisms, and is therefore critical

to the maintenance of homeostasis. The innate immune system is

also contains sentry cells that recognize the “not me” signal, and

processing and presenting the alien antigens to adaptive immune

cells. Efforts have been made to explore the effect of ferroptosis on

innate immunity. Keratinocytes, the protective shelters of skin,

show features of cell death including ferroptosis in vitro and in

vivo by specifically knocking out the glutamate-cysteine ligase gene

in keratinocytes (83). Macrophages are the main drivers of innate

immunity. An in vitro study shows that when human leukemic

Jurkat T cells were induced to ferroptosis and then co-cultured with

macrophages, this led to the exposure of phosphatidylserine being

detected on the surface of dying cells, and enhanced phagocytosis by

macrophages (84). Ferroptosis can promote the release of

KRASG12D protein from pancreatic ductal adenocarcinoma cells

(PDAC). KRASG12D protein is then delivered to macrophages by

exosomes and stimulates macrophage polarization to the M2 pro-

tumor type (85). A recent study discovered that proteoglycan

decorin (DCN), as the novel DAMP released by cells dying from

ferroptosis, can trigger the production of inflammatory macrophage

cytokines and elicit an anticancer immune response (86). In

addition, the knockdown of MXRA8 can elicit ferroptosis in

glioma cells and decrease the infiltration of M2 macrophages

(87). One study indirectly proved that the inhibition of ferroptosis

might prevent macrophage polarization to the M1 pro-

inflammatory type and limit the release of TNF-a and IL-1b in

folic acid-induced kidney injury conditions (88). In addition, one

study found that M1 type macrophages exert high resistance to

pharmacologically induced ferroptosis, whereas M2 type

macrophages are sensitive to ferroptosis in TME conditions and

brain trauma under regulation by inducible nitric oxide synthase

(iNOS)/NO• (89). In general, ferroptosis may result in enhanced

phagocytosis and clearance abilities of macrophages, and the

increase of the M1/M2 type macrophage ratio in some

conditions, which is a desirable outcome for improving the TME

packed with immunosuppressive M2 type macrophages.

As for other types of innate immune cells, one study

demonstrates that photosensor photodynamic therapy (PS-PDT)

induced the immunogenic cell death of glioma GL261 and

fibrosarcoma MCA205 cells. This process was inhibited by

ferrostatin-1 and DFO (ferroptosis inhibitors), which indicated

that ferroptosis was involved in PS-PDT-induced cell death. After

co-culturing, PS-PDT-induced dying cells were more effectively

engulfed by bone marrow-derived DCs (BMDCs) than live cells,

and BMDCs were efficiently engulfed by BMDCs. And BMDCs

were then matured and activated of surface co-stimulatory molecule

CD86, MHCII expression, and releasing higher interleukin-6 (IL-6)

(90). The results indicate that cells undergoing ferroptosis promote

the production of BMDCs to gain a higher phagocytotic capacity,

maturation, and activation, and that ferroptosis is a type of ICD.

Another study found that ferroptosis was the cell death type for cells

in an injured myocardium, and orchestrated the recruitment of

neutrophils to the injured myocardium after heart transplantation
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through a toll-like receptor 4 (TLR4)/TIR-domain-containing

adapter-inducing interferon-b (TRIF)/type I interferon (IFN)

signaling pathway (91).

When discussing the interaction between cancer cells and innate

immune cells in the TME in depth, there is a series of steps that we

followed in our attempt to shed light on this process. The first step is

how immune cells distinguish altered self ferroptosis cancer cells from

normal self cells in the early stages before rupture. We hypothesize

that cell membrane epitopes on the outside surfaces of tumor cells are

reprogramming when undergoing ferroptosis and serve as “find me”

