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3School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou, China
Background: The incidence of thyroid carcinoma (THCA), the most common

endocrine tumor, is continuously increasing worldwide. Although the overall

prognosis of THCA is good, patients with distant metastases exhibit a mortality

rate of 5-20%.

Methods: To improve the diagnosis and overall prognosis of patients with thyroid

cancer, we screened specific candidate neoantigen genes in early- and late-stage

THCA by analyzing the transcriptome and somatic cell mutations in this study.

Results: The top five early-stage neoantigen-related genes (NRGs) were G

protein-coupled receptor 4 [GPR4], chondroitin sulfate proteoglycan 4

[CSPG4], teneurin transmembrane protein 1 [TENM1], protein S 1 [PROS1], and

thymidine kinase 1 [TK1], whereas the top five late-stage NRGs were cadherin 6

[CDH6], semaphorin 6B [SEMA6B], dysferlin [DYSF], xenotropic and polytropic

retrovirus receptor 1 [XPR1], and ABR activator of RhoGEF and GTPase [ABR].

Subsequently, we used machine learning models to verify their ability to screen

NRGs and analyze the correlations among NRGs, immune cell types, and

immune checkpoint regulators. The use of candidate antigen genes resulted in

a better diagnostic model (the area under the curve [AUC] value of the early-

stage group [0.979] was higher than that of the late-stage group [0.959]). Then, a

prognostic model was constructed to predict NRG survival, and the 1-, 3- and 5-

year AUC values were 0.83, 0.87, and 0.86, respectively, which were closely

related to different immune cell types. Comparison of the expression trends and

mutation frequencies of NRGs in multiple tumors revealed their potential for the

development of broad spectrum therapeutic drugs.

Conclusion: In conclusion, the candidate NRGs identified in this study could

potentially be used as therapeutic targets and diagnostic biomarkers for the

development of novel broad spectrum therapeutic agents.
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1 Introduction

Thyroid carcinoma (THCA) begins in the thyroid gland. Themain

types of thyroid cancer include differentiated thyroid cancer (papillary,

follicular, and Hürthle cells), medullary cancer, and anaplastic thyroid

cancer (aggressive cancer) (1). Most thyroid cancers are differentiated

thyroid cancers (DTC) (2) that develop from thyroid follicular cells (3).

Thyroid cancer can be diagnosed at an early stage. Most early-stage

thyroid cancers are diagnosed when neck lumps or nodules are noticed

in the patient (4). In some cases, early thyroid cancers are detected

when individuals undergo imaging tests, such as ultrasound or

computed tomography scans, for other health problems (5). The

prognosis of patients with thyroid cancer is better than that of

patients with other cancer types. The 5-year relative survival rate of

patients with localized or regional THCA is >90%, whereas that of

patients with distant THCA varies according to the THCA type (6, 7).

The neoantigens of tumor-specific mutated genes are recognized

by T cells and participate in the immune response of tumor cells (8–

11). The antigenicity and immunogenicity of tumors depend on T

cell immunoselection, in which tumor cells with strong tumor-

specific mutant antigens are eliminated and those with weak

(possibly mutated tumor antigens) or no (tumor cells mutated

during antigen processing or presentation) antigens survive (10).

Immunotherapies that enhance the ability of endogenous T cells to

destroy cancer cells have demonstrated therapeutic efficacy in various

malignancies, leading to thewidespread application of neoantigens in

clinical settings (10, 12). However, the clinical relevance of T cells in

killing tumor cells remains unclear. Moreover, whether newly

produced tumor-specific antigens play a protective or destructive

role remains unknown (13). Recent technological innovations have

facilitated the detection of tumor-specific mutations using whole

exome sequencing (14, 15). To screen candidate neoantigens for

tumor-specific mutations, the expression of host genes must be

evaluated. Only recurrent mutations that are highly expressed in

tumor cells and lowly expressed or even silent in normal cells can be

considered candidate neoantigens (16).

In this study, we analyzed the functional, gene, and mutational

differences between patients with early- and late-stage thyroid cancer

versus normal thyroid cancer. A machine learning model was applied

for further selection of features for diagnosis. The top five mutated

genes were identified at each stage as potential neoantigens using the

RFE method, and the prognostic characteristics of the selected 10

neoantigen-related genes (NRGs)were analyzed using a risk prediction

model. The identified NRGs were effective in diagnosis and prognosis

assessment. Therefore, NRGs may improve diagnostic accuracy and

facilitate the development of novel targeted immunotherapy

approaches to improve the outcomes of patients with THCA.
2 Materials and methods

2.1 Data preparation

We downloaded both whole exome sequencing and RNA-seq

data of THCA from The Cancer Genome Atlas (TCGA) database

(https://portal.gdc.cancer.gov/). Gene expression profiles (Level 3
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data were downloaded from the TCGA data coordination center.

