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Identification of molecular
pattern and prognostic risk
model based on ligand-receptor
pairs in liver cancer

Pengbo Hu †, Liang Xu †, Yongqing Liu, Xiuyuan Zhang, Zhou Li,
Yiming Li and Hong Qiu*

Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science
and Technology, Wuhan, Hubei, China
Introduction: The tumor microenvironment of hepatocellular carcinoma is

composed of multiple cells, and the interactive communication between cells

drives tumor progression and characterizes the tumor. Communication between

cells is mainly achieved through signal transduction between receptor ligands,

and the rise of single-cell technology has made it possible to analyze the

communication network between cells.

Methods: We applied a train of bioinformatic techniques and in vitro

experiments. We analyzed the composition of the microenvironment of liver

cancer by combining single-cell sequencing data and transcriptome sequencing

data from liver cancer to construct molecular typing and risk models for LRs.

Then, we analyzed association of it with prognosis, mutation, KEGG, tumor

microenvironment (TME), immune infiltration, tumor mutational burden (TMB)

and drug sensitivity in liver cancer. qPCR and was used to identify SLC1A5

expression in LIHC cell lines and CCK8, transwell and cell colony formation

were performed to validate the function of SLC1A5. Meanwhile, we also

performed polarization of macrophages.

Results: In this experiment, we found that liver cancer tissues are rich in immune

and mesenchymal cells, and there is extensive signaling between individual cells, so

we constructed molecular typing and risk models for LRs. Combining clinical data

revealed significant differences in clinical characteristics, prognosis and mutated

genes between themolecular typing of receptor-ligand pairs, as well as in sensitivity

to drugs; similarly, there were significant prognostic differences between the risk

models. There were also notable differences in activated signaling pathways,

infiltrating immune cells and immune subtypes. Subsequently, we used siRNA to

knock down SLC1A5 in hepatocellular carcinoma cells and found that cell

proliferation, migration and invasion were diminished.

Conclusions: In conclusion, our LRs model may become a marker to guide

clinical treatment and prognosis.
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Introduction

HCC ranks as the sixth most prevalent new tumor in the world,

but the second most common new death (1). Due to the insidious

character of liver cancer, the detection rate of early-stage liver

cancer is quite poor, while the highly malignant characteristics of

liver cancer frequently result in the identification of liver cancer at

an advanced stage. The prognosis for advanced liver cancer is

terrible, with a lack of surgical opportunities and a high risk of

metastasis within and outside the liver, resulting in worse quality of

living and a shorter survival time for patients (2).

The tumor microenvironment, a hothouse of research in recent

years, is composed of tumor cells, immune cells and stromal cells

that together modulate tumor growth, metastasis, drug resistance

and other properties (3). In the last few years, the rapid

development of single-cell sequencing has made it possible for

scientists to peek into the details of the tumor microenvironment

(4). Through the use of gene expression profiles of individual cells,

we can identify the specific roles played by different cell types in

the tumor microenvironment, refining the function of cells to

investigate the microenvironment in a specific target (5).

Cell-to-cell signaling moderates the function and state of the

cell. With the continuous enhancement of precision in the research

of tumors, receptor-ligand interactions to deliver signals between

tumor tissues have attracted the attention of scientists (6). In

particular, in the tumor microenvironment, a majority of the

interactions between tumor cells, immune cells and stromal cells

are mediated by receptors and ligands, of which investigations on

PD1 and PD-L1 have made a significant contribution to clinical

diagnosis and treatment (7).

Currently, there is no effective method to forecast the prognosis

of patients with hepatocellular carcinoma, but receptor-ligand

interactions could, up to some extent, anticipate the malignancy

of the tumor and thus predict the prognosis of patients.

Consequently, we developed a receptor-ligand pairs (LRs) model

based on hepatocellular carcinoma to predict the risk of patients

and ultimately improve their survival.
Materials and methods

Datasets

The single cell sequencing data (GSE146115) was obtained from

the GEO database, the gene expression profiling data, clinical data

and mutation data from TCGA and ICGC. The ICGC-LIHC sample

(231) set was regarded as the external validation set, and the TCGA-

LIHC sample (365) set as the training set.
scRNA-seq data analysis and cell
type definition

“Seurat” R package was applied to analyze the expression matrix

of single cells, and we screened for cells with the optimal number of

genes expressed (50~20000) (8). The mitochondrial genes have
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been removed from the expression matrix. After controlling for

average expression and dispersion relationships, all highly variable

genes in single cells were identified. Subsequently, the highly

variable genes were used to perform principal component analysis

to identify significant principal components as a means of

eliminating batch effects based on the “jackstraw” function. Cells

were cohorted into 12 different cell types at a resolution of 0.5 using

the “FindClusters” function. The “FindAllMarkers” function was

applied to discern differentially expressed genes (DEGs).