and “eat me” signals. What is the initial signal in the interaction

between ferroptosis cells and innate immune cells? In a study

comparing three types of cell death, that is apoptosis, necroptosis,

and ferroptosis, Katharina detected phosphatidylserine exposure on

the outside membranes of all three types of dying cells, subsequently

recognized and engulfed by macrophages in vitro (84). As

phosphatidylserine exposure is the notable characteristic of

apoptotic cells to be recognized by macrophages and induces the

clearance of residual apoptotic cells and immune tolerance, the

subsequent effect of phosphatidylserine exposure on ferroptosis

cells in the TME remains unclear. In another study using the

dynamic lipid membranes model, Stockwell simulated ferroptosis

cell membrane by combining a high concentration of PUFAs, lipid

peroxides, and longer acyl tails, and found that a higher composition

of oxidized phosphatidylethanolamine (PE-AA-OOH) on the

membrane was the main characteristic of cell membrane change in

ferroptosis cells, which was probably the main cause of ferroptosis cell

membrane rupture and final death (92). Another study found that the

oxidized phospholipid of 1-steaoryl-2-15-HpETE-sn-glycero-3-

phosphatidylethanolamine (SAPE-OOH) was a key “eat me” signal

on the ferroptosis cell surface that could be recognized by TLR2 on

macrophages (93). The oxidation of arachidonic acid via ACSL4,

acyl-CoA:lysophosphatidylcholine acyltransferase (LPCAT), and

ALOX enzymes generated PE-AA-OOH production. Other types of

eicosanoids are also produced in the context of ferroptosis, including

prostaglandin E2 (PGE2), oxidized phospholipids (oxPLs), 5-

Hydroxyeicosatetraenoic (5-HETE), 11-HETE, 12-HETE, and 15-

HETE (94). Multiple studies have extensively explored the crucial

immunometabolic modulatory function of eicosanoids interaction

with inflammatory cells by specific receptors (95). However, in the

TME, a selective inhibitor of 20-HETE synthesis, HET0016, was

reported to be able to decrease breast tumor volume and lung

metastasis and reduce the population of granulocytic myeloid-

derived suppressive cells (MDSCs) (g-MDSCs: CD11b+Ly6G+) and

the expression of pro-inflammatory cytokines (96). As it has been

established that MDSCs are capable of constructing an

immunosuppressive niche in favor of tumor growth, it was

expected that 20-HETE would have the ability. Furthermore, we

learn from previous studies that the immunometabolic modulatory

function of eicosanoids has a specificity that is time- and space-

dependent (97). The evolution process of specific types of eicosanoids

on the surface of ferroptosis cells, varying with time and space, may

exert diverse effects on associated immune responses in tumor

immune niche in different stages of ferroptosis, and this needs

future study. Except for cell membrane lipid metabolism

reprogramming on the surface of ferroptosis cells determining
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immune response, the second step of interaction between

ferroptosis cells and immune cells may closely correlate to DAMPs,

which are endogenous messages that deliver signals to immune cells

or non-immune cells by binding specific receptors. It has been

reported that certain DAMPs have the capacity to trigger the

recruitment of monocytes and neutrophils to activate inflammatory

responses (98) and serve as the initial signal to induce autophagy and

immunity (99). The release of DAMPs is the hallmark of ICD. The

immunogenicity of DAMPs, as “find me” or “eat me” signals that

emitted from dying cells, determines their ability to activate immune

responses, which has a beneficial function in antitumor therapy (100).

The common types of DAMPs include high mobility group protein

B1 (HMGB1), secreted ATP, and surface-exposed calreticulin (CRT).

