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Unstable hemoglobinopathies are a rare, heterogeneous group of diseases that

disrupt the stability of hemoglobin (Hb), leading to chronic hemolysis and

anemia. Patients with severe phenotypes often require regular blood

transfusions and iron chelation therapy. Although rare, studies have reported

that hematopoietic stem cell transplantation (HSCT) seems to be an available

curative approach in transfusion-dependent patients with unstable

hemoglobinopathies. Here, we describe successful haploidentical HSCT for the

treatment of an unstable Hb variant, Hb Bristol-Alesha, in a 6-year-old boy with

severe anemia since early childhood. Two years after transplantation, he had a

nearly normal hemoglobin level without evidence of hemolysis. DNA analysis

showed complete chimerism of the donor cell origin, confirming full

engraftment with normal erythropoiesis.

KEYWORDS

unstable hemoglobinopathy, hemolytic anemia, Hb Bristol-Alesha, hematopoietic stem
cell transplantation, haploidentical
1 Introduction

Unstable hemoglobinopathies are a rare, heterogeneous group of hemolytic anemias caused

by gene mutations in globin chains, leading to alterations in the solubility and stability of

hemoglobin (Hb). Gene mutations result in the substitution or deletion of amino acids in the

globin subunits. The general mechanisms that destabilize Hb include the weakening or altering

of heme-globin interactions, interference with the secondary or tertiary structure of the Hb
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subunits, or interference with subunit interactions (1). Structure-altered

Hbs have an increased tendency to denature and autoxidize to form

methemoglobin, which results in the production of hemichromes.

Hemichromes induce the clustering of band 3 at their membrane

sites; these globular intracellular aggregates are called Heinz bodies

(2, 3). The formation of Heinz bodies decreases membrane pliability

and increases membrane permeability. Oxidative damage from free

heme iron may further compromise the membrane. As a result, red

blood cells (RBCs) containing Heinz bodies show reduced

deformability and increased fragility (4, 5). The impairment of

deformability causes RBCs to be preferentially trapped in the spleen.

The spleen removes damaged cells or just a section of the membrane

and Heinz body inclusions. Erythrocyte membrane loss reduces the

lifespan of affected cells and eventually leads to their removal from

circulation. Some Hbs are so unstable that they are difficult to detect in

hemolysates because of their rapid denaturation and degradation.

These Hbs are called hyperunstable Hb variants. The clinical

presentations of the disease vary, ranging from mild to severe

hemolytic anemia, depending on the instability of the Hb variants.

Mildly unstable Hbs may not cause clinical symptoms; however,

severely affected patients require chronic transfusion therapy from

infancy or early childhood. Inheritance is autosomal dominant in most

cases; however, de novo mutations have also been described (1, 6).

Hb Bristol-Alesha results from a G>Amutation at codon 67 of the

b-globin gene, with a single amino acid substitution from normal b67
valine (Val) to b67 methionine (Met) or b67 aspartate (Asp). This

substitution introduces a highly charged polar residue into the

hydrophobic heme pocket, breaking the nonpolar bond between Val

and the heme group. This results in the disruption of the molecular

stability of Hb, which finally causes severe hemolytic anemia (7, 8). To

date, there are no curative options for unstable Hb variants, except

hematopoietic stem cell transplantation (HSCT). Although HSCT has

been widely described as a therapeutic strategy for hemoglobinopathies

such as thalassemia major (TM) and sickle cell disease (SCD), its

application is rarely reported for the treatment of unstable

hemoglobinopathies. Herein, we report successful haploidentical

HSCT (haplo-HSCT) in a pediatric patient with Hb Bristol-Alesha.
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2 Case presentation

A 3-month-old boy presented with dark urine, pallor, and mild

jaundice. Moderate anemia (Hb 85 g/L) with reticulocytosis (13.4%) was

detected in the peripheral blood cell count. Biochemical analysis revealed

elevated serum lactate dehydrogenase and hyperbilirubinemia. Coombs

and autoantibody test results were negative. DNA test results for

thalassemia were normal. The patient was diagnosed with hemolytic

anemia. The Hb level decreased to 58 g/L when he was 10 months.