This dataset showed the gene-level transcription estimates as log2(x

+1) transformed RSEM-normalized counts. Clinical information of

all patients, including the MNT stage and survival data, was also

retrieved. Clinical information was obtained from 506 patients with

THCA, of which 572 and 486 underwent transcriptome and exome

sequencing, respectively.
2.2 Differentially expressed gene analysis

For RNA-seq analysis, we used 572 samples, including 59

normal tissue samples. Limma (17) (version 3.48.3 for R 4.2.3)

was used to select the DEGs in early- and late-stage THCA

compared to those in normal tissues. All genes with p< 0.05 and

logFC beyond the 95% confidence interval were considered to be

differentially expressed. We used the UpSetR package (version

1.4.0) to capture the overlapping genes of each group. PCA was

used to analyze the distribution of each group. The Pheatmap

package (version 1.0.12) was used to determine the expression of

genes in the tumor (early and late stages) and normal groups. Kyoto

Encyclopedia of Genes and Genomes (KEGG) analysis was used to

analyze the relationship between differential genes and tumor

pathways in the normal versus tumor group (early and late

stages) and early versus late stage.
2.3 Cluster and function analyses

Genes that were overexpressed at any stage were selected as

potential neoantigens. These genes are expressed at low levels or are

silent in normal tissues, which makes the development of tumor-

specific antigens safe and harmless. Visual analysis of the mutant

profiles in patients with early and advanced thyroid cancer was

performed using the maftools package (18) (version 2.8.05 for R

4.2.3). Furthermore, differential genes with high mutation

frequencies were visualized in the early versus late group, and the

mutation sites were integrated for candidate overexpressed genes.

We mainly use corresponding R packages such as ggplot2 (version

3.4.2) to draw diagrams.
2.4 Screening of candidate neoantigen
related genes

Neoantigens should only be present in patients and expressed at

low levels in normal samples. Therefore, we downloaded

neoantigens from The Cancer Immunome Atlas database (https://

tcia.at/). The mutant samples were intersected with the neoantigen

fragment genes and the differentially expressed upregulated genes

were obtained using TCIA, and candidate NRGs were initially

identified. Preliminary candidates for neoantigens in the early-

and late-stage groups were identified using the Search Tool for

the Retrieval of Interacting Genes/Proteins (https://string-db.org/)

and protein–protein interaction (PPI) networks (19). We used

Pearson correlations to analyze the associations between NRGs
frontiersin.org
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and constructed PPI networks using Cytoscape (version 3.8.2) (20).

Boxplot (version 1.3.1) and other R packages are used to

generate figures.
2.5 Construction of a diagnostic model

Candidate neoantigens are only overexpressed in the early or

late stages of THCA; therefore, they can be considered potential

therapeutic targets. To verify the feasibility of the preliminary

screening of candidate neoantigens for the diagnostic model, we

used caret package (version 6.0-94 for R 4.2.3, https://cran.r-

project.org/web/packages/caret/index.html) with cross validation

to screen feature combinations for NRG (21). mLR (nnet, version

7.3-18, https://cran.r-project.org/web/packages/nnet/index.html),

Dtree (rpart, version 4.1.19, https://cran.r-project.org/web/

packages/rpart/index.html), RF (randomForest, version 4.7-1.1,

https: //cran.r-project .org/web/packages/randomForest/

index.html), and SVM (e1071, version 1.7-13, https://cran.r-

project.org/web/packages/e1071/index.html), were used to

construct four machine learning models. The area under the

receiver operating characteristic (ROC) curve and 10 cross-

prediction ROC curves were used to evaluate the feasibility of

these NRGs. TSNAdb ((http://biopharm.zju.edu.cn/tsnadb/

browse/)) used to analyze the mutant protein polypeptides to

estimate their binding affinity for HLA alleles.
2.6 Immunoinfiltration analysis of NRGs

CIBERSORT (22), a calculation method used to quantify the

immune cell fraction from RNA-seq data, was used to calculate the

immune cell infiltration score in THCA. We analyzed the

differences in early- and late-stage NRG immune ratios according

to the immune cell type and determined the potential correlations

between NRG expression and different types of infiltrating immune

cells. Finally, we collected inhibitory immune checkpoints

(chemokines, receptors, MHC, and immunostimulators) with

therapeutic potential from a previous study (23)and determined

their potential correlation with NRGs. Plots were generated with

boxplot (version 1.3.1) and ggcorrplot (version 0.1.4) packages.
2.7 Construction of a prognostic model for
neoantigen-associated genes