It was reported that ferroptosis cancer cells and non-cancer cells

could release HMGB1, and then activate co-cultured BMDMs (bone

marrow-derived macrophages) to secrete proinflammatory cytokine

tumor necrosis factor alpha (TNF-a) via the HMGB1-AGER

signaling pathway. This process can be blocked by adding anti-

HMGB1 antibodies (101). Therefore, ferroptosis may have the ability

to drive macrophage polarization to the M1 type by a HMGB1-

mediated immune response. Another study showed that the

depletion of Arntl, a circadian transcription factor, contributed to

increased HMGB1 release and neutrophils recruitment and induced

acute pancreatitis, which could be attenuated by anti-HMGB1

neutralizing antibodies and ferroptosis inhibitors (102). This study

also suggested that ferroptosis might be involved in HMGB1-induced

inflammatory and immune responses, and this thesis was supported

by the results of another study (90). Paradoxically, it has been

reported that HMGB1 was associated with various cancer

progression and poor outcomes (103, 104). However, with there

being scarce evidence regarding the impact of ferroptosis-released

HMGB1 on tumor growth in vivo, it is not enough to conclude that

HMGB1 plays a beneficial role in the ferroptosis-induced immune

response for antitumor therapy, and further investigations are still

required. Calreticulin is another type of DAMPs that has been

implicated in eliciting an anticancer effect by initiating a cancer cell

death-associated immune response and promoting the increased

production of DCs and phagocytotic tumor cells (100). One study

has reported the increase of calreticulin exposure on the surface of

ferroptotic cancer cells, which, combined with higher emissions of

HMGB1 and ATP, induced the activation and maturation of BMDCs

to exert an antitumor effect (90). Another important type of DAMPs,

ATP, can trigger immunogenic signaling after cancer cell death; and

was used as a candidiate for an effective anticancer vaccine (105). In

the ferroptosis microenvironment, ferroptosis not only causes

mitochondrial fragmentation and reduces ATP levels in neuronal

cell (106), but elicits ATP release from ferroptosis cancer cells, and

triggers an antitumor immune response (90). Furthermore, in the

context of kidney cell death, increasing evidence shows that

ferroptosis plays a crucial role in renal cell death, and that lipid

peroxides are unique types of ferroptosis-released DAMPs and

predominate immunogenic effects (107). Arachidonic acid (AA)

peroxidation products and other lipid mediators, including PGE2,

PE-AA-OOH, oxPLs, and lyso-phospholipids, are emitted from

ferroptosis cells. There is no direct evidence that shows that these

lipid mediators released by ferroptosis cells have an effect on
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antitumor immunity in the TME. However, indirect evidence has

demonstrated that ALOX12/15-produced phospholipid oxidation

products limits the maturation of DCs and the differentiation of

fine-tuning T helper 17 (TH17) cells (108). On the other hand,

oxidative lipids-equipped lipid bodies are absorbed by DCs and

dampen its antigen cross-presentation function and silent

subsequent CD8+ T cells response in the TME (109). The effect of

oxidative lipid mediators on immune response may vary among

different disease conditions, cell lines, and animal models. In a word,

although there is little direct evidence to support this, ferroptosis-

released DAMPs and their associated immune reactions are the

potential target to achieve optimal antitumor immunity effect and

need to be analyzed further in the future.

In conclusion, ferroptosis may have an effect on innate

immunity reprogramming to favor pro-inflammatory and

antitumor response (Figure 3), and rely on cell membrane lipid

metabolism reprogramming on the surface of ferroptosis cells or

releasing soluble antigens as the initial signals to activate innate

immune cells (Figure 4). Due to a shortage of comprehensive

studies and evidence, more studies are required to further explore

the impact of ferroptosis on innate immune cells’ reprogramming in

diverse disease conditions and TME in the future.
3.2 Ferroptosis-associated adaptive
immune response

Having explored adaptive immunity responses to the activation of

innate immune cells, we move forward to explore the influence of

ferroptosis on adaptive immunity. The activation of adaptive immune

system by innate immune cells depends on the first and second signals

(66). MHC I or MHC II interaction with T-cell receptors is the first
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signal. DCs then activate and prime T cells, with the second signal as

co-stimulator, which predetermines the eventual immune effect

cooperating with the first signal. The second signals are often

chemokines like IL-1 released by APCs to stimulate T-cell activity

(110). Only the first signal without the second signal leads to T cell

anergy and immune tolerance (66). How ferroptosis cells prime APCs

and further activate adaptive immune cells, and what the first signal

and the second signal are during this process, remains obscure.

Recently, several studies have focused on ferroptosis associated

adaptive immune response. One study showed that ferroptosis was

a kind of ICD and promoted maturation of BMDCs, then

continuously activated adaptive immune system and inhibited

tumor growth in vivo (90). Ferroptosis can activate resting memory

CD4+ T cells and M0 macrophages for igniting anticancer immune

response via ferroptosis-related lncRNA in hepatocellular carcinoma

(111). Later, but still in the early stages of ferroptosis, ferroptosis cells

generate ATP and HMGB1 as immunogenic signals to induce the

adaptive immune system and maturation of BMDCs in vitro and in

vivo (112). The time-dependent immunogenicity may be because of

early-dying cells being more immunogenic than late-dying cells,

meaning that they tend to possess more intact membranes and

replicate their intracellular material before it leaks out. In another

recent study, ferroptosis cancer cells are divided into three phases in

the process: “initial”, related to lipid peroxidation; “intermediate”,

associated with ATP release; and “terminal”, defined as a loss of

plasma membrane integrity and inceased release of HMGB1s. “Initial”