Physical examination revealed generalized icterus accompanied by

marked splenomegaly (3 cm below the costal margin). From then on,

he was treated conservatively with multiple blood transfusions of an

average of 2.5 units everymonth tomaintain aHb level of 90 g/L. He was

re-evaluated at 2 years of age.Malnutrition or growth retardationwas not

observed. A blood smear examination revealed erythrocyte abnormalities

with marked anisocytosis, poikilocytosis, and basophilic stippling.

Specific enzyme activity assays for glucose-6-phosphate dehydrogenase,

phosphate isomerase, pyruvate kinase, and pyrimidine 5’-nucleotidase

showed normal findings. Hb electrophoresis revealed elevated fetal Hb

(21%) without anomalous Hb. Both heat stability and isopropanol tests

showed positive results. DNA sequencing of the globin genes were

subsequently performed and identified a heterozygous mutation in Hbb
codon 67, variant c.202G>A Val-Met (Figure 1A, GenBank accession

No. OQ718455). The boy was definitively diagnosed with unstable

hemoglobinopathy and Hb Bristol-Alesha. He had no family history of

hemolytic anemia, and his parents were found to be normal based on

DNA sequencing of globin chains. Deferasirox was administered at 4

years of age because of iron overload, with a serum ferritin level >2000

ng/mL (Supplementary Figure 1). However, the serum ferritin level did

not decrease below 1000 ng/mL on periodical tests. Moreover,

conventional hepatic magnetic resonance imaging at 6 years of age

revealed a diffuse abnormal signal, indicating iron deposition in the liver.

In view of serious transfusion dependence and the possibility of

end-organ injury due to iron overload, HSCT was performed at the

age of 6 years. As the patient did not have matched siblings or

unrelated donors, he underwent haplo-HSCT with a myeloablative

conditioning regimen (Figure 2). The donor was his father who has a
B

A

FIGURE 1

b-globin gene sequencing showing the point mutation at c.202G>A before HSCT (A) and a normal sequence after HSCT (B). The arrow shows the
position of the mutation.
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human leukocyte antigen (HLA) 5/10 allele match. Donor-specific

anti-HLA antibodies (DSAs) of the recipient before HSCT were

negative; therefore, desensitization strategies were not conducted.

The conditioning regimen consisted of cyclophosphamide (Cy)

55 mg/kg per day from days −10 to −9, busulfan (Bu) 4.8 mg/kg

per day from days −8 to −6, fludarabine (Flu) 40 mg/m2 per day from

days −8 to −4, and thiotepa (TT) 10 mg/kg on day −5. Anti-

thymoglobulin (ATG) was also added to the regimen at a total dose

of 9 mg/kg from days −4 to −2. Graft-versus-host disease (GVHD)

prophylaxis included cyclosporine A (CsA), mycophenolate mofetil

(MMF), and methotrexate (MTX). CsA was intravenously injected

from day −1 to +25 and then orally administered to maintain its

blood concentration at 200–250 ng/mL, and MMF was administered

from day +1 to day +30 at a dose of 20–30 mg/kg per day. Short-term

MTX was administered on days +1, +3, +6, and +11 at 15 mg/m2, 10

mg/m2, 10 mg/m2, and 10 mg/m2, respectively. Considering the

different characteristics of hematopoietic stem cells from the bone

marrow (BM) and peripheral blood stem cells (PBSCs), the patient

received an infusion of a combination of BM and PBSCs mobilized by

granulocyte colony-stimulating factor (G-CSF) on days 01 and 02,

respectively, to improve engraftment and reduce the occurrence of

GVHD. The cell dose of infusion was 21.44×108/kg of nucleated cells,

7.64×106/kg of CD34+ cells, and 2.14×106/kg of CD3+ cells. The time

to neutrophil and platelet engraftment was 15 and 17 days,

respectively. The patient developed cytomegalovirus reactivation

and BKV+ hemorrhagic cystitis are on days 24 and 32, respectively,

which were controlled using antiviral drugs and intravenous

immunoglobulin. Grade II acute GVHD (skin type) was also

detected on day 25 post-transplantation and was controlled by the
Frontiers in Immunology 03
infusion of CD52monoclonal antibody. The patient showed complete