Additionally, a few traditional markers for defining cell subsets

were gathered from earlier studies (Table 1) and manually

annotated in accordance with marker expression.
Cell to cell communication

The various cells of the tumor microenvironment interact with

each other to exert tumor promoting or inhibiting effects through

activation between various ligands and receptors. Cellular

communication was accomplished through “cellphonedb”,

a public database containing ligands, receptors, and their

interactions, and by annotating the membrane, secreted, and

peripheral proteins of each cell subgroup at various time points

(9). We conducted the “cellphonedb” to unpack the matrix of

cellular communication and we filtered the receptors and ligands

that appeared in the expression matrix in TCGA.
Selection of receptor-ligand pairs

Cellular interactions depend on the simultaneous expression of

receptors and ligands, and receptors can only be stimulated to

mediate intercellular communication when the number of receptors

and ligands is at a parallel elevation. We screened for LRs with

receptor-ligand co-expression correlations greater than 0.3 (p <

0.05) and used these LRs for clustering to determine molecular

types (10).
Molecular subtyping calculation

We took the sum of the gene expression of the receptor and

ligand as the expression of the LR. We combined the receptor-

ligand expression data with the prognostic data to filter out LRs
TABLE 1 The marker genes for the cells.

Cell subgroups Markers

B cells CD79A, CD79B

Fiberblast cells ACTA2

Hepatocytes CYP2C9, ARG1

Myeloid cells CD68, CD163

NK cells NCAM1, GNLY

T cells CD3D, CD3E
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with prognostic significance and then used the R package

“ConensusClusterPlus” to generate consensus matrix, “euclidean”

was selected as the distance metric for PAM algorithms. A random

subset of the TCGA data was selected from the TCGA data, the size

of the subset was 80% of the original data set and 500 replications

were performed (11). The amount of clusters was varied ranging

from 2 to 10 and the most appropriate number of clusters was

determined through the calculation of the consensus matrix and the

cumulative distribution function (CDF).
Presumption of drug sensitivity

The R package “pRRophetic” was applied to calculate the

sensitivity of different drugs based on expression matrix (12). We

determined the appropriate drugs for different classifications of

patients based on the sensitivity of the drug, as well as the

classification of the different patients.
Risk model

The R package “glmnet” was conducted to screen for LRs using

lasso regression, combined with prognostic data, to build a risk model

to predict the risk of patients by classifying them into different risk

groups using the median risk score. First, we chose “cv.glmnet”

fuction to filter the l that minimised the discrepancy. Then, based on

the value of l taken at this point, we got to filter the best LRs to build

the prognostic model. The risk score was calculated using the formula

LR. Score = ∑b(i) ×Exp(i), where i refers to the LR pair, Exp

represents the level of LR pair expression and beta is the coefficient

of the LR pair in the model. The median value of the training set

(TCGA) was selected as the truncation value (13). The R package

“survival” was employed to depict survival curves and to compare

survival differences between high and low risk groups. The R package

“timeROC” to portray the ROC curves of risk scores and traditional

prognostic indicators, and to calculate the AUC values to assess the

accuracy of the prognosis prediction (14).
Function enrichment and analysis of
mutations and immunity

The “maftools” package was used to visualize the mutation data.

We presented the twenty genes with the most significant mutations

and comparedmutations in patients of different subtypes.We applied

“clusterProfiler” to analysis KEGG pathway (15). The ‘hallmark’ gene

set collection from the molecular signature database was used for

pathway enrichment analysis. Immune cell infiltration assessment

was carried out with the “ssGSEA” package (16).
In vitro experimental validation

The cells used in this experiment were obtained from the

laboratory of the Department of Oncology, Tongji Hospital,
Frontiers in Immunology 03
Huazhong University of Science and Technology. LO2, SNU398,

Huh7 and HLF were cultured in DMEM medium with 10% fetal

bovine serum added. We extracted RNA from the cells, reverse

transcribed them into DNA and qPCR detected the expression of

SLC1A5 in the cells. Subsequently, SLC1A5 was knocked down in

Huh7 and SNU398 cells using siRNA, and CCK8, cell colony

formation and transwell were used to detect the proliferation,

migration and invasion ability of the cells (17). Meanwhile, we

also performed polarization of macrophages. Detailed experimental

steps are in the Supplementary Data Sheet 1, and all experiments

were repeated three times.
Statistical analysis

Dichotomous variables were tested using the chi-square test,

survival analysis was performed using the log-rank test, and

comparison between the two groups was performed using the

Wilcoxon test. p<0.05 was considered to be statistically different.
Results

The single-cell transcriptome landscape of
hepatocellular carcinoma

Figure 1 showed the overall design and flow chart of this study.

