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A growing body of research suggests that short-chain fatty acids (SCFAs),

metabolites produced by intestinal symbiotic bacteria that ferment dietary

fibers (DFs), play a crucial role in the health status of symbiotes. SCFAs act on a

variety of cell types to regulate important biological processes, including host

metabolism, intestinal function, and immune function. SCFAs also affect the

function and fate of immune cells. This finding provides a new concept in

immune metabolism and a better understanding of the regulatory role of

SCFAs in the immune system, which impacts the prevention and treatment of

disease. The mechanism by which SCFAs induce or regulate the immune

response is becoming increasingly clear. This review summarizes the different

mechanisms through which SCFAs act in cells. According to the latest research,

the regulatory role of SCFAs in the innate immune system, including in NLRP3

inflammasomes, receptors of TLR family members, neutrophils, macrophages,

natural killer cells, eosinophils, basophils and innate lymphocyte subsets, is

emphasized. The regulatory role of SCFAs in the adaptive immune system,

including in T-cell subsets, B cells, and plasma cells, is also highlighted. In

addition, we discuss the role that SCFAs play in regulating allergic airway

inflammation, colitis, and osteoporosis by influencing the immune system.

These findings provide evidence for determining treatment options based on

metabolic regulation.

KEYWORDS

short-chain fatty acid, innate immunity, adaptive immunity, histone deacetylase, G-
protein-coupled receptor
Introduction

Parts of the colon and small intestine contain many microorganisms, mainly bacteria

and some fungi. These microorganisms produce short-chain fatty acids (SCFAs) from

dietary components in the gut and from biomolecules produced by the host (1). Intestinal

SCFAs mainly include acetate (C2), propionate (C3), butyrate (C4) and valerate (C5). Most

SCFAs function in the gut, but a small amount of SCFAs reach the peripheral circulation
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via the portal vein (2, 3). A growing body of evidence suggests that

SCFAs regulate immunity and suppress or promote inflammatory

responses in the gut and other organs (4, 5). They play an important

role in the regulation of innate and adaptive immunity mediated by

a variety of mechanisms, including histone deacetylase (HDAC)

inhibition, G-protein-coupled receptor (GPR) signaling, acetyl-

CoA production, and metabolic integration. Through a

combination of these mechanisms, SCFAs induce or modulate

immune responses. However, the mechanism through which

SCFAs regulate the immune system is relatively complex, and the

mechanism of SCFAs differs among different immune cells; thus, a

comprehensive summary is currently lacking. In this review, we

more comprehensively introduce the regulatory role of SCFAs in

the immune system. In the innate immune system, SCFAs play a

role by regulating protein molecules, including the NLRP3

inflammasome and Toll-like receptors (TLRs). SCFAs also play a

role by regulating innate immune cells, including neutrophils,

macrophages, natural killer cells, eosinophils, basophils, and

innate lymphocyte subsets (ILCs). We also highlight the

regulatory role of SCFAs in the adaptive immune system,

including in T-cell subsets, B cells, and plasma cells.
Synthesis and metabolism of SCFAs

SCFAs are the most abundant microbial metabolites in the

colonic lumen and are mainly produced by the microbial

fermentation of prebiotics, such as dietary fiber. Among them, the

ratio of C2, C3 and C4 is approximately 3:1:1 (6). The

differentiation of colon epithelial stem cells and the metabolism of

facultative anaerobes in the colon ensure the anaerobic

environment of the colon (7–9). Obligate anaerobes in the colon

(e.g., Clostridium and Bacteroides) encode broad-spectrum enzymes

that hydrolyze carbohydrates and decompose dietary fibers into

sugars (10) (Table 1). The released sugars are then fermented

through glycolysis and the pentose phosphate pathway to
Frontiers in Immunology 02
hydrolyze dietary fibers into SCFAs (16–18). C2 is produced by

pyruvates via acetyl-CoA or the Wood-Ljungdahl pathway (19). C3

is synthesized from acrylates using lactic acid as a precursor and is

produced by the acrylate and propylene glycol pathways or by the

succinate pathway that converts succinate to methylmalonyl-CoA

(20, 21). C4 is reduced by condensation of two molecules of acetyl-

CoA to butyryl-CoA, which can be synthesized through the

butyrate kinase and phosphotransbutyrylase pathways (22).

Butyryl-CoA can also be converted to C4 via the acetate CoA

transferase pathway (23). In addition, C4 can be synthesized from

proteins via the lysine pathway (24). Other nutrients, including

proteins and peptides, can be metabolized to produce low levels of

SCFAs (1). Among them, the acidic amino acid glutamic acid

mainly produces C2 and C4, and aspartic acid fermentation

mainly produces C2 and C3. The deamination of the alkaline

amino acids lysine, arginine and histidine produces C2 and C4.