chimerism on day 30, which was sustained at 3, 6, 9, 12, 18, and 24

months post-HSCT. Furthermore, the former mutation of Hbb was

not detected using DNA resequencing (Figure 1B, GenBank accession

No. OQ718456). During a period of 2 years follow-up, Hb was

maintained at a high level of >110 g/L. The serum ferritin level

gradually decreased to 1100ng/mL and no chronic GVHD was

observed. To date, he has been transfusion-free.
3 Discussion and conclusions

Unstable hemoglobinopathies are a group of rare congenital

diseases that present with nonimmune hemolytic anemia of varying

degrees. To date, more than 100 unstable Hb variants have been

discovered using DNA sequencing (9). The incidence of this

uncommon disorder is relatively low; therefore, only individual cases

of each variant have been reported. Hb Bristol-Alesha is caused by a

mutation of the b-globin gene, leading to the replacement of Val by

Met. The Met residue is subsequently modified to Asp, probably via

oxidative mechanisms (10). To the best of our knowledge, only 15 cases

of this variant have been reported, all of which were dependent on

blood transfusion (Table 1) (8, 11–23). According to this case and a

previous analysis conducted on Hb Bristol-Alesha, it is always caused

by de novo mutations. In addition, these cases have been reported in

subjects of different origins, suggesting that this variant does not have a

regional or racial propensity.

Our patient presented with a very unstable Hb phenotype, and

abnormal Hb levels could not be detected on electrophoresis. Therefore,
FIGURE 2

Overview of the haplo-HSCT protocol.
TABLE 1 Clinical features of published cases of Hb Bristol-Alesha.

Reference Nationality Age at onset

(month)

Sex Hb

(g/L)

Family

history

Transfusion

required

Splenectomy Transplantation Growth

retardation

Specific features

Steadman et al.,

1970 (11)

British 16 M 70 No Yes Yes No No Hemolytic crisis, subarachnoid

hemorrhages, and rheumatic fever

Ohba et al., 1985

(12)

Japanese 7 M 70-

80

NR 1–1.5 units

every 2 months

Yes No No Gall stones

(Continued)
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DNA sequencing of the globin genes was necessary for an accurate

diagnosis. There is evidence that hyperunstable Hb variants cause

symptoms clinically similar to those associated with TM (14). This

patient developed severe hemolytic anemia and marked splenomegaly,

requiring frequent transfusions and iron chelation to improve anemia

and suppress ineffective erythropoiesis. It should be noted that

transfusions are not risk-free. On the one hand, repetitive RBC

transfusions expose patients to a high risk of developing alloantibodies,

which can limit the availability of compatible RBCs for future

transfusions and increase the risk of transfusion complications (24, 25).

On the other hand, progressive iron loading resulting from repeated RBC

transfusions and increased absorption of dietary iron is most likely to

induce tissue-specific siderosis in the liver, myocardium, pancreas, and

pituitary gland (26). As a result, patients receiving long-term transfusions

tend to have organ dysfunction, which worsens with increasing age (27).

Furthermore, the high economic burden related to lifelong transfusion

therapy and iron chelation, together with the high usage of health care

resources, provides more insights into possible curative therapies (28).

Although splenectomy in later years seems to modestly improve the
Frontiers in Immunology 04
clinical condition in a few patients, it is not a curable option and may

increase the risk of infections and thrombotic complications (29).

Currently, allogeneic HSCT offers an available curative approach for

hemoglobinopathies. HSCT outcomes from matched identical donors

have gradually improved over the past few decades as a result of

optimized treatment protocols, leading to an overall survival (OS) rate

exceeding 90% for TM and SCD (30–32). A retrospective follow-up

study evaluated the long-term outcomes in 137 patients with TM who

underwent allogeneic HSCT. The 39-year OS and disease-free survival

rates were 81.4% and 74.5%, respectively, indicating a definitive cure for

the majority of patients (33). For those lacking HLA-matched sibling

donors or unrelated donors, HLA-haploidentical donors (in pediatrics, in

most cases a parent) are increasingly considered and used (34). However,

owing to the relatively low prevalence, there are currently no practical

recommendations or treatment guidelines for patients with unstable

hemoglobinopathies. Although allogeneic HSCT is the only curative

option for severe cases, experience with this procedure is limited. To date,

successful cases of HSCT have rarely been reported (21, 22, 35–38).