Since the gene expression data from single cells excluded

mitochondrial genes, we calculated the correlation between the

number of unique molecular identifiers and mRNA, which suggests

that a significant positive correlation was shown between the

number of unique molecular identifiers and mRNA (Figure 2A).

Gene numbers for the vast majority of cells are between 0 and 8000

(Figure 2B). After filtering the cells, a total of 3200 cells were

included in the subsequent analysis. The differential genes in the

various cell types were calculated for a total of 12 cell types after

normalizing the expression data and filtering the first 2000 highly

variable genes for the subsequent principal component analysis

(Supplementary Figure 1A, Figure 2C). Based on the marker genes

in the different cells, we identified the cell types that needed to be

labelled. The marker genes for the cells were derived from databases

and earlier studies. As a result, six cells were identified, such as B

cells, fibroblast cells, hepatocytes, myeloid cells, NK cells, T

cells (Figure 2D).
Intercellular communication networks in
hepatocellular carcinoma

The tumor microenvironment in solid tumors is composed

primarily of stromal cells and immune cells, in addition to the

tumor cells themselves. Within the microenvironment, various cells

communicate with each other to transmit information to

influence tumor progression. When speculating on intercellular

communication, we used “cellphonedb” and found that tumor cells

contact mainly with fibroblasts and fibroblasts with myeloid cells in
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liver cancer (Figure 2E). In Figure 2F, thicker lines indicate more

interactions, and the numbers on the lines represent the number of

interacting nodes.
Molecular typing based on
ligand-receptor pairs

In cellular communication, receptor-ligand interactions play an

essential role, and through “cellphonedb” simulations we obtained the

corresponding LRs. Based on the TCGA expression profile and taking

into account the need for synergistic expression of receptors and

ligands, we chose LRs with co-expression R-values above 0.3 and P-

values less than 0.05. 81 LRs were selected in total (Supplementary

Table 1). The sum of the expression values of the receptor and the

ligand took the place of the LRs’ expression values. Molecular typing

analysis was executed on the sample set of TCGA using the

“ConsensusClusterPlus”. Based on the CDF value (Figure 3A),
Frontiers in Immunology 04
splitting into two clusters was the preferred candidate when the k

value was taken as 2 (Figures 3B, C). The ICGC validation dataset was

subjected to the same data processing procedure as the TCGA training

dataset, and the outcomes were identical. Similar distinctions between

the two groups of patients were made based on the LR expression

pattern (Supplementary Figures 2A–C).
Comparison of clinical information in
different molecular subtypes

According to the results of the clustering, combined with the

prognosis analysis of the patients, we analyzed the survival of the

patients in both clusters and the survival curves depicted are shown

in the figure. The log-rank test showed that there is a significant

difference in survival between the two clusters, with patients in the

A subtype having a better prognosis than those in the B subtype in

TCGA (Figure 3D). The outcomes of the prognostic analyses in the
FIGURE 1

The flowchart of the study design.
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ICGC validation set were agreed with those in the TCGA training

set. However, the number of patients in B subtype was too small,

perhaps as a result of the limited sample size of patients in ICGC,

leading to a P value (0.052) of more than a little over 0.05

(Supplementary Figure 2D). Meanwhile, we went on to analyze

the gene expression and clinical characteristics of patients in

different clusters and found that the expression levels of risk

genes were significantly higher in B subtype patients than in A

subtype (Figure 4A). Regarding the clinical traits, we discovered

that patients in the B subtype had greater tumor grade and TNM
Frontiers in Immunology 05
stage as well as more fatalities than those in the A subtype

(Figures 4B–D).
Mutational characteristics of different
molecular subtypes

Genetic alterations in tumor cells, mutational inactivation of

anti-oncogenes, amplified overexpression of oncogenes, etc., all of

which contribute to tumor development, are intimately associated
A B

D

E F

C

FIGURE 2

(A) Correlation between the number of unique molecular identifiers and mRNA (B) Violin plot of features (C) tSNE of cell profiles; different color
blocks represent related cell clusters. (D) tSNE of cell profiles; different color blocks represent related sample sources. (E) LR interactions between
different cell subsets. (F) Network overview for the interaction between different cell subsets.
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to tumor growth. When we analyzed the mutation data of patients

in A and B subtype patients, we found that there were more

mutations in the A subtype patients (Figures 4F, G). The

mutations in the B subtype patients were mainly in the

antioncogenes and the types of mutations were mainly missense

mutations, such as TP53 (Figure 4G).