As host genes carrying these mutations are all overexpressed in

patients with THCA, NRGs serve as potential diagnostic biomarkers

or therapeutic targets. Next, we assessed the impact of these genes on

patient outcomes. Based on the 10 gene signatures, the NRG score

was calculated using the following formula: NRG score  = on
i=1coef

�expi, where exp indicates the expression level of NRGs. Themedian

risk score was used to divide the patients into high- and low-

risk groups.
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2.8 Survival analysis

Kaplan–Meier survival analysis was performed using the

survival (24) (version 3.5-5 for R 4.2.3). and survminer (25)

(version 0.4.9) R packages. ROC curve was used to evaluate the

prediction efficiency of genes for 1-, 3-, and 5-year survival with the

R package, timeROC (26) (version 0.4), and log-rank test was used

for comparison between groups. Wilcox test was used to compare

the statistical differences between two groups. p< 0.05 was

considered to be statistically significant. R, version 4.2.3 (http://

www.r-project.org) is the main software environment for our

statistical operation and graphics.
2.9 Comparison of candidate NRG
expression levels

To investigate whether the identified NRGs were specific to

THCA or common to other types of cancer, we used the GSCALite

(27) (http://bioinfo.life.hust.edu.cn/web/GSCALite/) to compare

the corresponding expression patterns in other cancer datasets

from TCGA database (27). Comparison of NRG expression levels

across tumors revealed the potential of shared neoantigens to act as

broad spectrum therapeutic agents.
3 Results

3.1 Sample demographic statistics

Basic clinical information, including sex, age, TNM stage, and

vital status, of the patients was shown in Table 1. The number of

patients older than 55 years with late-stage THCA was higher than

of patients in the early-stage (p< 0.001). More T1 stage patients were

in the early stage (p< 0.001), and most patients were alive (p =

0.001). However, no significant difference in sex or TNM stage was

observed between the early- and late-stage THCA groups (p = 0.093,

0.097, and 0.978, respectively; Table 1).
3.2 Distribution of DEGs

Differential analysis was conducted between the normal and

other subgroups (tumor group, early, and late stages) and tumors in

the early and late stages. As shown in Figure 1A, 1957 and 2112

DEGs achieved based on 2-fold change from normal to early and

late stages, respectively. Upregulated and downregulated genes

tended to be balanced when comparing tumor patients with

normal controls. However, in the comparison of the early and

late stages, DEGs were predominantly upregulated. In total, 979

upregulated and 951 downregulated genes were identified in the

early-stage group and 978 upregulated and 1161 downregulated

genes were identified in the late-stage group. Moreover, 84 genes

were upregulated and 660 genes were downregulated in the early
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stage compared to the late stage. However, in the normal group,

compared to the tumor group, the upregulated and downregulated

genes were balanced (971,1018; Supplementary Figure 1A). Further

analysis of the upset plot revealed 48 genes shared between normal

controls and patients with tumors (early stage, late stage, and tumor

group) and early versus late stage (Figure 1B). As shown in

Figure 1C, the tumor and normal samples were separated into

different groups based on the DEGs. There are also some

distinctions between the early and late stages. The heatmap was

used to visualize gene expression patterns across all samples but

could not clearly distinguish between early- and late-stage samples.

The heatmap result was consistent with the PCA finding that tumor

samples showed diverse patterns compared to normal samples

(Figure 1D). KEGG enrichment analysis of DEGs was similar and

was mainly related to tumor pathways. These mainly include the

MAPK signaling pathway, cytokine-cytokine receptor interaction,

focal adhesion, and other pathways. However, in the early and late

subgroups, significantly enriched KEGG domains of DEGs were

related to immunity, mainly Chagas disease, T cell receptor

signaling pathway, primary immunodeficiency, and natural killer

cell-mediated cytotoxicity. Moreover, Cytokine-cytokine receptor

and Chagas disease were common pathways in the normal versus

tumor subgroups and early versus late subgroups (Figure 1E). The

differential genes and functions in the early and late stages of

tumors corresponding to the normal group were not obvious;
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however, the differential genes in the early and late stages mainly

played a role in immune function.
3.3 Neoantigen burden in early- and late-
stage samples

At the beginning of the whole exome sequencing data analysis,

we briefly summarized the mutation profile at the gene level.

