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Plasma glycoproteomic
biomarkers identify metastatic
melanoma patients with reduced
clinical benefit from immune
checkpoint inhibitor therapy
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The clinical success of immune-checkpoint inhibitors (ICI) in both resected and

metastatic melanoma has confirmed the validity of therapeutic strategies that

boost the immune system to counteract cancer. However, half of patients with

metastatic disease treated with even the most aggressive regimen do not derive

durable clinical benefit. Thus, there is a critical need for predictive biomarkers

that can identify individuals who are unlikely to benefit with high accuracy so that

these patients may be spared the toxicity of treatment without the likely benefit

of response. Ideally, such an assay would have a fast turnaround time and

minimal invasiveness. Here, we utilize a novel platform that combines mass

spectrometry with an artificial intelligence-based data processing engine to

interrogate the blood glycoproteome in melanoma patients before receiving

ICI therapy. We identify 143 biomarkers that demonstrate a difference in

expression between the patients who died within six months of starting ICI

treatment and those who remained progression-free for three years. We then

develop a glycoproteomic classifier that predicts benefit of immunotherapy

(HR=2.7; p=0.026) and achieves a significant separation of patients in an

independent cohort (HR=5.6; p=0.027). To understand how circulating

glycoproteins may affect efficacy of treatment, we analyze the differences in

glycosylation structure and discover a fucosylation signature in patients with

shorter overall survival (OS). We then develop a fucosylation-based model that
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effectively stratifies patients (HR=3.5; p=0.0066). Together, our data

demonstrate the utility of plasma glycoproteomics for biomarker discovery and

prediction of ICI benefit in patients with metastatic melanoma and suggest that

protein fucosylation may be a determinant of anti-tumor immunity.
KEYWORDS

glycosylation, immune checkpoint inhibitors, biomarker, l iquid biopsy,
glycoproteomics, melanoma
Introduction
Over the last decade, ICI therapeutics have significantly

advanced the clinical management and outcome of patients with

a range of malignancies, including metastatic melanoma (1, 2).

However, only 30-40% of patients obtain sustained clinical benefit

from single agent ICI therapy such as pembrolizumab or nivolumab

(3, 4). While combination treatment of nivolumab with ipilimumab

has resulted in higher response rates of up to 58% with

unprecedented durability (5), it is also associated with an

incidence of 59% of grade 3-to-4 immune-related adverse events

(6). Therefore, considerable efforts have been made to discover

predictive biomarkers for the early identification of patients who are

unlikely to benefit from ICI treatment or may experience severe

adverse events, and to offer alternative therapies to these patients in

a timely manner (7, 8). Assessment of PD-L1 expression in tumor

tissue and quantification of tumor mutational burden have found

limited utility as indicators of durable clinical benefit in metastatic

melanoma and are not approved by the FDA as companion

diagnostics (9–13). Likewise, a number of other genomic,

transcriptomic and multiomic approaches have been investigated

as predictors of response to ICI therapies (14–18). In addition, gene

expression signatures including immune-predictive score

(IMPRES) and IFN-g-response genes (TiME) have been proposed

as predictors of ICI response in metastatic melanoma (19, 20).

While these approaches are promising, they have not yet

demonstrated broad applicability as there is debate around their

consistency and reproducibility across cohorts (21–24).

The clinical utility of molecular tumor profiling is also limited by

the intrinsic heterogeneity of tumor samples (25) and the availability of

adequate tissue obtained through invasive procedures. Liquid biopsies

have emerged as a desirable alternative for patient stratification as they

are minimally invasive, convenient for serial sampling, and can be

informative of the functional state of immune cells exposed to ICI

therapy (26–29). Whereas peripheral immune cells and plasma factors

contribute to antitumor responses modulated by ICI treatment,

previous studies focus on only small groups of proteins (30–33).

Moreover, the impact of post-translational modifications of

circulating proteins on ICI efficacy has not been evaluated in a

systematic and scalable way to date.

Here, we interrogate a set of plasma glycoproteins in metastatic

melanoma patients before receiving ICI treatment using a novel
02
platform that employs artificial intelligence to analyze data

generated by targeted mass spectrometry. We identify

glycopeptide markers that show differential expression in patients

with short OS as compared to those with favorable OS outcomes

and build a classifier predicting the likelihood of benefit from ICI

therapy. We also provide insights of the underlying molecular

mechanisms by investigating specific patterns of glycosylation

observed in the set of biomarkers associated with likelihood of

ICI therapy benefit. Altogether our data may inform the

development of diagnostic tests to guide treatment decisions.
Materials and methods