We then analyzed the tumor mutational burden of patients to

predict the efficacy of immunotherapy in patients, and we found

that the tumor mutational burden (TMB) was higher in A subtype

patients than in B subtype patients (Figure 4E), which means that

the effectiveness of immunotherapy may be better in A subtype

patients than in B subtype patients.
Drug sensitivity of different
molecular subtypes

We also attempted to see whether there were changes in drug

sensitivity amongst the various patient clusters, in addition to

examining differences in clinical features and gene expression. Using

the R package “pRRophetic” to predict patient sensitivity to

chemotherapeutic drugs, we analyzed prominent liver cancer drugs

and found that sorafenib, a first-line drug for liver cancer, was more
Frontiers in Immunology 06
efficacious in B subtype patients. At the same time, we observed that

some drugs were more effective in A subtype patients, such as

“Bleomycin” (Figure 5A),” Doxorubicin” (Figure 5B), “Gemcitabine”

(Figure 5C), “Mitomycin” (Figure 5D), “Paclitaxel” (Figure 5F), and

conversely, some drugs were more targeted in B subtype, such as

“Methotrexate” (Figure 5E), “Rapamycin” (Figure 5G), “Sorafenib”

(Figure 5H), “Temsirolimus” (Figure 5I).
Establishment of the risk model based on
the ligand–receptor pair score

Molecular subtypes based on LRs had different clinicopathological

characteristics as well as drug sensitivity. We sought to construct a

prognostic model using LRs to assess patient risk. A total of 18 LRs

associated with prognosis were considered (Supplementary

Figure 1B), and we used LASSO cox regression to shrink the

number of LRs, with optimal results occurring when l was 0.0159

Figures 6A, B). We then used stepwise multivariate regression for

optimization, and a total of nine LRs were screened out for model

construction (Supplementary Table 2). In the training set (TCGA), the

median risk score was selected as the cut-off value to classify patients

into high and low risk groups, while patients in the validation set
A B

DC

FIGURE 3

(A) CDF curve of samples from TCGA cohort. (B) Delta area curve of samples from TCGA cohort. (C) TCGA clustering heatmap of samples from
TCGA cohort when consensus k = 2. (D) Overall survival curves of molecular subtypes based on LR pairs.
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(ICGC) were similarly classified into high and low risk groups using

the cut-off value in the training set as the boundary.
Correlation between the risk model and
clinical features

Based on the risk groupings, we plotted the survival curves for

the training and validation sets separately and used log-rank test to

analyze whether there was a difference in survival, and we found

that the high-risk group had a worse prognosis in both datasets

(Figures 6C, D). We also plotted ROC curves based on risk scores

and clinicopathological characteristics, and calculated AUC values
Frontiers in Immunology 07
for different factors separately, and observed that risk scores

performed better in predicting patient risk in the training and

validation sets (Figures 6E, F). In the TCGA training set, the risk

model’s sensitivity was 0.784 and its specificity was 0.652; in the

ICGC validation set, these values were 0.823 and 0.744, respectively.

Both univariate and multivariate analyses showed that the risk score

was an independent risk factor to assess patients’ prognosis in

TCGA database (Figures 6G, H). In the validation set, we similarly

found that risk score was also an independent prognostic factor in

both univariate and multivariate analyses (Figures 6I, J).

The results of the principal components analysis showed

that the grouping of high and low risk was able to separate the

characteristics of the patients in TCGA (Supplementary Figure 3A),
A

B D E

F G

C

FIGURE 4

(A) Heatmap of expression of LRs in molecular subtypes (B) Grade in molecular subtypes (C) Fustat in molecular subtypes (D) Stage in molecular
subtypes (E) TMB in molecular subtypes (F) Somatic mutation variation analysis in A cluster in the TCGA-LIHC cohort. (G) Somatic mutation variation
analysis in B cluster in the TCGA-LIHC cohort.
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and the same phenomenon was observed in the validation set

(Supplementary Figure 3B). Similarly, we found that the risk

scores of surviving patients were significantly lower than those of

the deceased in the training set (Figure 6K), and the same was

witnessed in ICGC (Figure 6L). This suggested that the risk score in

the prognostic model was highly effective in predicting patient

survival, and that patients could be separated according to different

risk groupings. In the training set, the proportion of patients who

died increased as the risk score increased (Supplementary

Figures 3C, D). Similarly, we observed the same phenomenon in

the training set (Supplementary Figures 3E, F).
Pathway analysis and immune
characterization of risk model

Additionally, we conducted an enrichment analysis of patients

in the high-risk and low-risk groups and found that compared to
Frontiers in Immunology 08
low-risk patients, high-risk patients mainly activate a number of

immune-related, metabolism-related and hypoxia-related pathways

(Figures 7A, B).