Analysis of early and late stages revealed that the missense

mutation was the dominant variant (Figures 2A, B). At the gene

level, the most frequently mutated genes in the early stages were

BRAF (56%), NRAS (9%), HRAS (3%), TG (3%), and TTN (3%)

(Figure 2A). The most frequently mutated genes in the late stage

were BRAF (62%), NRAS (7%), TG (4%), TTN (4%), HRAS (4%),

MUC16 (3%), and USP9X (3%; Figure 2B). The mutation patterns

of the mutated genes differed significantly between the early and late

stages. We then examined all somatic mutations within the top 5%

ranking by frequency; these were selected in early stage and late-

stage patients using stacked bar plots. Early and late stages mainly

involved missense mutations; BRAF, HRAS, and NRAS were the

missense mutations in THCA.We also observed frame mutations in

TG and nonsense mutations in TTN in the late-stage group

(Figure 2C). BRAF and NRAS are proto-oncogenes, and their

mutation spots had only one site (Figures 2D, E). We noted that
TABLE 1 Overview of thyroid carcinoma (THCA) early- and late-stage clinical data from The Cancer Genome Atlas (TCGA) database.

Clinical characteristics
Stage

c2 p
Early (284) Late (219)

Gender 2.816 0.093

Male (136) 68 68

Female 367) 216 151

Age 124.000 <0.001

<55 (337) 249 88

≥55 (166) 35 131

T 89.121 <0.001

T1(141) 121 20

T2(166) 96 70

T3(171)+T4(23)+TX(2) 67 129

N 2.762 0.097

N0(229) 139 90

N1(225)+NX(49) 145 129

M 0.001 0.978

M0(281) 158 123

M1(9)+MX(213) 126 96

Vital status 11.210 0.001

Alive (487) 282 205

Dead (16) 2 14
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two conserved domains of BRAF were mutated in the early- and

late-stage groups and that these two domains were identical. The

Pkinase and PKc-like domains had a missense mutation from

V640E to K641E in both stages; however, the P530_Q534del

event occurred in early thyroid cancer and the T528_P532del

event occurred in late thyroid cancer. BRAF, NRAS, TG, TTN,

and HRAS were the most frequently mutated genes in the early and

late stages of the tumor; however, other genes were found to be

more frequently mutated in the late stage.
3.4 Screening of candidate neoantigens

Given the crucial role of NRGs in THCA, candidate neoantigens

were screened and functional analyses were performed in this study.
Frontiers in Immunology 05
As shown in Figures 3A, B, we first screened the number of

neoantigens in the early and late stages and then analyzed the

number of associated neoantigen proteins. The results showed that

The number of neoantigens in the late stage was significantly higher

than that in the early stage. However, the number of neoantigen

proteins tended to be balanced between early- and late-stage

patients. To further screen the number of candidate neoantigens,

Venn diagrams were used to screen the number of candidate

neoantigens in normal versus other tumor subgroups (early and

late stages; Figures 3C, D). Moreover, 42 neoantigens were

identified in the early stage compared to the normal group

(Figure 3C), and 55 neoantigens were identified in the late stage

compared to the normal group (Figure 3D). Using the PPI network

diagram, we identified 16 genes that interacted with the candidate

neoantigens in the early stage (Figure 3E) and 28 genes that
B C

D E

A

FIGURE 1

Analysis of differentially expressed genes (DEGs) in thyroid carcinoma (THCA) in normal and tumor tissues using The Cancer Genome Atlas (TCGA)
data. (A) Volcano plot of DEGs of the two stages. The X axis represents the log2 fold-change, and the Y axis represents the negative log
transformation of p values. Up- and downregulated genes are indicated by red and blue colors, respectively. Non-DEGs are indicated by grey color.
(B) Distribution of samples in the count group of the database. (C) Intersections of DEGs of the two stages were used to cluster the samples.
Normal, early-, and late-stage patients are indicated by blue, red, and green, respectively. (D) Heatmap of 47 genes between normal and tumor
tissues. (E) Most significant Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment across normal and tumor subgroup DEGs.
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B

C

D

E

F

A

FIGURE 3

Neoantigen-related genes (NRGs) in THCA. Numbers of neoantigens (A) and associated neoantigen proteins (B) in early- and late-stage patients with
THCA. Venn diagram indicating the 42 and 55 candidate neoantigen genes screened in normal versus early stage (C) and normal versus late stage
(D) patients with thyroid cancer, respectively. The protein–protein interaction (PPI) networks of candidate neoantigen genes in early (E)- and late (F)-
stage patients with THCA were found using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) data.
B