ferroptotic cells reduce the maturation of DCs and impede antigen

cross-presentation (113). The contradictory results may arise from

specific experimental condition in each study, but whether ferroptosis

cancer cells have time-dependent immunogenicity and can be used in

vaccines for antitumor immunity still needs to be clarified in studies

carried out in the near future.
FIGURE 3

Ferroptosis mediated immune response.
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However, ferroptosis also exerts a direct impact on T cells

themselves. One study demonstrated that T-cell clearance was

mediated by lipid peroxidation and ferroptosis and that

ferroptosis was the vital backup scavenger system that maintained

T-cell homeostasis (114). With regard to T-cell immunity, another

study demonstrated that T cell-specific GPX4 deficient mice had

defective CD8+ T cell homeostasis in the periphery and a

compromised defense ability against viral and parasitic infection.

In ex vivo GPX4 deficient T cells accumulated membrane lipid

peroxides rapidly and undergone ferroptosis (115). Another study

showed that GPX4-deficient CD8+ T cells absorbed oxidized lipids

by the receptor CD36 in the TME were susceptible to ferroptosis

and lost their antitumor immunity functionality (116).

Furthermore, ferroptosis is also involved in antitumor

immunotherapy. The combination of the ferroptosis inducer cyst

(e)inase and immune checkpoint inhibitor PD-L1 synergistically

facilitates T cell-regulated antitumor immunity, induces ferroptosis,

and inhibits tumor growth in vivo (22). This work sheds light on the

critical role of ferroptosis in immunotherapy in killing tumor cells.

Therefore, ferroptosis exerts an effect on T-cell immunity by

maintaining the homeostatic balance of T cells, activating the

secondary immune response of T cells, and enhancing T cell-

mediated anti-tumor immunity. In addition, the deletion of GPX4

in regulatory T cells (Tregs)-facilitated ferroptosis that can enhance

the antitumor immune response without inducing overt

autoimmunity (117). The other important members in the

adaptive immune system are B cells. GPX4 was also found to
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have the crucial function of maintaining B1 and marginal zone

(MZ) B-cell homeostasis, but not that for follicular (Fo) B2 cells

(118). The regulation of redox systems plays an essential role in

carcinogenesis and cancer development. A clinical and

experimental study showed that patients with GPX4-positive

diffuse large B-cell lymphoma had significantly poor progression-

free survival and overall survival compared with those of the GPX4-

negative group by immunohistochemistry results (119). This result

might be due to GPX4-positive cancer cells having a powerful

reducing capacity that makes them impervious to the effect of

ferroptosis triggered by oxidative stress. Hence, targeting GPX4

function, or cysteine levels, or other redox factors may have

significant application value for B-cell leukemia treatment. GPX4,

a selenium-containing enzyme, is pivotal to regulating the

ferroptosis pathway, and the underpinning rationale is that GPX4

is the only enzyme to reduce phospholipid hydroperoxides (49).

The depletion of GPX4 renders cancer cells vulnerable to ferroptosis

(15) and the therapy-resistant state of cancer cells is dependent on

GPX4 being able to escape multiple therapy challenges (20, 21). In

addition, GPX4 plays an important role in mediating immune cells

themselves function. GPX4 deficient CD8+ and CD4+T cells fail to

withstand virus and parasite infections (115), and in the chicken

bursa of the Fabricius model, selenium deprivation elicits a decrease

in GPX4, the downregulation of IL-2, IL-6, IL-8, IL-10, IL17, IL-1b,
IFN-a, IFN-b, and IFN-g compared with the controls, and in the

bursa having a higher TNF-a level than the controls (120). GPX4 is

a potential target that can reshape the TME; its use is thus beneficial
FIGURE 4

Potential mechanisms for ferroptosis mediated immune response in the TME.
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in cancer therapy and points to a direction future research can take.