We conducted the R package “ssGSEA” to analyze the immune

infiltration of patients and we found a decrease in the infiltration of

B cells, CD8+ T cells, mast cells, NK cells and, at the same time, an

increase in the infiltration of activated DC cells and macrophages in

high-risk patients (Figure 7C). The reduction of tumor-killing

immune cells and addition of tumor-promoting immune cells

may be one of the reasons for the worse prognosis in high-risk

patients. Combined with the immune phenotyping of the patients,

we found that the immune subtypes in the high-risk group were

focused on C1 & C2 and in the low-risk group were mostly in

C3 (Figure 7D).

We compared the levels of PD-L1 expression in the high and

low risk groups and discovered that patients in the high-risk group

had higher levels of PD-L1 expression (Figure 7F). This finding is

also consistent with what we found of the ssGSEA above, which
A B

D E F

G IH

C

FIGURE 5

(A) Bleomycin. (B) Doxorubicin. (C) Gemcitabine. (D) Mitomycin. (E) Methotrexate. (F) Paclitaxel. (G) Rapamycin. (H) Sorafenib. (I) Temsirolimus.
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revealed that the high-risk group was primarily in an

immunosuppressed state. As a result, the high-risk group may be

more responsive to immunotherapeutic treatment targeting PD-1/

PD-L1.
Frontiers in Immunology 09
The TIDE scores are one of the basis for evaluating the current

immunotherapy, so we also looked at the TIDE scores of the high and

low risk groups. As a result, we discovered that there was a difference

in the TIDE scores of the high and low risk groups (Figure 7E). Lower
A B

D E F

G IH

J K L

C

FIGURE 6

(A) Plotting of multinomial deviance versus log(l). (B) LASSO coefficient profiles of the LRs. (C) Survival benefit of LR.score in the high and low LR.score
groups in the TCGA-LIHC cohort. (D) Survival benefit of LR.score in the high and low LR.score groups in the ICGC-LIHC cohort. (E) The predictive value of
LR.score in patients among the TCGA-LIHC cohort. (F) The predictive value of LR.score in patients among the ICGC-LIHC cohort. (G) Univariate cox
regression analysis of LR.score, age, TNM stage and grade for overall survival (OS) in the TCGA-LIHC cohort. (H) Multivariate cox regression analysis of
LR.score, and TNM stage for OS in the TCGA-LIHC cohort. (I) Univariate cox regression analysis of LR.score, age and TNM stage for overall survival (OS) in
the ICGC-LIHC cohort. (J) Multivariate cox regression analysis of LR.score, and TNM stage for OS in the ICGC-LIHC cohort. (K) Fustat in the high and low
LR.score groups in the TCGA-LIHC cohort. (L) Fustat in the high and low LR.score groups in the ICGC-LIHC cohort.
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TIDE scores in the high-risk group imply that patients in the high-risk

group will have a better immunotherapy outcome, which is consistent

with the results of the PD-L1 expression level. Patients in subtype A

were dominantly in the low-risk group and the state of survival, while

the opposite was observed in subtype B patients (Figure 7G).
Functional experiments in vitro

In the LR model, the coefficient of LGALS9_SLC1A5 was the

largest. Considering that SLC1A5 is a receptor, we took a series of

experiments to test whether SLC1A5 affects the function of tumor

cells. To clarify the expression of SLC1A5, we selected three

hepatocellular carcinoma cells and normal hepatic epithelial cells

to perform qPCR experiments. We found that the expression level

of SLC1A5 was higher in all hepatocellular carcinoma cells than in

normal hepatic epithelial cells, with the higher expression level in

Huh7 and SNU398 cells (Supplementary Figure 1C). We performed
Frontiers in Immunology 10
the cell proliferation assay (CCK8 and cell colony formation), cell

migration and invasion assay (transwell) using siRNA to knock

down the expression level of SLC1A5 in Huh7 and SNU398 cells,

and observed that the knockdown levels of si1 and si3 were the best

among the three siRNAs (Figures 8A, B). The results indicated that

the proliferation (Figures 8C–H), migration (Figures 9A–D) and

invasion (Figures 9E–H) of hepatocellular carcinoma cells were

significantly reduced after knockdown of SLC1A5.