C D E

A

FIGURE 2

Landscape of mutations in THCA. Color-coded matrix of individual mutations in the top 10 most mutated genes in early (A)- and late (B)-stage
THCA, indicating the number of recurrent mutations in THCA using TCGA data. (C) Stacked bar plot shows the fraction of variant types in the early
and late stages. Mutation spots on BRAF and NRAS proteins in early (D) and late (E) stages. The number of mutations in each spot is shown on the Y
axis. Mutation types are colored according to the legend.
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interacted with the candidate neoantigens in the late stage

(Figure 3F). GO function analysis was performed according to the

key factors of NRGs in THCA, which were mainly involved in the

cAMP-mediated signaling pathway (Supplementary Figure 2). We

preliminarily screened a number of candidate neoantigens using

TCGA; however, the specific functions still need to be used for

diagnostic model construction.
3.5 Diagnostic model construction

As the candidate neoantigens are tumor-specific and the host

genes are overexpressed in tumor tissues, host genes may also be
Frontiers in Immunology 07
used as diagnostic markers. Based on the preliminary screening of

42 genes in the normal versus early stage group, we used cross-

validation to further screen the top 5 NRGs in the early versus

normal stage (Figure 4A). The five NRGs identified were G protein-

coupled receptor 4, chondroitin sulfate proteoglycan 4 [CSPG4],

teneurin transmembrane protein 1 [TENM1], protein S [PROS1],

and thymidine kinase 1 [TK1] (Supplementary Table 1). We then

used the five NRGs to construct the area under the ROC curve using

four machine learning models (mLR, Dtree, RF, and SVM); the

lowest predictive value was 0.979 in the normal versus early stages

(Figure 4B). Similarly, we preliminarily identified the top 5 NRGs

(cadherin 6 [CDH6], semaphorin 6B [SEMA6B], dysferlin [DYSF],

xenotropic and polytropic retrovirus receptor 1 [XPR1], and ABR)
B

C D

E

A

FIGURE 4

Feature selection and diagnostic model construction. Early (A)- and late (C)-stage feature filtering using the RFE method. Receiver operating
characteristic (ROC) curve of 10-fold cross-prediction performed using four machine learning models in NRGs of normal versus early (B)- and late
(D)-stage THCA. (E) Mutation frequencies of candidate neoantigens encoding variants in THCA.
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from 55 candidate neoantigens in late versus normal stages using

cross-validation (Figure 4C; Supplementary Table 1). Similarly, the

area under the curve (AUC) values of mLR, Dtree, RF, and SVM

were 0.996, 0.959, 0.999, and 0.993, respectively, based on the ROC

curves of the five NRGs selected from normal and late stages

(Figure 4D). We further analyzed the mutation frequency of these

10 NRGs in a normal comparison of tumor stages (early and late).

Frequencies of ENM1 and PROS1 mutations in the normal and

early groups each accounted for 1%, whereas the other NRGs had

no mutation frequency. In addition, no mutation frequency was

observed in the 10 NRGs in the late stage of the normal contrast

(Figure 4E). The results of TSNAdb (http://biopharm.zju.edu.cn/

tsnadb/browse/) were used to predict candidate HLA neoantigen

peptide fragments based on the NRGs (shown in Supplementary

Table 2). The prediction used NetMHCpan4.0 reveals a strong

binding affinity between GPR4, TENM1, and ABR with MHC

molecules. Similarly, predictions using NetMHCpan2.8 found that

TK1 and XPR1 have strong binding affinities with MHC. This data

suggests the potential for these candidate NRGs to develop into new

antigens, although further experimentation is required

for confirmation.
3.6 Immunological correlation analysis
of NRGs

CIBERSORT (22) was used to analyze the effect of NRGs on the

recruitment of immune cells to the recruitment of immune cells. We

first analyzed the recruitment of immune cells to thyroid tissue, as

shown in Figure 5A. The main immune cells recruited to the thyroid

tissue were T cells CD4 memory resting, macrophages M2,

macrophages M0, T cells CD8, and T cells regulatory (Tregs). We

further investigated whether the recruitment of immune cells in the

early and late groups differed from the recruitment of thyroid tissue

described above. Macrophage M1 and naïve B cells, monocytes, and
Frontiers in Immunology 08
activated dendritic cells were differentially expressed in the early and