Sample collection and clinical data

A cohort of 202 patients with metastatic melanoma treated with

first or second-line anti-PD-1 monotherapy or anti-PD-1/anti-

CTLA-4 combination therapy (referred to as the “discovery

cohort”) was recruited as part of studies conducted at the

Massachusetts General Hospital (MGH). Pre-treatment samples

(obtained from patients prior to receiving ICI therapy) were

collected under MGH Institutional Review Board protocols 12-

488 and 11-181. Written informed consent was obtained from each

patient. Subject benefit from ICI therapy was assessed using OS. An

additional cohort of 27 patients (referred to as the “independent

validation cohort”) was recruited as part of studies conducted at

Royal Adelaide Hospital in which patients with metastatic

melanoma were treated with first or second-line anti-PD-1

monotherapy (pembrolizumab or nivolumab) or anti-PD-1/anti-

CTLA-4 combination therapy (nivolumab/ipilimumab). Written

informed consent was obtained from each patient, and the study

was approved by the Central Adelaide Local Health Network

Human Research Ethics Committee (protocol HREC/16/RAH/

95). Plasma samples from both cohorts were stored at -80°C and

thawed at the time of the glycoproteomic analysis. Available clinical

data included age at diagnosis, sex, BRAF mutation status,

metastatic stage, lactate dehydrogenase (LDH) levels, Eastern

Cooperative Oncology Group (ECOG) performance-status,

prescribed ICI regimen, date of death, and date of disease

progression. A progression event was defined as at least a 20%

increase of the sum of longest diameters of existing lesions

compared to the minimum sum of longest diameters during
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treatment, or manifestation of new lesions, death, or last contact at

which time the event is censored, whichever occurred first.
Chemicals and reagents

Pooled human plasma (MilliporeSigma, Burlington, MA) was

used for quality control, assay normalization, and calibration.

Dithiothreitol (DTT) and iodoacetamide (IAA) were purchased

from MilliporeSigma (St. Louis, MO). Mass spectrometry grade

trypsin/Lys-C protease mix, formic acid, and acetonitrile were

purchased from Thermo Fisher Scientific (Waltham, MA). Stable

isotope-labeled peptide internal standards were purchased from

Vivitide (Gardner, MA).
Liquid chromatography-mass
spectrometry analysis

Plasma samples were heat-denatured at 100°C for five minutes

followed by reduction with DTT, alkylation with IAA, quenching with

DTT, and digestion with trypsin/Lys-C protease mix in a water bath at

37°C for 18 hours. To quench the digestion, formic acid was added to

each sample to a final concentration of 1% (v/v). Digested plasma

samples were spiked with stable isotope-labeled peptide internal

standards before being injected into a 6495C triple quadrupole mass

spectrometer (Agilent, Santa Clara, CA) equipped with a 1290 Infinity

ultra-high-pressure liquid chromatography system (Agilent) mounting

a Peptide HSS T3 column (2.1 mm internal diameter x 150 mm length,

1.8 µm particle size) (Waters, Milford, MA). Separation of peptides and

glycopeptides was performed using a 49-minute binary gradient. The

aqueous mobile phase A was 0.1% formic acid in water (v/v), and the

organic mobile phase B was 0.1% formic acid in acetonitrile (v/v). The

flow rate was set at 0.5 mL/min. Electrospray ionization was used as the

ionization source and was operated in positive ion mode. The triple

quadrupole MS was operated in dynamic multiple reaction monitoring

(dMRM)mode, withmodifications and improvements from a previous

method (34). Samples were injected in a randomized fashion balanced

on clinical attributes, and reference pooled plasma samples were

injected interspersed with test samples to allow for correction of

within-run drift of baseline signal.
Glycoproteomic data analysis

PB-NET, a peak integration software developed in-house, was

used to integrate peaks and obtain raw abundance for peptides and

glycopeptides (35). Raw abundance of peptide markers was

normalized by using spiked-in heavy isotope-labeled internal

peptide standards to determine peptide concentration. Relative

abundance was determined for glycopeptides with one or two

types of glycans at a site by calculating the quotient of the raw

abundance of the glycopeptide and the raw abundance of a selected

non-glycosylated peptide from the same protein. Site occupancy

was determined for glycopeptides with the same peptide sequence

and more than two types of glycans identified at a given
Frontiers in Immunology 03
glycosylation site, by calculating the fractional abundance of any

glycan and the aggregate abundance of all glycan types observed at

that site. For each glycopeptide biomarker, the product of its site

occupancy or relative abundance and the corresponding peptide

concentration was used to calculate approximate glycopeptide

concentration, also referred to as normalized abundance.