System xc– is also crucial to the regulation of ferroptosis and

reshaping of the TME. The function of system xc– is to transport

cystine into cells at the expense of exporting glutamate out to fulfill

cells’ requirement of maintaining a reducing state. Tumor cells

utilize this mechanism to evade oxidative stress and ferroptosis.

Meanwhile, the exported glutamate can also exert an effect on

immune cells in the TME. It was reported that elevated extracellular

glutamate contributed to Tregs’ proliferation and activation, thus

enhancing immunosuppression in the TME of glioblastoma (121).

Another study showed that the loss of system xc– enhanced the

anticancer capacity of the immunotherapeutic agent anti-CTLA-4

(122). GPX4 and system Xc- are critical regulators of intracellular

metabolic pathways and help to maintain a reducing-state

homeostasis. As increasing evidence shows that metabolic

environment modification builds up the bridge for crosstalk

between cancer cells and immune cells, exploring the role of

metabolic reprogramming involved in ferroptosis by targeting

GPX4 and system xc– in both tumor cells and immune cells in

the TME is a very promising direction for future research.

In conclusion, ferroptosis is the primary mechanism that

maintains adaptive immune cells’ homeostasis. However, the

overwhelmingly reducing capacity of immune cells may facilitate

their development into B cells, or the progressionof leukemia T-

cells. More work should be done to clarify how to maintain the

proper and delicate balance of redox levels in tumor and immune

cells in the TME, and also the optimal way to utilize ferroptosis to

inhibit cancer progression in a specific context in the future. GPX4

and system xc– are not only critical regulators of ferroptosis, but also

exert a crucial effect on the TME, making them potential targets for

cancer therapy.
4 Novel applications for
ferroptosis-mediated immune
response in cancer therapy

In the following text we introduce some new applications for

ferroptosis-associated immune response in cancer treatment. In this

way, we analyze the close relationship between ferroptosis and

immune system and present promising combination therapy

strategies that could cure cancer in the near future.
4.1 Package ferroptosis inducers into
nanomaterials brings antitumor
immune response

As certain ferroptosis inducers have short half-lives and

potentially systematic adverse effects, the approach of

combining ferroptosis inducers with nanomaterials has been

intensively implicated in strengthening anticancer immunity in

recent years. Zanganeh found that iron oxide nanoparticles
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(SPIONs) limited tumor growth by regulating macrophages to

polarize to pro-inflammatory M1 types in tumor niches (123).

Although ferroptosis was not mentioned in this study, abundant

iron input probably elevated the labile iron pool burden and

elicited the Fenton reaction that leads to ferroptosis. Moreover,

SPIONs could directly promote macrophages to undergo classical

autophagy and stimulate the expression of inflammatory

cytokines at higher levels through the activation of TLR4

signaling via the TLR4-p38-Nrf2-p62 signal axis (124).

Furthermore, iron chelated melanin-like nanoparticles (Fe@

PDA-PEG) were shown to induce the M2-to-M1 repolarization

of tumor-associated macrophages (TAMs), and, in combination

with photothermal therapy, synergistically inhibited tumor

growth (PTT) (125). The reason for this was that the amplified

antigens, stimulated by ferroptosis, acquired the ability of

macrophages, and exerted a synergistic effect with the release of

PTTinduced tumor-associated antigens (TAAS). Another study

demonstrated that aMSH-PEG-C′ nanoparticles could induce

tumors to ferroptosis in vivo by accelerating iron absorption

into cancer cells (126). However, an immunodeficient animal

model was used in the study and the ferroptosis-related immune

response was not explored. In addition, the engineering

magnetosomes, constructed with the core of Fe3O4 magnetic

nanocluster, the cloak of leukocyte membranes with inner

face implanted with TGF-b inhibitor and outer face loaded with

PD-1 antibody, showed optimal antitumor therapy capacity (127).

Biomimetic magnetic nanoparticles Fe3O4-SAS @ PLT can induce

ferroptosis and sensitize the activity of PD-1 immune checkpoint

blockade treatment (128). The nanoplatform combining sorafenib

(ferroptosis promoter) with photosensitized hemoglobin can

strengthen ferroptosis and stimulate an antitumor immune

response by recruiting immune cells to secrete IFN-g (129).