These cases are summarized in Table 2.
TABLE 1 Continued

Reference Nationality Age at onset

(month)

Sex Hb

(g/L)

Family

history

Transfusion

required

Splenectomy Transplantation Growth

retardation

Specific features

NR M 50-

60

NR 4 units every

month

No No Yes Gall stones and hepatitis C

Aseeva et al.,

1992 (13)

Russian NR M 70-

80

NR Yes Yes No Yes Thalassemic facies

Molchanova

et al., 1993 (8)

Russian 2 M 80-

90

No 6–8 times every

year

Yes No Yes Bone changes

Kano et al., 2004

(14)

Japanese 6 M 50-

60

No 2 units every

month

Yes No Yes Hemolytic crisis and aplastic crisis

Brockmann

et al., 2005 (15)

Germany 4 F 50-

60

No Once a month Partial No NR Central cyanosis, arterial hypertension,

and Moyamoya syndrome

Eberle et al.,

2007 (16)

Argentinean 6 F 84 No Yes Yes No Yes Peculiar facial appearance

Jiang et al., 2016

(17)

Chinese 3 F 56 No Yes No No Yes None

Pedroso et al.,

2017 (18)

Brazilian 6 F 46 No Once a month No Yes, but failed

because of rejection

NR Bone changes

Hamid et al.,

2019 (19)

Iranian NR M 65 No Yes No No NR None

Su et al., 2019

(20)

Chinese 4 M 61 No Once every 2

weeks

No No No None

Rizzuto et al.,

2021 (21)

Spanish 4 M 70-

80

No 8 units every

year

Yes No Yes None

Li et al., 2022

(22)

Chinese 3 F 60 No Yes No Yes Yes None

Corrons et al.,

2022 (23)

Indian 4 F 60 NR Once a month Yes No No None
NR, not reported.
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TABLE 2 Summary of allogeneic HSCT for unstable hemoglobinopathies.

+ ngraftment
f neutrophil

Engraftment
of platelet

Transplantation-
related compli-

cations

Outcomes

4d +21d None 100% donor chimerism on +23d,
disappearance of hepatosplenomegaly, and
normal hemoglobin level

8d +25d NR >97% donor chimerism on +60d and
transfusion-independent

2d NR Grade 1 aGVHD
CMV reactivation

100% donor chimerism on +30d and
symptom-free

1d +18d None 95% donor chimerism on +30d and
normal Hb level

9d* +36d EBV viremia
Adenoviremia
Grade 2 skin and gut
aGVHD

92% donor chimerism on +14d of the
second SCT, durable engraftment by
repeated DLIs, and transfusion-
independent

– – Successful**

– – Successful**

econd transplantation.

Flu, fludarabine; HSCT, hematopoietic stem cell transplantation; MSD, matched sibling donor; NR, not reported; RTX,
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Reference Age
at
SCT

Hb variant
name

Genotype

Donor
type

Hb
level
before
SCT
(g/L)

Preparative
regimen

Manipulation
of grafts

CD34
infusion
dose
(cells/
kg)