After culturing macrophages using conditioned medium from

tumor cells, we examined the expression of marker molecules in

macrophages. Subsequently, we found that after culturing

macrophages using conditioned medium from hepatocellular

carcinoma cells with knockdown of SLC1A5, the expression of M2-

type macrophage marker molecules was decreased, and the expression

levels of CD206 and ARG1 were markedly down-regulated in

macrophages (Figure 9I). This experimental phenomenon suggests

that the expression of SLC1A5 by hepatocellular carcinoma cells may

have an effect on the immune microenvironment.
A B

D

E F G

C

FIGURE 7

(A) The results of the KEGG in TCGA-LIHC cohort. (B) The results of the KEGG in ICGC-LIHC cohort. (C) Analysis of immune cell scores in the TCGA-LIHC
cohort calculated using the ssGSEA algorithms. (D) Comparison of immune subtypes in different risk groups (E) Correlation of LR.score and TIDE score
(F) The expression level of CD274 (G) Alluvial diagram of the distribution of different gene cluster, risk score and survival outcome subtypes. *p< 0.05;
**p< 0.01; ***p< 0.001.
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FIGURE 8

(A) Validation of knockdown efficiency by qPCR in HuH7 cells. Results represent mean ± SD. n = 3. ****p < 0.0001; two-tailed t-test. (B) Validation of
knockdown efficiency by qPCR in SNU398 cells. Results represent mean ± SD. n = 3. ****p < 0.0001; two-tailed t-test. (C) SLC1A5 knockdown inhibited
colony formation of HuH7 cells. (D) SLC1A5 knockdown inhibited colony formation of SNU398 cells. (E) The colony number of HuH7 cells. Results
represent mean ± SD; n = 3; ***p < 0.001; two-tailed t-test. (F) The colony number of SNU398 cells. Results represent mean ± SD; n = 3; ***p < 0.001;
two-tailed t-test. (G) SLC1A5 siRNA displayed reduced proliferation of HuH7 cells. Results represent mean ± SD; n = 3; ***p < 0.001; two-tailed t-test.
(H) SLC1A5 siRNA displayed reduced proliferation of SNU398 cells. Results represent mean ± SD; n = 3; ****p < 0.0001; two-tailed t-test.
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Discussion

The tumor microenvironment is a burning research topic in the

field of oncology. Immune cells are drawn to tumor-associated

inflammatory changes, and these immune cells combine with stromal

cells in the tumor tissue to form the tumor microenvironment (18).
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The tumor microenvironment is a double-edged sword in the process

of tumor development. Tumor cells will be killed by immune cells to

suppress tumor progression. Simultaneously, tumor cells will evade

the surveillance of immune cells and gradually remodel the tumor

microenvironment so that it promotes tumor metastasis and drug

resistance (19).
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FIGURE 9

(A) SLC1A5 knockdown inhibited migration of HuH7 cells. (B) SLC1A5 knockdown inhibited migration of SNU398 cells. (C) The cell number of
migration of HuH7 cells. Results represent mean ± SD; n = 3; ****p < 0.0001; two-tailed t-test. (D) The cell number of migration of SNU398 cells.
Results represent mean ± SD; n = 3; ****p < 0.0001; two-tailed t-test. (E) SLC1A5 knockdown inhibited invasion of HuH7 cells. (F) SLC1A5
knockdown inhibited invasion of SNU398 cells. (G) The cell number of invasion of HuH7 cells. Results represent mean ± SD; n = 3; ***p < 0.001;
**p < 0.01; two-tailed t-test. (H) The cell number of invasion of SNU398 cells. Results represent mean ± SD; n = 3; ****p < 0.0001; two-tailed t-test.
(I) Relative expression of gene markers of M2 (CD206, ARG1) macrophages by stimulation of different CM in THP1 cell lines.
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According to the findings of single cell sequencing, fibroblasts,

myeloid cells, B cells, T cells, and NK cells have been found

infiltrating liver cancer tissue. The infiltration of T cell kills tumor

cells, but recent research has revealed that T cell killing depends on

non-depleted T cells and that tumor cells evade the immune

system by causing T cell depletion (20, 21). Myeloid cells are

predominantly macrophages and tumor cells can induce the

conversion of macrophages into tumor-associated macrophages,

which are able to interact with other cells either through direct

contact or by secreting various effector molecules (22, 23). Tumor-

associated fibroblasts contribute to tumor extracellular matrix

remodeling, stemness characteristics, angiogenesis and drug

resistance (24, 25).