Concentration was determined for 521 glycopeptides, 443 of

which are based on site occupancy and 78 on relative abundance,

and for 75 peptides, totaling 596 unique concentration-normalized

biomarkers. Relative abundance was determined for 532 unique

glycopeptides. Univariate age- and sex-adjusted Cox regression with

respect to OS was performed using both relative abundance-

normalized features and concentration-normalized features to

identify statistically significant association of glycopeptides and

non-glycosylated peptides with OS, and correction for multiple

testing was performed using the false discovery rate (FDR) via the

Benjamini and Hochberg method (36). To develop classifiers, five-

fold repeated cross-validated LASSO-regularized Cox regression

was performed. Resulting risk scores for each patient were

dichotomized into “likely to benefit from ICI therapy” and

“unlikely to benefit from ICI therapy” groups by a threshold

chosen where the concordance index is maximized in the

discovery cohort’s training set. The same threshold was used in

the discovery cohort’s validation and test set, as well as in the

independent validation cohort. The proportional hazards

assumption was met for all applications of Cox regression

performed in the analysis. All analyses were conducted in R

version 4.2.2 (Vienna, Austria) (37).
Glycopeptide marker interpretation

Differentially expressed glycopeptides in relative abundance

with respect to OS at p<0.05 were analyzed by type of

glycosylation. Asparagine (N)-linked glycans and O-linked

glycopeptides were then stratified based on the number of fucose

or sialic acid units. GraphPad Prism (GraphPad Software, Boston,

MA) was used for data visualization and statistical analysis. A site-

specific monomer weight feature for N-glycopeptides was calculated

across the entire panel of markers by determining the average

number of any one specific monosaccharide at a given glycosylation

site, weighted by glycan species site occupancy. Five-fold repeated

cross-validated LASSO-regularized Cox regression based only on

fucose-dependent monomer weight features that achieved

FDR<0.05 in univariate age- and sex-adjusted Cox regression was

performed, and a risk score threshold was chosen using the same

method as described above. The same training, validation, and test

sets of the discovery cohort were used as in the other cross-validated

Cox model described above.
Functional pathway analysis

Peptides associated with OS in differential expression analysis

were mapped to their cognate Entrez gene identifiers. Pathway

enrichment analysis (38) was performed using the enrichPathway
frontiersin.org
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routine defined in the ReactomePA package (39, 40). Based on

functionally annotated reaction pathways in the Reactome

Knowledgebase, the probability of an erroneous prediction using

the hypergeometric test was estimated by the enrichPathway

function (41). Correction for multiple testing was applied using

the Benjamini and Hochberg method (36). Hierarchical clustering

of enriched terms that relies on their pairwise similarities was

performed to explore similarity between functional modules using

Jaccard’s similarity index and the average agglomeration method,

and then implemented in the treeplot function of the enrichplot R

package. Disease ontology (DO) enrichment analysis was also

performed to investigate possible relationships of biomarkers of

interest to biomarkers known to be associated with neoplastic

disease processes (42). Enrichment against the curated Network

of Cancer-causing Genes was performed by analyzing semantic

similarities among DO terms and by hypergeometric tests to find

the probability of erroneously finding a disease entity to be

functionally enriched (43). All analyses were performed using R

version 4.2.2. Results were plotted using functions defined in the

enrichplot R package (44).
Results

Description of the cohorts

We assessed benefit of ICI therapy using OS. The discovery

cohort of 202 patients was composed of 69% males with a median

age of 65 years (IQR: 57, 73). Seventy-three percent of patients

underwent first-line therapy, with 56% of all patients having a

recorded death. Median time to progression for this cohort was 5.5

months (95% CI: 3.0, 9.9), while median time to death was over

three years, at 40.1 months (95% CI: 27.3, 59.0) (Figure 1A). Sixty-

three percent of patients had cutaneous melanoma, 17% had

melanoma of unknown primary, and the remainder were

characterized as either mucosal, uveal, or acral subtype. At the

start of treatment, 73% of the cohort was staged as either M1c or

M1d, 33% of patients carried BRAF mutations, 44% had an LDH
Frontiers in Immunology 04
(units/L) value that exceeded the upper limit of normal (ULN), and

40% had an ECOG performance status above 0 (Table 1). As

expected, patients with non-cutaneous melanoma, higher LDH,

and higher ECOG performance status exhibited shorter median

time to death, while those carrying BRAF mutations exhibited a

longer median time to death (Supplementary Figure 1). The sample

set was randomly divided and stratified by immunotherapy

regimen, melanoma subtype, and early failure (death within six

months of treatment start) or sustained control (progression-free

for three years or more since initiation of ICI treatment) status.

Forty percent of the cohort was used as a training set, 30% was used

as a validation set on which to tune model hyperparameters, and the

remaining 30% was used as a testing set. Allocation of samples to

the three sets was found to be well-balanced across all demographic

and clinical covariables listed in Table 1 (confirmed by Chi-squared,

Fisher’s Exact, Student t, or Wilcoxon rank-based tests,

as appropriate).

For additional validation of the classifier, we used an

independent cohort composed of 70% males with a median age of

71 years (IQR: 66, 81), 85% of whom underwent pembrolizumab

monotherapy (Table 2). Median time to death was 18.6 months

(95% CI: 15.8, NR). While this cohort has less follow-up events than

the discovery cohort, the distributions are comparable (Figure 1B).
Identification of glycopeptide biomarkers
associated with overall survival and
early failure

We applied univariate age- and sex-adjusted Cox regression to

identify peptides and glycopeptides associated with OS in the

discovery cohort. We identified 64 concentration-normalized

b i omarke r s tha t a ch i e v ed FDR<0 . 05 , 49 o f wh i ch

were glycopeptides.

We then assigned the label “early failure” (EF) to patients who

died within six months of starting ICI treatment (n=40), “sustained

control” (SC) to patients who neither progressed nor died in the

first three years after ICI treatment start (n=56), and “other” to all
A B

FIGURE 1

(A) Occurrence of events in the discovery cohort; (B) OS and censoring distributions in the discovery and independent validation cohorts.
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TABLE 1 Demographic and clinical covariates in the discovery cohort.