The neutral amino acid cysteine can produce C2, C3 and C4, and

the main products of methionine metabolism are C3 and C4 (25). In

this respect, proteins are more likely to be decomposed into small

amino acids in pH neutral and weakly alkaline environments and

are thus more likely to produce SCFAs in these environments (26).

In short, when the pH value in the lumen is 5.5, the bacteria that

produce C4 dominate; at a pH of 6.5 in the lumen, C2- and C3-

producing bacteria dominate (27).

The concentration of SCFAs in the proximal colon was 9-131

mmol/L, while the concentration of SCFAs in the distal colon was

lower (11-80 mmol/L) (2, 28). SCFAs enter cells in the following

ways: the dissociated anions bind to MCT1 (SLC16A1), MCT4

(SLC16A3), SMCT1 (SLC5A8), and SMCT2 (SLC5A12)-mediated

transporters and GPR receptors in a hydrogen-dependent or

sodium-dependent manner (29–35). Most SCFAs are consumed

by the epithelial cells of the colon (36). The remaining SCFAs enter

the superior mesenteric vein, inferior mesenteric vein and portal

vein through passive diffusion and active transport by transporters

(C2, C3 and C4 concentrations are 262.8 mM/L, 30.3 mM/L, and

30.1 mM/L, respectively) (2, 3, 37). Some SCFAs are metabolized by
TABLE 1 SCFA Production by Microbes in the Gut.

SCFAs Receptors that are
more likely to acti-

vate

Pathways/Reac-
tions

Producers References

Acetate GPR43 via acetyl-CoA Akkermansia muciniphila, Bacteroides spp., Bifidobacterium spp., Prevotella
spp., Ruminococcus spp.

(11–13)

Wood-Ljungdahl
pathway

Blautia hydrogenotrophica, Clostridium spp., Streptococcus spp.

Propionate GPR43
GPR41

succinate pathway Bacteroides spp., Phascolarctobacterium succinatutens, Dialister spp.,
Veillonella spp.

(12–14)

acrylate pathway Megasphaera elsdenii, Coprococcus catus.

propanediol pathway Salmonella spp., Roseburia inulinivorans, Ruminococcus obeum.

Butyrate GPR41
GPR109A

phosphotransbutyrylase/
butyrate kinase route

Coprococcus comes, Coprococcus eutactus. (12–15)

butyryl-CoA:acetate
CoAtransferase rout

Anaerostipes spp.(A, L), Coprococcus catus (A), Eubacterium rectale (A),
Eubacterium hallii (A, L), Faecalibacterium prausnitzii (A), Roseburia spp.
(A)
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the liver, and the remaining SCFAs are dispersed to peripheral

circulation (the concentrations of C2, C3, and C4 were 172.9 mM/L,

3.6 mM/L, and 7.5 mM/L, respectively) (38, 39). These blood

concentrations of SCFAs are thought to be high enough to affect

host cells (39), depending on the type and amount of dietary fiber

ingested by the host and the health status of the host (e.g.,

helminthic infection, viral infection, autoinflammation) (40, 41).

The receptors of SCFAs that have been widely reported are

GPR41, GPR43, GPR109A, OR51E2 (human) and OLFR78

(mouse) (42–45). SCFAs with different carbon chain lengths have

different abilities to activate GPR41, GPR43 and GPR109A

receptors. Two to three carbon chains are more likely to activate

GPR43 receptors, while 3-5 carbon chains are more likely to activate

GPR41 receptors. C4 activates the GPR109A receptor more easily

(43, 44). SCFAs are found in high levels in the gut, and most of these

receptors are activated in intestinal tissues.

SCFAs are natural inhibitors of HDAC, of which there are 18

types (46, 47). There are four classes of HDAC as follows: Class I

(HDAC1-3 and HDAC8), Class II (HDAC4-7 and HDAC9-10),

Class III (SIRT1-7) and Class IV (HDAC11) (47). Different types of

SCFAs have different inhibition rates of different types of HDAC.

For example, C4 can inhibit HDAC up to 80%, C3 can inhibit

HDAC up to 60%, and C2 has the lowest inhibition rate (48, 49).

SCFAs can affect histone acetylation by regulating the homeostasis

between histone acetyltransferase (HAT) and HDAC. HAT

transfers acetyl groups to lysine residues in the tail, forming

acetylated lysine, which neutralizes the positive charge carried by

the histones (50). HDAC deacetylates the acetylated lysine in the

histone tail, making the nucleosome compact and making it more

difficult to perform gene transcription and expression (51, 52).