Due to the sophisticated exploration of tumors, the treatment of

tumors has evolved from targeting the tumor cells themselves in the

early days, directly killing them through radiotherapy or chemotherapy

(26), to currently targeting the tumor microenvironment and reversing

the cancer-promoting microenvironment to eliminate the tumor cells.

Immunotherapy targeting PD-1 on T cells interacting with PD-L1 on

tumor cells has been widely used in clinical practice for a considerable

period of time (27). Not all patients benefit from them, despite the fact

that their efficacy is promising in some tumors (28). Immunotherapies

targeting other destinations have also been explored in advance, and we

were trying to identify other cellular interactions in the tumor

microenvironment that could improve the prognosis of tumor

patients. We therefore employed current single cell sequencing to

analyze and identify cell types in hepatocellular carcinoma, utilizing

software to predict cell-to-cell communication and sought out LRs that

were prognostically relevant in hepatocellular carcinoma. Constructing

molecular subtypes with different expression patterns of LRs,

we observed significant differences in prognosis as well as

clinicopathological features of patients in different subtypes,

suggesting that we targeted these LRs as possible targets for future

clinical therapy. At the same time, we observed that the sensitivity of

patients to chemotherapeutic drugs differed between subtypes, which

could be the basis for more targeted drug delivery to different patients

in the clinical field.

The function of the 18 pairs of LRs for which we constructed

molecular typing has been studied in a number of ways. For

example, the IL15_IL15RA interaction produces a two-sided

effect, with IL-15 promoting the proliferation and maintaining the

survival of certain T cells as well as consistently promoting anti-

tumor responses and being crucial for controlling tumor growth

and metastasis in vivo. However, chronic inflammatory stimulation

of IL-15 increases tumor growth and metastasis (29). The

connection between SELP and CD34 shows that patients gain

from the stimulation of the innate immune response to improve

anti-tumor immunity, eliminate tumor cells, and hinder the growth

of tumors (30). The interaction of the remaining 16 pairs of LRs, in

contrast, is what is causing the progression of the tumor, and this

interaction allows the tumor microenvironment to change in a way

that is pro-cancer, causing M2 type macrophages to transform and

inhibiting the activity of NK cells. The main mechanisms

of interaction between tumor cells and tumour-associated

macrophages are LGALS9-SLC1A5, CCR1_CCL23, CSF1R _CSF1,

GRN_SORT1, CSF1_SIRPA, and SIRPA_CD47, which primarily
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induce macrophage differentiation to M2 type while inhibiting

macrophage phagocytosis of tumor cells, cause immune escape,

and promote tumor cell proliferation, invasion, and metastasis

(31–35). Specifically, LAIR1_LILRB4, EPHB6_EFNB1, and

LGALS9_CD44 have immune-suppressive effects . The

interactions of LGALS9_CD44 promote the differentiation and

maintenance of Treg cells (36). The protein encoded by the

EFNB1 gene in EPHB6_EFNB1 is a ligand for type I membrane

proteins and Eph-associated receptor tyrosine kinase, and its

binding to the ligand primarily exerts suppressive immune effects

(37). Tyrosine phosphatases SHP-1 and SHP-2 and/or inositol

phosphatase SHIP, which are detrimental to immune activation

and promote tumor growth, are recruited by LAIR1_LILRB4

activation (38). WNT7B_FZD1, ICAM1_SPN and EPHA2_EFNA5

are mainly involved in facilitating tumorigenesis and invasive

metastasis. Among them, ICAM1_SPN plays an important role in

cell-cell interactions, and circulating tumor cells with stem cell

properties may be able to use the adhesion protein ICAM1 to

promote the formation of circulating tumor clusters that migrate

from the body’s primary tumor sites to other organs (39, 40); EPHA2

in EPHA2_EFNA5 induces inhibition of the focal adhesion kinase

(FAK), extracellular regulatory protein kinases (ERK) and Akt

phosphorylation, thereby regulating motility, viability and

proliferation of a variety of malignant cell lines (41).

SLC1A5 is a mitochondrial glutamine transporter and

glutamine regulates energy metabolism, signal transduction and

redox status in cells (42). Previous studies have indicated that

SLC1A5 might affect how immune cells behave and infiltrate

tumor microenvironment, which can promote cancer. In breast

cancer, SLC1A5 can promote tumor progression (43). Additionally,

SLC1A5 accelerates the growth of lung and colorectal malignancies

by forcing tumor cells to undergo metabolic reprogramming.