Variable Full cohort Training set Validation set Test set

Sample size 202 79 (39) 59 (29) 64 (32)

Male sex 139 (69) 52 (66) 43 (73) 44 (69)

Age, yrs. (continuous) 65 (57, 73) 67 (57, 72) 64 (56, 74.5) 63.5 (57, 72.2)

Current ICI treatment

Pembrolizumab monotherapy 109 (54) 43 (54) 32 (54) 34 (53)

Nivolumab with/without ipilimumab combination 93 (46) 36 (46) 27 (46) 30 (47)

Survival-related events

Progression (PFS) event 145 (72) 57 (72) 40 (68) 48 (75)

Death (OS) event 113 (56) 42 (53) 32 (54) 39 (61)

Time to event, mos. (continuous)

Progression 5.5 (3.0, 9.9) 6.9 (3.3, 23.9) 8.4 (2.7, 30.4) 3.2 (2.5, 9.3)

Death 40.1 (27.3, 59.0) 50.4 (30.3, NR) 36.1 (14.3, NR) 28.8 (16.2, NR)

BRAF status

Positive/mutant 67 (33) 22 (28) 18 (31) 27 (42)

V600 57 (28) 20 (25) 16 (27) 21 (33)

Non-V600 9 (4) 2 (3) 2 (3) 5 (8)

Non-specific mutant 1 (0) 0 (0) 0 (0) 1 (2)

Negative/wild type 121 (60) 49 (62) 35 (59) 37 (58)

Missing 14 (7) 8 (10) 6 (10) 0 (0)

LDH (categorical)

<ULN 105 (52) 36 (46) 29 (49) 40 (62)

1-2xULN 63 (31) 28 (35) 22 (37) 13 (20)

>2xULN 27 (13) 12 (15) 6 (10) 9 (14)

Missing 7 (3) 3 (4) 2 (3) 2 (3)

LDH, units/L (continuous) 206 (167, 281) 218 (168.8, 284.8) 206 (167, 274) 191.5 (164.8, 276.8)

M Stage

M0 16 (8) 7 (9) 5 (8) 4 (6)

M1 186 (92) 72 (91) 54 (92) 60 (94)

M1a 9 (4) 3 (4) 2 (3) 4 (6)

M1b 31 (15) 17 (22) 5 (8) 9 (14)

M1c 84 (42) 28 (35) 30 (51) 26 (41)

M1d 62 (31) 24 (30) 17 (29) 21 (33)

ECOG performance status

0 119 (59) 49 (62) 34 (58) 36 (56)

1 67 (33) 24 (30) 19 (32) 24 (38)

≥2 14 (7) 5 (6) 6 (10) 3 (5)

Missing 2 (1) 1 (1) 0 (0) 1 (2)

Melanoma subtype

(Continued)
F
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patients that did not fit into these two categories (n=106)

(Supplementary Figures 2A, B). We found 143 differentially

expressed concentration-normalized biomarkers at FDR<0.05,

demonstrating a stark difference in the glycoproteome of patients

in the EF and SC groups (Supplementary Figure 2C).
Frontiers in Immunology 06
Generation of a classifier that predicts
ICI benefit

We generated a LASSO-regularized Cox-based classifier for

prediction of individuals with extended OS following ICI therapy.

Out of all 596 concentration-normalized features, 14 were retained

(13 glycopeptides and one peptide) and achieved an unadjusted

HR=10.3 (p=4.5×10-9) in the training set, HR=3.9 (p=0.012) in the

validation set, and HR=2.7 (p=0.026) in the test set (Table 3,

Figures 2A-D). Patients classified as likely to benefit exhibited

median OS of 54.3 months (95% CI: 37.9, NR), whereas patients

classified as unlikely to benefit had median OS of 3.7 months (95%

CI: 2.4, 10.8) in the full discovery cohort; in the test set, median OS

reached 30.2 (95% CI: 16.4, NR) and 6.0 months (95% CI: 2.4, NR)

for likely and unlikely to benefit groups, respectively. We then

applied the classifier to the independent validation cohort.

Remarkably, the model achieved comparable separability between

the likely and unlikely to benefit classification groups relative to the

discovery cohort (HR=5.6; p=0.027) (Figure 2E; Table 3). Although

this cohort is small, these data serve as an independent validation of

a melanoma-specific signature (Table 3).

Next, we estimated the statistical significance of all

demographic and clinical variables with and without adjustment

for glycoproteomic classifier prediction. This was ultimately done

for variable selection and adjustment in a multivariate Cox

regression analysis framework. Age, BRAF status, categorical LDH

group, ECOG performance status, metastatic stage, melanoma

subtype, and line of therapy all were retained in the model at

p<0.15 in both analyses, with and without adjustment for classifier

prediction (Supplementary Table 1). We then performed

multivariate Cox regression analysis using the classifier prediction

group as the primary independent variable and adjusting for the

previously listed variables (Table 4). When applied to the combined

validation and test sets in the discovery cohort, this model predicted

that the risk of death for a patient who is classified as unlikely to

benefit from ICI therapy based on their glycoproteomic risk score is

about 2.1 times higher than for a patient classified as likely to
TABLE 1 Continued

Variable Full cohort Training set Validation set Test set

Cutaneous 127 (63) 51 (65) 37 (63) 39 (61)