Therefore, different types of SCFAs affect gene transcription in

immune cells by inhibiting the activity of different types of HDACs.
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Active functions and signaling
pathways of SCFAs
NF-kB signaling pathway

Nuclear factor-kB (NF-kB) mediates the transcription of

various cytokines and chemokines, such as the cytokines TNF-a,
TNF-b, IL-1b, IL-2, IL-3, IL-5, IL-12, and IL-18 and the chemokines

IL-8, MIP-1a, MIP-2, and MCP-1 (53–56). Two subunits of NF-kB,
P65 and P50, are acetylated and transferred from the cytoplasm into

the nucleus to promote the secretion of proinflammatory cytokines

(57). SCFAs produce anti-inflammatory effects by inhibiting NF-

kB. The order of inhibition of NF-kB activity was C4>C3>C2 (58).

HDAC can regulate the secretion of inflammatory cytokines by

inhibiting the acetylation of NF-KB (59). It was found that the

subunits p65 and p50 of NF-kB interact with HDAC to inhibit

transcription (59). Deacetylation of p65 by HDAC3 enhances the

binding of p65 to IkBa, resulting in the export of the NF-kB
complex from the nucleus back into the cytoplasm to inhibit the

transcription of proinflammatory factors (60). C3 and C4 are

known HDAC inhibitors and have been shown to regulate NF-kB
activity. For example, C4 upregulates the production of IL-10 and

inhibits the production of the proinflammatory molecules IL-12,

TNF-a, IL-1b, and NO by inhibiting NF-kB activity (61–63).

GPR receptors influence the secretion of inflammatory

cytokines by regulating the b-arrestin 2 pathway upstream of the

NF-kB signaling pathway. The GPR43 receptor reduces the level of

NF-kB through the b-arrestin 2 signaling pathway and reduces the

amount of the two subunits of NF-kB, p65 and p50, entering the

nucleus; thus, the GPR43 receptor inhibits the transcription of

proinflammatory cytokines (IL-1b and IL-6) (64, 65) (Figure 1).
FIGURE 1

SCFAs influence the immune response by a variety of signalling pathways, including epigenetic inheritance in cells (56, 66, 67).
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MAPK signaling pathway

Phosphorylated mitogen-activated protein kinase (MAPK)

regulates the ERK, JNK and P38 MAPK signaling pathways,

gene transcription, and proinflammatory cytokine secretion

(68). The acetylated state of MAPK phosphatase-1 (MKP-1)

interacts with the MAPK substrate to dephosphorylate MAPK

and inhibit the activation of the ERK, JNK and P38 MAPK

signaling pathways (69).

SCFAs may regulate MAPK pathways by inhibiting HDAC.

HDAC1-3 deacetylates MP-1, and the deacetylation of MP-1 leads

to an increase in MAPK signaling and proinflammatory cytokine

secretion (70). However, the effect of HDAC may also be

independent of MAPK signaling pathways. Treatment of bone

marrow-derived macrophages exposed to lipopolysaccharide

(LPS) with TSA (an HDAC inhibitor) inhibited TNF-a and IL-6

production in cells in a time- and dose-dependent manner.

However, TSA did not inhibit ERK1/2 and p38 phosphorylation

in macrophages (71).

SCFAs can participate in proinflammatory effects by activating

GPR41 and GPR43 receptors. It has been shown that activation of

the GPR41 and GPR43 receptors can induce ERK1/2

phosphorylation, while activation of GPR43 receptors can induce

p38 MAPK phosphorylation (72). C2 activates the GPR41 and

GPR43 receptors and their downstream ERK2/1 and MAPK

signal ing pathways and increases the product ion of

proinflammatory factors and chemokines (72, 73) (Figure 1).
mTOR signaling pathway

Rapamycin target (mTOR) is a serine/threonine protein kinase.

There are two distinct functional complexes, mTORC1 and

mTORC2, that regulate cell growth, proliferation, transcription,

mRNA renewal, translation and other important processes (74).

Activation of mTOR helps regulate barrier function in the gut and

can influence the production of immune cells and cytokines. mTOR

increases the acetyl-coA content via the glycolysis pathway, and

excess acetyl-coA is converted to citrate via the tricarboxylic acid

cycle (TCA cycle). Citrate, which is involved in the TCA cycle, is

converted to acetyl-CoA in the nucleus via ATP-citrate lyase.