E
o

Urban et al.
(35),

18m Hb Olmsted
HBB:
c.425T>G

MSD 55 Bu,/Cy/ATG Unmanipulated 15.2×106 +

Croteau
et al. (36),

3y Hb Boston-
Kuwait
HBB:
c.421insT

MSD 74 Bu/Cy/ATG Unmanipulated NR +

Kumar et al.
(37),

5y Hb
Hammersmith
HBB:
c.128T>C

Haplo NR Flu/Bu/Cy/
TBI/RTX

TCR ab/CD19-
depleted

20.5×106 +

Li et al. (22), 15m Hb Bristol-
Alesha
HBB:
c.202G>A

Haplo+
Cord

60 Flu/Bu/Cy Unmanipulated 6.8×106 +

Chan et al.
(38),

9y Hb
Hammersmith
HBB:
c.128T>C

Haplo NR Flu/Cy/TT/
Treo/TLI

TCR ab/
CD45RA-depleted

110×106 +

Rizzuto et al.
(21),

4y Hb Zunyi
HBB:
c.442T>C

NR 82 – – – –

3y Hb Mokum
HBB:
c.442T>A

NR 79 – – – –

*The patient underwent two transplantations. The first transplantation resulted in acute graft rejection. Neutrophils engrafted on day 19 at the
** The details of HSCT were not documented.
(aGVHD, acute graft-versus-host disease; ATG, anti-thymocyte globulin; Bu, busulfan; Cy, cyclophosphamide; DLI, donor leukocyte infusion;
rituximab; SCT, stem cell transplantation; TBI, total body irradiation; Treo, treosulfan; TLI, total lymphoid irradiation; TT, thiotepa).
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1

1

s

https://doi.org/10.3389/fimmu.2023.1188058
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2023.1188058
Considering the severe hemolytic phenotype of our patient and

the unavailability of matched donors, haplo-HSCT was planned.

Similar to TM and SCD, disease-specific features, including

hyperplastic BM and allosensitization due to multiple transfusions,

render haplo-HSCT a high risk for graft failure (GF) (39, 40), and this

may be the main obstacle. Patients receiving transfusions have a higher

prevalence of anti-HLA antibodies, which are defined as DSAs when

their specificity corresponds to a mismatched donor antigen (41).

DSAs are a major cause of primary GF, including graft rejection (GR)

and poor graft function (PGF) in patients receiving haplo-HSCT (42,

43). The rejection rate is much higher in the DSA-positive group than

in the DSA-negative group, and DSA-positive patients have worse OS

and inferior progression-free survival (44, 45). Therefore, anti-HLA

antibodies should be evaluated in all haplo-HSCT recipients, especially

in those receiving multiple transfusions (46). Desensitization could be

applied in recipients with pretransplant DSAs if alternative donor is

unavailable (47). We performed DSA detection in our patient before

haplo-HSCT and obtained a negative result. Consequently, neither GR

nor PGF was found in the subsequent transplantation process.

The conditioning regimen also plays a vital role in stem cell

engraftment, and the results from thalassemia could provide a

valuable reference. Myeloablative preconditioning regimens with more

advanced immunosuppression concepts and application of T-cell

depletion strategies, either ex vivo T-cell depletion (CD3+/CD19+ or

TCRab+/CD19+ depletion) or in vivo T-cell depletion (post-transplant

Cy or G-CSF primed peripheral blood graft with ATG), have

significantly improved the outcomes of haplo-HSCT (48–52). A

previous study that adopted a novel NF-08-TM conditioning regimen

reported high long-termOS and thalassemia-free survival rates in China

(53, 54). More recently, additional research comparing HLA fully

matched and mismatched HSCT for patients with TM demonstrated

similar survival outcomes and incidences of complications (except for

acute GVHD) based on the modified NF-08-TM regimen, adjusting the

ATG dose according to HLA compatibility (55). Similar to that used in

patients with thalassemia, a myeloablative regimen including Bu, Cy,

Flu, TT, and ATG (at a total dose of 9 mg/kg) was administered in our

patient. The boy achieved full donor chimerism and has remained

transfusion-free to date. Notably, he developed CMVand BKV infection

after transplantation. It has been speculated that viral infection

complications are associated with delayed immune reconstitution

caused by the addition of ATG (56–58).

In conclusion, unstable hemoglobinopathy is a rare disease, and a

subset of patients present with severe hemolytic anemia. Based on our

experience from this case, haplo-HSCT may be a curative option for

patients with a transfusion-dependent phenotype of unstable

hemoglobinopathy when matched donors are not available. Further

clinical studies are required before haplo-HSCT can be widely applied

in clinical practice.
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