There have been plenty of studies conducted in recent years that

investigate the activity of nanocomposites, comprising ferroptosis

inducers and other components that exhibit amplifying anticancer

immunity (130–134). Thus, the synergism of ferroptosis and

immunomodulation gives rise to potent therapeutic effects, and

exhibits more advantages by uniting characteristics of modified

nanomaterial, which is a promising approach for strengthening

antitumor immunity for cancer therapy in the future (135).
4.2 Ferroptosis-involving combination
therapy generates antitumor immunity

Last but not least, we focus on whether ferroptosis-involving

combined therapy can induce antitumor immunity. Zou found

that uniting reagents that induce ferroptosis with immune

checkpoint inhibitors displayed the optimal therapeutic effect

for suppressing tumor progression (22). This research also

showed that anti-PD-L1 immunotherapy could elicit tumor cell

ferroptosis via the CD8+ T cell-IFN-g-system xc– signal pathway.

Another study also confirmed the superior synergy of combining

ferroptosis with immunotherapy (122, 127). In addition,
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ferroptosis was found to create bond of synergy between

radiotherapy and immunotherapy (23). In addition, the Krebs

cycle enzyme fumarate hydratase deprivat ion (FH-/ -)

demonstrated synergy with ferroptosis inducers for the limiting

of hereditary leiomyomatosis and renal cell cancer (HLRCC)

progression (136). Nanocomposite containing Fe3+ with cancer

cell membrane was absorbed by breast cancer cells and induced

ferroptosis that could reinforce the synergistic therapeutic effect of

sequential PDT and chemotherapy (137). The chemotherapeutics

drugs sorafenib was also shown to induce ferroptosis via a

ferritinophagy cascade, thus triggering an antitumor immune

response (138). In addition, incorporating ferroptosis and

ultrasound-triggered sonodynamic therapy (SDT) synergistically

elicited strong antitumor immunity by increasing the numbers of

mature DCs and activated CD8+ cells and decreasing the number

of MDSCs in the TME (139). These findings indicate that

ferroptosis is capable of synergistic action with chemotherapy,

PDT, or SDT, in turn meaning that it can serve as the critical

therapeutic target to enhance chemotherapy and PDT treatment

outcomes. The underlying synergistic effect mechanism for

ferroptosis and chemotherapy may be owing to th ability of

these two therapy methods to greatly increase the ROS level in

the TME (140). PDT directly leads to ferroptosis in tumor cells,

and this would explain the cooperative effect between ferroptosis

and PDT (90, 141). We believe that the more intricate and core

mechanism of the synergy between ferroptosis and other

treatment manners for cancer lies in the potential capacity of

ferroptosis to induce a strong antitumor immune reaction, which

would augment the therapeutic effect of other treatment methods.

In depth, ferroptosis would change tumor cells into “altered self”

or “missing self” with the downregulation of the “do not eat me

signals” such as CD47 on the surfaces of tumor cells, or through

mimicking microbial antigens by releasing DAMPs like oxidized

lipids. All these transformations can be recognized by innate

immune cells and lead to anticancer immune responses, and

these potential mechanisms could be explored and verified in

the future. Thus, as the role of ferroptosis in multiple metabolic

pathways and in classical cancer treatment approaches of

immunotherapy, radiotherapy, chemotherapy, PDT and SDT,

has been extensively and thoroughly covered, moving to develop

ferroptosis-involving combination therapies for antitumor

treatment in the near future is promising (142).
5 Conclusion

This review focuses on ferroptosis molecular network and

associated immune response in tumor immune niche, but there

are some undeniable challenge associated with inducing

ferroptosis in the TME. As shown above, although ferroptosis

may exert antitumor capacity by killing cancer cells and boosting

the immune response, it also has a direct impact on immune cells.

In the TME, ferroptosis may also kill immune cells, and disarm the
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defense force monitoring cancer cells. In addition, normal cells

such as vascular endothelial cells and stromal cells would be

affected by ferroptosis inducers, which may facilitate metastasis,

and the likelihood of this needs further study and confirmation.