Mucosal 20 (10) 8 (10) 5 (8) 7 (11)

Uveal 15 (7) 6 (8) 5 (8) 4 (6)

Acral 5 (2) 1 (1) 1 (2) 3 (5)

Unknown primary 35 (17) 13 (16) 11 (19) 11 (17)

Line of therapy

First-line 147 (73) 61 (77) 44 (75) 42 (66)

Second-line or later 54 (27) 17 (22) 15 (25) 22 (34)

Missing 1 (0) 1 (1) 0 (0) 0 (0)
Counts are followed by the appropriate column-wise percentage, while continuous variables are summarized by medians and either IQRs or, for time to event variables, 95% confidence limits
(NR, not reached).
TABLE 2 Demographic and clinical covariates in the independent
validation cohort.

Variable Full cohort

Sample size 27

Male sex 19 (70)

Age, yrs. (continuous) 71 (66, 81)

Current ICI treatment

Pembrolizumab monotherapy 23 (85)

Ipilimumab/nivolumab combination 4 (15)

Survival-related events

Progression (PFS) event 10 (37)

Death (OS) event 9 (33)

Time to event, mos. (continuous)

Progression NR (9.9, NR)

Death 18.6 (15.8, NR)

Best overall response

Complete response 5 (19)

Partial response 5 (19)

Stable disease 6 (22)

Progressive disease 9 (33)

Missing 2 (7)
Counts are followed by the appropriate column-wise percentage, while continuous variables
are summarized by medians and either IQRs or, for time to event variables, 95% confidence
limits (NR, not reached).
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benefit, adjusting for the demographic and clinical variables (95%

CI: 0.9, 4.9). It is worth noting that age, categorical LDH group,

ECOG performance status, melanoma subtype, and line of therapy

were significant at p<0.05 in multivariate modeling without the

inclusion of the classifier prediction variable. However, when the

classifier prediction variable is included, the only predictors that

remained statistically significant were classifier prediction

(p=6.3×10-5), melanoma subtype (p=5.1×10-4), and line of

therapy (p=5.9×10-3) (Table 4). Based on a partial likelihood ratio

test to compare these two multivariate Cox models, there is

sufficient evidence that the model that includes the classifier

prediction provides a significantly better fit than the model

without it (p=2.0×10-4). Moreover, while high LDH at the start of

treatment was associated with increased risk of death, patients

classified based on the glycoproteomic predictor as likely to

benefit exhibited longer median OS compared to the group

categorized as unlikely to benefit, regardless of the LDH category

(Supplementary Figure 3A). The same pattern was observed with

respect to BRAF mutation status: while carrying a BRAF mutation

results in a modest association with lower risk of death, patients

classified as likely to benefit are associated with longer median OS,

regardless of BRAF mutation status (Supplementary Figure 3C).
Frontiers in Immunology 07
Fucosylation of N-glycopeptide markers is
associated with reduced clinical benefit of
ICI therapy

Glycopeptide markers showing differences in relative

abundance at p<0.05 with respect to OS were selected for

structural analysis. Of these markers, 91 were N-glycopeptides, all

carrying complex-type glycans. Strikingly, when looking at fucose

content, these markers separated into two distributions that aligned

with benefit from ICI treatment (Figure 3A), with fucosylated

glycopeptides prevalent in patients with shorter OS. Next, we

analyzed sialic acid content in the same markers, as alterations in

sialic acid density in tumor cells have been extensively described in

connection with inhibition of immune cell function (45). However,

we found little to no correlation between the number of sialic acid

units and benefit from ICI treatment (Figure 3A). Instead, we

observed a modest inverse correlation between the number of

sialic acid units in O-linked glycopeptides and benefit of

treatment (Figure 3B). Access to non-glycosylated forms of the

peptides allowed us to also evaluate the relevance of site occupancy.

As N-glycans are involved in protein folding and can affect

interactions with other proteins, changes in site occupancy may

dramatically change protein function. Interestingly, alpha-1-
TABLE 3 Performance of repeated five-fold cross-validated LASSO-regularized Cox regression-based classifier using 14 concentration-normalized
biomarkers, stratified by cohort and subsets thereof.

Classifier prediction Events/N Median OS (95% CI) HR (95% CI) P-value

Discovery cohort (n=202)

Likely to benefit 92/179 54.3 (37.9, NR) Reference

Unlikely to benefit 21/23 3.7 (2.4, 10.8) 5.1 (3.1, 8.4) 7.6×10-11

Discovery cohort: training set (n=79)

Likely to benefit 31/67 55.2 (42.6, NR) Reference

Unlikely to benefit 11/12 2.5 (1.2, NR) 10.3 (4.7, 22.6) 4.5×10-9

Discovery cohort: validation set (n=59)

Likely to benefit 28/55 54.8 (16.3, NR) Reference

Unlikely to benefit 4/4 5.8 (2.9, NR) 3.9 (1.4, 11.4) 0.012

Discovery cohort: test set (n=64)

Likely to benefit 33/57 30.2 (16.4, NR) Reference

Unlikely to benefit 6/7 6.0 (2.4, NR) 2.7 (1.1, 6.6) 0.026

Discovery cohort: validation and test set (n=123)

Likely to benefit 61/112 40.6 (24.8, NR) Reference

Unlikely to benefit 10/11 6.0 (3.3, NR) 3.2 (1.6, 6.3) 8.2×10-4

Independent validation cohort (n=27)

Likely to benefit 6/23 NR (15.8, NR) Reference

Unlikely to benefit 3/4 6.0 (2.4, NR) 5.6 (1.2, 25.5) 0.027
NR, not reached.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1187332
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Pickering et al. 10.3389/fimmu.2023.1187332
antitrypsin and alpha-2-macroglobulin exhibited opposite

associations with OS with respect to glycosylation (Figure 3C).