late groups (p< 0.05), what’s more, T cells CD8, Plasma cells, and CD4

memory activated immune cells were significantly differentially

expressed in the early and late groups (p< 0.01; Figure 5B). We

further analyzed the correlation between NRGs and the type of

immune infiltration, and the results are shown in Figure 5C. The

types of immune infiltrates of PROS1, CDH6, XPR1, and ARB

neoantigens were similar and were mainly positively correlated with

dendritic cell activation and resting dendritic cells, and negatively

correlated with Eosinophils and Monocytes. Most NRGs were

negatively correlated with activated mast cells, NK cells activated, T

cells CD8, B cells memory, and other immune cells. The results showed

that the NRGs risk groups strongly correlated with different immune

cell types. We also analyzed the immunological profiles of candidate

neoantigen genes. Our data suggest that most genes were associated

with immunostimulatory factors (Figure 6). ABR, CPR1, CDH6, TK1,

andPROS1werepositively correlated,whereasCSPG4 andGRPR4were

negatively correlatedwith immune checkpoint chemokines, chemokine

receptors, MHC molecules, immune stimulators, and inhibitors.
3.7 Construction of a prognostic model
for NRGs

Next, we constructed a risk model to understand the effect of

NRG expression on the prognosis of thyroid cancer and to evaluate

the potential of BRGs as diagnostic markers. Univariate analysis

based on the NRGs revealed that SEMA6B (p< 0.05, hazard ratio

[HR] = 1.7) and TENM1 (p< 0.05, HR = 0.53) were independent

prognostic factors (Supplementary Figure 3). We successfully

constructed a prognostic model using 10 candidate neoantigen

genes. The NRGs score (risk = -0.5957*exp2$TENM1-

0.9129*exp2$TK1-0.4365*exp2$DYSF+0.4896*exp2$ABR

+0.7024*exp2$SEMA6B) was calculated using the formula, and the

high- and low-risk groups were obtained. Furthermore, we found
B

CA

FIGURE 5

Analysis of candidate neoantigens among different immune subtypes. (A) Boxplot shows the proportion of the 22 types of immune cells in patients
with THCA. Box plot (B) and correlation analysis (C) were used to analyze the association between NRGs and immune infiltrating cells in early- and
late-stage THCA. *p< 0.05; **p< 0.01; ns, not significant.
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significant differences between the two groups by constructing a

high-low-risk model; the prognosis of the high-risk group was

significantly worse than that of the low-risk group (p = 0.00072;

Figure 7A). The ROC curve showed that the AUC values were 0.83,

0.87, and 0.86 at 1, 3, and 5 years, respectively (Figure 7B). Almost

all patients who died belonged to the high-risk group (Figure 7C).

Heatmap analysis showed that TK1 and TENM1 expression levels

were low in the high-risk group and high in the low-risk group.

Genes with high expression in the high-risk group and low
Frontiers in Immunology 09
expression in the low-risk group included SEMA6B, ABR, and

DYSF (Figure 7D). We then analyzed the clinical prediction model

of NRGs by integrating the clinical characteristics of patients in the

TCGA database. The results showed that the independent

prognostic factors in the univariate analysis were risk (p< 0.001,

HR = 2.7) and age (p< 0.001, HR = 1.2; Figure 7E). Multivariate

analysis revealed that the risk (p< 0.001, HR = 2.0) and age (p<

0.001, HR = 1.0) were independent prognostic factors (Figure 7F).

Therefore, we believe that NRGs can predict survival outcomes.
B

C

D

E

A

FIGURE 6

Correlation between candidate antigen genes and regulatory factors of relevant immune checkpoints. Chemokines (A). Chemokine Receptors (B).
MHC Molecules (C). Immunostimulators (D). Immunoinhibitors (E).
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3.8 Analysis and comparison of NRG
expression levels and mutation frequencies
in various tumors

Expression patterns of NRGs in different tumor tissues were

determined using the TCGA database. The candidate NRGs were all

highly expressed in thyroid cancer tissues, and candidate

neoantigen genes, such as CDH6, ODZ1, and PROS1, were

significantly differentially expressed in thyroid cancers. TK1 was

expressed at low levels in KICH but highly expressed in 13 other

tumor types (Figure 8A). To analyze the differential expression of

NRGs, we examined the differential survival of NRGs in multiple

tumors. As shown in Figure 8B, candidate neoantigen SEMA6B was

associated with a worse prognosis, and the difference was obvious in

the high-expression group of THCA. However, ODZ1 expression

was associated with a poor prognosis in the low THCA expression

group. Candidate neoantigens, TK1 and XPR1, were associated with

poor prognosis in the high expression group for most tumors.

NRGs mutate repeatedly in most tumors, especially skin cutaneous

melanoma and uterine corpus endometrial carcinoma (Figure 8C).