Therefore, as ferroptosis has a comprehensive influence on all

units in the TME, it is crucial to clarify the unique effect on each

unit and grasp its overall effect on various cancer types (Figure 4).

By utilizing novel biological materials and through other physical

and chemical means, we could amplify the beneficial role of

ferroptosis in cancer therapy and eradicate its potential adverse

effect on immune cells and other normal cells in the meantime.

In conclusion, although there is a great number of gaps

and dilemmas in this area that needs to be addressed before

clinical applications are feasible, we have confidence that working

on this subject will lead to a promising future, wherein cancer

could be eliminated by the reshaping of tumor immune niches

via ferroptosis.
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Glossary

PCD Programmed cell death

GSDMD Gasdermin D

TfR1 Transferrin receptor gene

FTH1 Ferritin Heavy Chain 1 gene

FTL Ferritin Light Chain

VDAC3 Voltage-dependent anion channel 3 (VDAC3)

ATP Adenosine triphosphate

ETC Mitochondrial electron transport chain

ROS Reactive oxygen species

IREB2 Iron response element binding protein

RPL8 Ribosomal protein L8

CS Citrate synthase

ATP5G3 ATP synthase F0 complex subunit C3

ACSF2 Acyl-CoA synthetase family member 2

TTC35 tetratricopeptide repeat domain 35

GPX4 glutathione peroxidases 4

FSP1 Ferroptosis suppressor protein 1

IFN-g Interferon gamma

NFS1 Iron–sulfur cluster biosynthetic enzyme NFS1

HO-1 Heme oxygenase-1

NRF2 Erythroid 2-related factor 2

HCCs Hepatocellular carcinoma cells

FANCD2 Fanconi anemia complementation group D2

DMT1 Divalent metal transporter 1

PCBP1 poly (rC)–binding protein 1

PHKG2 Phosphorylase kinase G2

ALOXs Arachidonate lipoxygenases

PUFAs Polyunsaturated fatty acids

ACSL4 Acyl-CoA synthetase long chain family member 4

LPCAT Lyso-phosphatidylcholine

PEs phosphatidylethanolamines

PUFA-ePL Polyunsaturated ether

GSH Reduced glutathione

SAPE-OOH 1-steaoryl-2–15-HpETE-sn-glycero-3-
phosphatidylethanolamine

AIF Apoptosis-inducing factor

TGF-b1 Transforming growth factor-b1

GCL Glutamate-cysteine ligase

GSS glutathione synthetase

(Continued)
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NADPH Nicotinamide Adenine Dinucleotide Phosphate

TXNRD Thioredoxin reductase

TCA Tricarboxylic acid cycle

CDI Cysteine-deprivation-induced

OXPHOS Oxidative phosphorylation

a-KG a-ketoglutaric acid

GOT1 Glutamic-oxaloacetic transaminase 1

FH Fumarate hydratase

DDR DNA damage response pathway

HLRCC FH-inactivated renal cell carcinoma

TME Tumor microenvironment

IKE imidazole ketone erastin

MHC-I Class I major histocompatibility complex molecules

PRRs Pattern recognition receptors

PAMPs Pathogen-associated molecular patterns

DAMPs Damage-associated molecular patterns

APC Antigen presenting cells

PARC Pathogen response-like chemokine signature

ICD Immunogenic cell death

PDAC Pancreatic ductal adenocarcinoma cells

iNOS Inducible nitric oxide synthase

PS-PDT Photosensor photodynamic therapy

BMDCs Bone-marrow derived dendritic cells

MZ marginal zone

PE-AA-OOH Phosphatidylethanolamine

PGE2 Prostaglandin E2

oxPLs Oxidized phospholipids

5-HETE 5 Hydroxyeicosatetraenoic

MDSCs Granulocytic myeloid derived suppressive cells

HMGB1 High mobility group protein B1

CRT surface-exposed calreticulin

AA Arachidonic acid

SPIONs Iron oxide nanoparticles

Fe@PDA-
PEG

Iron chelated melanin-like nanoparticles

TAMs Tumor associated macrophages

TAAs Tumor-associated antigens

SDT ultrasound-triggered sonodynamic therapy.
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