In hepatocellular carcinoma, we observed that the expression

level of SLC1A5 was dramatically up-regulated, while the ability of

hepatocellular carcinoma cells to proliferate was significantly down-

regulated after SLC1A5 expression was silenced using siRNA.

Additionally, hepatocellular carcinoma cells’ capacity for migration

was noticeably suppressed. The results suggested that the malignancy

of hepatocellular carcinoma cells increased when the ligand agonized

SLC1A5, and targeting SLC1A5 could alleviate tumor progression in

hepatocellular carcinoma patients in the future (44, 45).

In the prognostic model we constructed, there were disparities

in immune cell infiltration between the high and low risk groups,

with fewer anti-cancerous immune cells and more pro-cancerous

immune cells in the high-risk group, which contributed to the worse

prognosis in the high-risk group. Meanwhile, patients in the low-

risk group for hepatocellular carcinoma were primarily clustered in

the C3 immune subtype, and the C3 type was inflammatory, in line

with the results of the previous analysis (46). Most of the patients

with the molecular subtype A belonged to the low-risk category.

Patients in subtype A had a higher tumor mutational burden, and

in relation to the previous analysis, we hypothesized that

immunotherapy was more effective in subtype A patients.

Moreover, both in the validation and training sets, the high-risk

group focused on activating tumor metabolism (47), cell cycle,

hypoxia, and immune-related pathways compared to the low-risk
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group. Activation of these pathways tended to make tumor worse,

implying a poorer prognosis.

The functions of the 9 pairs of LRs used to construct the

prognostic models also vary, among which LGALS9_HAVCR

acting primarily as a promoter of lymphocyte activation. As a co-

stimulatory molecule during lymphocyte activation, HAVCR

enhances the anti-tumor effects of lymphocyte and induces

changes in the tumor microenvironment, leading to efficient anti-

tumor immunity (48). KLRB1 in KLRB1_CLEC2D is the gene

encoding human CD161. KLRB1 gene inactivation or antibody-

mediated KLRB1 blockade enhances T cell-mediated glioma cell

killing in vitro, and the CD161_CLEC2D pathway defines a

potential target for immunotherapy of glioma and other human

cancers (49). Therefore, increased expression of KLRB1_CLEC2D

and LGALS9_HAVCR suggests that patients may have better

efficacy of immunotherapy.

Considering the limitations piece, there were three flaws in this

paper. Firstly, the studies in the article were retrospective studies that

underwent analysis after data collection, the actual clinical value of

which had not yet been ascertained in genuine clinical practice.

Additionally, the article contained just a limited amount of data,

subsequently a larger sample size is supposed to be incorporated into

the study. Moreover, the data in the article were partially biased.
Conclusion

In conclusion, we have analyzed the interactions between cells

in hepatocellular carcinoma, thereby establishing molecular

subtypes of cellular communication as well as a prognostic model.

The expression pattern of LRs may be able to predict the effect of

chemotherapy and immunotherapy in patients with hepatocellular

carcinoma and to forecast the prognosis of patients. Our findings

highlight the clinical implications of LRs and provide a basis for

subsequent clinical translation.
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SUPPLEMENTARY FIGURE 1

(A)Heatmap showingmarker genes for each cluster. (B) The HR values of LRs.

(C) Quantitative polymerase chain reaction (qPCR) displayed upregulation of

SLC1A5 in liver cancer cells compared to normal cell line (LO2). Results
represent mean ± SD; n = 3. ****p < 0.0001; ***p < 0.001; two-tailed t-test.

SUPPLEMENTARY FIGURE 2

(A) CDF curve of samples from ICGC cohort. (B) Delta area curve of samples
from ICGC cohort. (C) ICGC clustering heatmap of samples from ICGC

cohort when consensus k = 2. (D) Overall survival curves of molecular

subtypes based on LR pairs.

SUPPLEMENTARY FIGURE 3

(A) The results of the PCA in TCGA-LIHC cohort. (B) The results of the PCA in

ICGC-LIHC cohort. (C) Distribution of risk score (high or low) in TCGA. (D)
Distribution of status (dead or alive) in TCGA. (E) Distribution of risk score

(high or low) in ICGC. (F) Distribution of status (dead or alive) in ICGC.

SUPPLEMENTARY TABLE 1

The selected LRs with R-values above 0.3 and P-values less than 0.05.

SUPPLEMENTARY TABLE 2

LRs associated with prognosis.

SUPPLEMENTARY DATA SHEET 1

Detailed procedures of cell transfection, qPCR, CCK8, transwell, colony

formation, western blotting, polarization of macrophages, collection of
conditioned media and LR.score.
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