However, the frequency of NRG mutations is relatively low in

THCA, possibly related to the favorable prognosis of

thyroid tumors.
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3.9 Analysis of functionally related drugs of
candidate neoantigen genes

To analyze NRG-related drug functions, we performed NRG

pathway function analysis. NRGs are involved in the activation of

epithelial–mesenchymal transition (EMT) but inhibit the DNA

damage response. CDH6 plays an inhibitory role in related

pathways but participates in the activation of apoptosis, EMT,

and cell cycle (Figure 9A). Simultaneously, the candidate-

associated neoantigens (CSPG4, XPR1, and CDH6) negatively

correlated with the known drugs. However, positive and negative

correlations between PROS1 and the drugs occurred simultaneously

or alternately (Figure 9B). Through functional analysis of candidate

antigen gene drugs, we found that antitumor drugs were involved in

antigen presentation. Therefore, the screened NRGs can be used as

therapeutic targets and diagnostic biomarkers for thyroid cancer.
4 Discussion

Thyroid cancer is the most common endocrine tumor and

widespread cancer in the USA (2, 28). Most thyroid cancers arise

from thyroid follicular cells (90%) and are well-differentiated (29,
B

C

D

E

F

A

FIGURE 7

Univariate analysis using NRGs and prognostic model construction. (A) Risk model survival curves for NRGs. (B) Time-dependent ROC curves of
NRGs to evaluate the performance of the prediction model. NRG expression levels in the high- and low-risk groups were assessed using the (C) risk
score distribution and (D) heatmap. (E) Univariate analysis based on risk, age, gender, and TNM stage. (F) Univariate analysis based on age.
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30). Most tumors are categorized on histological grounds as

papillary thyroid cancers or anaplastic thyroid cancers, the latter

being associated with a worse prognosis (2, 31). The standard

therapeutic approach for all thyroid cancers includes surgery,

with radioactive iodine offered to patients with follicular cell-
Frontiers in Immunology 11
derived thyroid cancers (1, 32, 33). Several preclinical studies

have suggested the potential of immunotherapy for the treatment

of thyroid cancer (30, 34). Although this general approach is less

developed in terms of clinical trial data, several ongoing

immunotherapy trials exhibit great clinical potential. However,
B

C

A

FIGURE 8

NRG expression levels and mutation frequencies in multiple tumors. Differential expression (A) and survival difference (B) analyses of NRGs in
multiple tumors. (C) Mutation frequencies of NRGs in different tumor samples.
BA

FIGURE 9

NRG functions and related drug analysis. (A) Activities of biological pathways identified using NRGs were analyzed using the GSCA database. Red and
azure colors represent the percentage of activation and inhibition, respectively. Non-activity is indicated by grey color. (B) NRG-related drugs were
obtained using the GSCA database.
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the efficacy of immunotherapy for specific THCA stages remains

unclear (30, 35, 36).

To predict the potential of candidate neoantigen genes for THCA

screening, we comprehensively analyzed the data from the TCGA

database and combined them with TSNAdb to predict the HLA

candidate neoantigen peptide fragments in this study. Our findings

revealed that NRGs had predictive correlations with THCA in terms of

gene mutation frequency, DEGs, and type of immune cell infiltration.

Expression patterns of downregulated genes were significantly

different between the early and late stages of THCA. DEG analysis

further revealed that the tumor samples were significantly different

from the normal samples (Figure 1). Analysis of the top ten DEGs in

candidate patients with early- and late-stage cancer revealed that the

mutated genes were mainly concentrated in missense mutations

(Figure 2). Genomic instability can be used as a marker of malignant

tumors and plays an important role in the development and

progression of tumors (37, 38). It not only promotes the evolution of

tumors but also assumes a high neoantigen load by tumor cells, which

is recognized and localized by the immune system (39, 40). Therefore,

we preliminarily screened DEGs and analyzed their mutation types to

prepare candidate neoantigens in this study. The ROC curve,

consisting of four machine learning models (mLR, Dtree, RF, and

SVM), was established via the preliminary screening of candidate

neoantigen genes in the early and late groups (AUC of the normal and

early groups was > 0.979 and that of the normal and late groups was >

0.959). We believe that the screened NRGs can be used as novel

diagnostic biomarkers for thyroid cancer (Figure 3). Because

neoantigen loading can be used as a potential biomarker for tumor

immunotherapy, the accurate and effective prediction of neoantigens

as therapeutic targets may aid in the development of personalized

cancer vaccines.

Vaccines are commonly used to prevent infections.