To test the hypothesis that fucosylated N-glycopeptides are

associated with lower likelihood of benefit from ICI therapy, we

calculated “site-specific monomer weight features” that represent

the average number of specific monosaccharides at a given site,

weighted by glycopeptide occupancy. Of 51 fucose-dependent

features across our full research assay, 11 were strongly associated
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with OS based on univariate age- and sex-adjusted Cox regression

analysis (Figure 3D). All 11 features were ultimately retained in a

LASSO-regularized Cox regression model that yielded a hazard

ratio of 2.9 (p=0.016) in the training set of the discovery cohort

(Figure 3E, Table 5). When applied to the validation and test sets,

the model resulted in a hazard ratios of 3.8 (p=6.7×10-3) and 3.5

(p=6.6×10-3), respectively. Altogether, these data support the notion

that the fucosylation status of specific circulating glycoproteins is a
frontiersin.or
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FIGURE 2

Performance of the glycoproteomic classifier in subsets of the discovery cohort (A-D) and in the independent validation cohort (E).
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critical parameter that stratifies patients with regard to likelihood of

benefit from ICI therapy.
Functional pathway analysis uncovers a
potential role of neutrophil degranulation

We selected glycoproteins significantly associated with OS in

concentration-normalized abundance for further analysis. Alpha-1-

antitrypsin, alpha-1-antichymotrypsin, beta-2-microglobulin and

leucine-rich alpha-2-glycoprotein 1 were found at higher

concentration in patients with limited benefit from ICI treatment

(Figure 4A). When applying pathway analysis to the corresponding

genes, we identified mechanisms related to platelet activity and

neutrophil function that included platelet degranulation, response

to elevated platelet cytosolic Ca2+, and platelet activation, signaling,

and aggregation (Figure 4B and Supplementary Tables 4, 5). The

APOA1 gene was found to be involved with the highest number of

enriched pathways (16 functional pathways), followed by the TTR

gene (8 significantly enriched pathways) (Figures 4C, E). With 11

genes in common, the platelet degranulation and response to

elevated platelet cytosolic Ca2+ pathways appeared to cluster most
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closely (Figure 4D). Other closely related functional modules

include the regulation of insulin-like growth factor and uptake

and the post-translational protein phosphorylation pathways. To

investigate any potential relationship between the significant feature

genes and primary disease processes based on prior knowledge

curation efforts, we performed disease ontology enrichment

analysis, which revealed a weak relationship of the significant

feature genes to melanoma (p=0.29).
Discussion

Glycosylation is an abundant and complex form of post-

translational modification of proteins that profoundly affects their

structure, conformation, and function (46, 47). Recent advances in

glycoproteomics have provided unique structural insights into the

human glycoproteome and its regulation in health and disease (48–

51). However, the application of glycosylated biomarkers in clinical

settings has so far been limited by the technical challenges in generating

and interpreting this information at scale. Our analytical platform

detected plasma glycoproteomic markers that were differentially

expressed in patients with metastatic melanoma treated with
TABLE 4 Performance of Cox regression-based classifier in the discovery cohort with multivariate adjustments.

Full cohort (n=202) Training set (n=79) Validation + test sets (n=123)

Variable HR
(95% CI) P-value HR

(95% CI) P-value HR
(95% CI) P-value

Classifier prediction (unlikely to benefit)
3.355

(1.854, 6.069)
6.3×10-5

5.453
(1.704, 17.449)

4.3×10-3
2.128

(0.931, 4.861)
0.073

Age (continuous years)
1.017

(0.998, 1.035)
0.081

1.031
(0.998, 1.065)

0.066
1.007

(0.983, 1.031)
0.567

Positive BRAF status (ref: negative)
0.836

(0.522, 1.338)
0.455

0.843
(0.348, 2.041)

0.704
0.79

(0.434, 1.436)
0.439

LDH category 0.328 0.009 0.396

<ULN Reference

1-2xULN
1.073

(0.682, 1.688)
0.762

0.955
(0.405, 2.254)

0.916
0.994

(0.555, 1.779)
0.983

>2xULN
1.715

(0.934, 3.15)
0.082

4.151
(1.143, 15.073)

0.031
1.604

(0.739, 3.479)
0.232

ECOG performance status 0.222 0.236 0.007

0 Reference

1
1.375

(0.894, 2.115)
0.147

1.564
(0.751, 3.256)

0.232
1.478

(0.839, 2.605)
0.176

≥2
1.941

(0.914, 4.121)
0.084

0.374
(0.062, 2.245)