Interestingly, vaccines, especially neoantigen-targeted vaccines,

also show promise for personalized immunotherapy of cancers,

such as hepatocellular carcinoma, melanoma, and epithelial ovarian

cancer, in preclinical and clinical studies (41–43). Personalized

vaccines are designed to trigger tumor-specific T cell responses

against neoantigens to expand the endogenous repertoire of tumor-

specific T cells and prevent “off-target” damage to non-tumor

tissues (44, 45). Here, we analyzed immune cell infiltration in

thyroid cancer and found that the majority of immune-infiltrating

cells were T cells (Figure 5A). Furthermore, we compared the

immune infiltration in patients with early versus late thyroid

cancer and found that the expression levels of T cells CD8,

plasma cells, and CD4 + memory-activated immune cells were

significantly different (p< 0.01; Figure 5B). Further analysis of the

infiltration of 10 candidate NRGs revealed that dendritic and T cells

had different degrees of positive and negative correlations with

multiple NRGs (Figure 5C). Studies have shown that dendritic cells

are primarily involved in acquiring, processing, and presenting

tumor-associated antigens on MHC molecules in the tumor

microenvironment (TME), and provide costimulators and soluble

factors to shape T cell responses (46). Peng et al. reported that

dendritic cells participate in antigen presentation and mediate the

activation and reactivation of tumor-specific T cells through the

ability of endogenous T cell compartments to recognize peptide
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epitopes that display MHC on the surface of malignant tumor cells

(10, 47). We identified NRGs whose neoantigen epitopes result

from tumor-specific DNA alterations leading to the formation of

new protein sequences that can be used for post-treatment immune

memory via neoantigen-specific T-cell responses and prevention of

cancer recurrence.

NRGs present a new technique for thyroid cancer

immunotherapy. Here, we found that NRGs were expressed in

patients with multiple cancers and were significantly correlated

(Figure 8A). The expression trends and mutation frequencies of the

THCA candidate neoantigens were similar to those in KIRC.

Personalized mRNA vaccines based on neoantigens can be used

in expression strategies for KIRC solid tumors (48). Candidate

neoantigens TK1 and XPR1 were expressed in multiple tumors, and

the prognosis was poor in the high expression group of most tumors

(Figure 8B). Xie et al. reported that TK1 deactivation significantly

inhibits the growth of prostate tumors and is closely related to cell

cycle regulation (49). Yoko et al. demonstrated that XPR1-

dependent phosphate effervescence leads to the toxic

accumulation of intracellular phosphate, inducing growth arrest

and apoptosis in ovarian clear cell carcinoma cells (50, 51). To

determine the correlation between NRGs and targeted drugs, we

used the open GSCA database to identify gene-related targeted

drugs for further analysis (Figure 9B). CSPG4, a high-molecular-

weight melanoma-associated antigen, is negatively associated with

multiple targeted drugs, such as cell-surface proteoglycans. Elevated

CSPG4 expression is observed in several aggressive tumors,

including ovarian cancer (52), osteosarcoma (53), and triple-

negative breast cancer (54). In addition, Egan et al. demonstrated

that CSPG4 is a potential immunotherapeutic target for ATCs (55).

Bortezomib, as a chemotherapy agent, can trigger immunogenic cell

death, thereby promoting anti-tumor immunity (56), and our

candidate antigen, CSPG4, was strongly associated with

Bortezomib. Trametinib, selumetinib, and PD-0325901 are

strongly associated with targeting candidate antigens CSPG4 and

PROS1, as the more commonly used MEK inhibitors. Zheng et al.

found that the MEK inhibitors combined with radiotherapy can

enhance antitumor immunity, and offer a new treatment strategy

for KRAS mutations in the tumor (57). Therefore, drugs targeting

the candidate antigen, CSPG4, can potentially be used to treat

thyroid cancers. In conclusion, a comparison of the expression

levels of NRGs among various tumors and their survival analysis

revealed that NRGs can predict other tumors, indicating their

potential for immunotherapy. Therefore, NRGs can be used as

molecular markers for patients with thyroid cancer and converted

into antigen-related mRNA vaccines for immunotherapy.

In this study, we screened candidate neoantigens as diagnostic

features and therapeutic targets and identified specific candidate

neoantigen genes in early- and late-stage thyroid cancer by

combining transcriptome and somatic cell mutations. Using

machine learning models, we found that the identified candidate

genes successfully predicted early- and late-stage thyroid cancer.

Simultaneously, we constructed a prognostic model and conducted

pan-cancer and targeted drug analyses. Our results revealed that

some candidate genes potentially act as candidate neoantigens.

Therefore, the candidate tumor-specific neoantigens identified in
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1187160
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Jia et al. 10.3389/fimmu.2023.1187160
this study can be used for the personalized treatment of patients

with various thyroid tumors.
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