0.282
5.511

(2.314, 13.127)
1.2×10-4

M1 stage (ref: M0)
2.146

(0.843, 5.464)
0.109

1.744
(0.439, 6.928)

0.429
4.932

(1.138, 21.375)
0.033

Non-cutaneous subtype (ref: cutaneous)
2.00

(1.353, 2.957)
5.1×10-4

3.026
(1.44, 6.358)

3.5×10-3
1.528

(0.898, 2.599)
0.118

Not first-line therapy (ref: first-line)
1.841

(1.192, 2.842)
5.9×10-3

1.981
(0.853, 4.603)

0.112
2.073

(1.212, 3.548)
7.8×10-3
Small numbers in certain variable subgroups justifies combining the validation and test sets for the purposes of this analysis.
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immunotherapy, with shorter or longer OS. These markers were used

to generate classifiers that identified metastatic melanoma patients

unlikely to derive clinical benefit from ICI therapy in two independent

cohorts. We also discovered a specific fucosylation signature in plasma

N-glycoproteins of patients that do not achieve a durable response to

ICI therapy. Interestingly, higher levels of N-glycans containing fucose

have been recently reported in association with reduced PFS in a

glycomics study investigating responses to ICI (52). Elevated protein

fucosylation, potentially resulting from increased expression of

fucosyltransferases, has been described in the tumor
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microenvironment (TME) in melanoma (53). Increased core

fucosylation promotes cell invasion and metastatic potential through

the modulation of the stability of the L1CAM adhesin at the cell surface

(54). Fucosylation also alters TGF-b signaling that drives immune-

excluded TME phenotypes (55). Presence of fucose in the N-glycan of

IgG1 significantly reduces its binding to FcgR and may be associated

with lower efficacy of anti-tumor antibodies (56, 57). Moreover,

fucosylation enhances display of PD-1 on the cell surface (58, 59).

Fucosylation of the major histocompatibility complex-II HLA-DRB1

enhances CD4+ T cell immunity and enhances anti-PD-1 efficacy in a
A

B

D

E

C

FIGURE 3

Fucosylation signatures in peripheral blood N-glycoproteins are associated with reduced clinical benefit of ICI therapy. (A) Differentially expressed
glycopeptides (p<0.05), based on relative abundance measurements, in patients who are likely to benefit compared to those unlikely to benefit were
classified based on their glycan structure. N-linked glycopeptides are separated into two groups based on the presence or absence of fucose;
fucosylation is strongly associated with OS (p<0.0001). The number of sialic acid residues, however, is not associated with OS. HR, hazard ratio.
(B) Di-sialylated O-glycopeptides are enriched in samples with reduced OS (p=0.14). (C) Effect of site occupancy on protein function in relation to
likelihood to benefit. Lack of a glycan on site N70 of alpha-1-antitrypsin (A1AT_N70 NG) is associated with increased OS, whereas absence of
glycosylation at the site N1424 of alpha-2-macroglobulin is associated with reduced OS. The four-digit number describes glycan composition
(number of hexoses, N-acetyl-hexosamines, fucoses, and sialic acids, respectively). (D) Hazard ratios of 51 fucose-dependent monomer weight
features derived from N-glycopeptides, sorted by age- and sex-adjusted Cox regression FDR. Hazard ratios of features that achieved FDR<0.05 are
represented as filled-in diamonds. HR>1 represents association with shorter OS. (E) Kaplan-Meier curves showing performance of repeated five-fold
cross-validated LASSO-regularized Cox regression-based classifier using 11 fucose-dependent features derived from N-glycopeptides that achieved
FDR<0.05 in age- and sex-adjusted Cox regression analysis.
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murine tumor model (60). We hypothesize that the same mechanisms

that generate fucosylation signatures in circulating proteins detected in

our assay may also lead to increased protein fucosylation in the TME

that in turn affect responses to ICI treatment. Future research will

address what factors drive changes in glycosylation in circulating

proteins and how protein fucosylation modulates mechanisms that

are relevant to ICI response in metastatic melanoma. We propose that

glycopeptide markers may ultimately be used to distinguish immune-

inflamed from immune-excluded or -desert TME phenotypes.

In addition to the fucosylation signature, we make other

observations pertaining to mechanisms that may contribute to the

efficacy of ICI treatment. Disialylated O-linked glycopeptides exhibited

a modest association with shorter OS (Figure 3B); these glycan species

likely correspond to disialylated core-1 O-glycan tetrasaccharides that

bind to the immune-suppressive receptor Siglec-7 found on natural

killer cells (61). A1AT glycosylation modulates binding to IL-8, a

cytokine that stimulates neutrophil activation and is found to be

elevated in patients with lower responses to ICI therapy (62–64). The

leucine-rich alpha-2-glycoprotein 1 destabilizes tumor vessels and

restricts immunotherapeutic potency (65). Beta-2-microglobulin

imbalance may promote tumor escape from recognition by CD8+ T

cells (57) and play a role in neutrophil degranulation (66). The

neutrophil degranulation pathway likely facilitates a crosstalk

between seemingly unrelated functional pathways (metabolism and

transport-related pathways and the platelet activity related pathways).

When key clinical variables were stratified by the classifier

prediction in the discovery cohort, a few patterns become clear.

LDH, which partially defines prognosis in stage IV disease, is used

as a surrogate marker of tumor burden (67). While having high

LDH at the initiation of treatment is associated with increased risk

of death, patients classified based on the glycoproteomic predictor

as likely to benefit exhibited increased median OS compared to the

group categorized as unlikely to benefit, regardless of the LDH

category of a patient (Supplementary Figure 3). The same pattern is
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observed with respect to BRAF mutation status: while carrying a

BRAF mutation shows a modest association with decreased risk of

death, patients classified as likely to benefit are associated with

longer median OS, regardless of BRAF mutation status. In contrast,

whereas patients classified as unlikely to benefit had comparable

median OS regardless of ECOG performance status, patients with

ECOG performance status above 1 demonstrated short median OS

regardless of glycoproteomic-based classification. These

observations are additional evidence that the glycoproteomic

classifier provides significant utility in identifying patients who

are unlikely to benefit from ICI therapy, regardless of other

physiological and clinical characteristics, and represents a

substantial advance over current methods.

Whereas this is the largest study associating circulating

glycoprotein profiles with benefit of ICI therapy in advanced

melanoma to date, we recognize that our study has limitations. First,

while the discovery cohort was limited to metastatic and unresectable

melanoma, we accepted all such patients without further stratification

as to the site of metastases, subtype, or functional status. Despite

adjusting for these variables in multivariate analyses, the patient

cohorts analyzed here may not perfectly represent the distributions

of clinical and physiological characteristics found in larger populations.

Secondly, while most patients received first-line single- or double-agent

ICI therapy, part of the cohort received ICI therapy during the

observation period as second-line therapy, either following a previous

course of ICI therapy or chemotherapy, and a small number of patients

received first-line ICI along with targeted therapy. While this imparts

some level of treatment heterogeneity, the fact that the classifier still

performed well is a testimony to its robustness. In addition, while

sample sizes used for training, validation, and test were sufficiently large

and representative of the full cohort with regard to the balance of

demographic and clinical parameters, a larger sample size would be

desirable for increased statistical power and potential fine-tuning of the

algorithm. Lastly, this retrospective observational study, while showing
TABLE 5 Performance of monomer weight model in the discovery cohort using 11 fucose-dependent features derived from N-glycopeptides that
achieved FDR<0.05 in age- and sex-adjusted Cox regression analysis.

Classifier prediction Events/N Median OS (95% CI) HR (95% CI) P-value

Full discovery cohort (n=202)

Likely to benefit 96/180 50.4 (36.1, 75.7) Reference

Unlikely to benefit 17/22 3.7 (2.8, 12.8) 3.1 (1.9, 5.3) 1.6×10-5

Discovery: training set (n=79)

Likely to benefit 36/70 54.2 (37.9, NR) Reference

Unlikely to benefit 6/9 1.8 (1.2, NR) 2.9 (1.2, 7.0) 0.016

Discovery: validation set (n=59)

Likely to benefit 27/53 54.8 (24.8, NR) Reference

Unlikely to benefit 5/6 3.2 (2.9, NR) 3.8 (1.4, 10.0) 6.7×10-3

Discovery: test set (n=64)

Likely to benefit 33/57 39.4 (17.3, NR) Reference

Unlikely to benefit 6/7 5.1 (4.1, NR) 3.5 (1.4, 8.5) 6.6×10-3
NR, not reached.
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clinical validity with two independent cohorts, necessitates prospective

validation in a larger cohort to fully demonstrate clinical utility.

In conclusion, based on the data presented here, we propose

that glycoproteomic profiling of blood provides a promising novel

approach to guide clinical use of ICI therapy in patients with

metastatic melanoma. Next steps might involve the development

of glycoproteomic biomarkers in other tumor indications treated

with ICI, or in adjuvant therapy. Analysis of longitudinal samples
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might also be helpful in segmenting patients that respond to ICI

treatment and present with stable disease. The utility of

glycoproteomic classifiers might also be explored for optimal

treatment selection that accounts for tumor aggressiveness and

potential adverse events including, for example, for the

identification of patients that may benefit from ipilimumab/

nivolumab combination, nivolumab/relatlimab combination, or

nivolumab monotherapy.
A B
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FIGURE 4

Functional pathway analysis of glycoproteins. (A) Differentially expressed plasma glycoproteins with respect to OS (p<0.05). (B) Significant functional
pathways. The x-axis represents the number of genes in the respective pathways and the color indicates estimated p-values. (C) Enrichment map of
significant functional pathways showing enriched terms organized into a network with edges connecting overlapping gene sets. Mutually
overlapping gene sets, such as the platelet-related pathways, cluster together. The neutrophil degranulation pathway appears to bridge these
pathways to transport- and metabolism-related pathways. (D) Enrichment treeplot was cut into five subtrees, each labeled with the most highly
represented terms. The neutrophil degranulation pathway appears to be in close relationship to the growth-related and the platelet activation
pathways. (E) Enrichment heatmap showing the links between genes and significant functional pathways.
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