Acetyl-CoA in the nucleus promotes the binding of acetyl groups

to histones and increases the acetylation of histones, ultimately

regulating gene expression and the production of cytokines such as

IL-10 and TNF (75–77). SCFAs enter cells to inhibit HDAC and

increase the acetylation of p70 S6 kinase and the phosphorylation of

rS6, thereby regulating the mTOR pathway and increasing IL-10

cytokine production (74) (Figure 1).

The activated GPR41 receptor was shown to bind to

intracellular Gai, reducing the level of cAMP. The activated

GPR43 receptor conjugates with intracellular Gaq and Gai to

inhibit cAMP levels. Increased intracellular cAMP levels facilitate

the entry of intracellular calcium ions into the cytoplasm, a process

that regulates gene transcription and translation in immune cells

(43) (Figure 1).
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Innate immunity

Regulation of the NLRP3 inflammasome
by SCFAs

The inflammasome is a multiprotein complex assembled by

intracytoplasmic pattern recognition receptors (PRRs) and is an

important part of the innate immune system (78, 79). The NLRP3

inflammasome is responsible for the maturation and secretion of

the related cytokines IL-1b and IL-18 (80). Studies have shown that

SCFAs, after binding with GPR43 and GPR109A in intestinal

epithelial cells (IECs), cause intracellular potassium ion outflow

and hyperpolarization, calcium ion inflow and activation of the

NLRP3 inflammasome (81). In addition, after activating the GPR43

receptor of IEC cells, SCFAs activate the NLRP3 inflammasome by

increasing the phosphorylation of ERK (82). However, SCFAs have

been shown to inhibit NLRP3 inflammasome activation in other

cells. For example, intervention by SCFAs significantly reduced

NLRP3 inflammasome activation in astrocytes (83). C4 exerts anti-

inflammatory effects by inhibiting the formation and activation of

the NLRP3 inflammasome in vascular endothelial cells, but C2 and

C3 do not show the same effect; thus, C4 plays an anti-inflammatory

role and contributes to the formation of new carotid intima (84).

The results discussed above indicate that not only do the same type

of SCFAs have different inhibitory or promoting effects on different

types of cells, but different types of SCFAs also have different effects

on the same types of cells. This reminds us of previous findings that

showed that SCFAs have proinflammatory effects on some cell

types, such as macrophages and microglia, and anti-inflammatory

effects on others (85, 86). Therefore, how SCFAs exert their

proinflammatory and anti-inflammatory effects requires

further study.

Regulation of TLR family members by SCFAs
The expression of PRRs enables the immune system to

distinguish intestinal commensal microorganisms from harmful

microorganisms. TLRs, a subtype of PRRs, play an important role

in the innate immune response. TLRs can promote the proliferation

of intestinal epithelial cells and the expression of antimicrobial

peptides (AMPs) (87). Studies have shown that C3 and C4 regulate

the response of multiple TLRs and TNF-a by inhibiting the histone

acetylation of HDAC (88). Among them, TLR5 is highly expressed

in the colon and can recognize the flagellin of gram-negative

bacteria by activating a series of pathways within the cell (89). In

patients with ulcerative colitis, the concentration of SCFAs in the

colon is generally consistent with the expression of TLR5 in the

colon. The content of SCFAs decreases gradually from the proximal

end of the colon to the distal end, and the expression of TLR5 also

decreases gradually from the proximal end of the colon to the distal

end, indicating that there may be a certain relationship between the

two (90). Further studies showed that the regulation of TLR5 by C4

occurred at the transcriptional level rather than at the translational

level. C4 activates PKC isoforms to dephosphorylate and acetylate

specific protein 1 (Sp1) by serine and threonine phosphatases,
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respectively, and phosphorylates specific protein 3 (Sp3) by ERK-

MAPK. This leads to displacement of Sp1 from the promoter and

binding to Sp3, which activates the transcription of TLR5 in

intestinal epithelial cells (91). This is consistent with a recent

study showing that enterobacterial flagellin activates the release of

anti-inflammatory factors (IL-10, TGF-b) and reduces

inflammation in IECs. C4 is the main metabolite secreted by

Enterobacterium, which can initiate TLR5 transcription through

Sp3, upregulate TLR5 expression, and inhibit the expression and

release of inflammatory factors (IL-6, IFN-g and TNF-a) (92). In
addition, TLR4 can activate innate immune responses by sensing

LPS in the cell walls of gram-negative bacteria (93). C4 can promote

TLR4 expression and the phosphorylation of MAPKs and NF-kB to

regulate the innate immunity of colon cancer cells, but the specific

mechanism remains unclear (94). To date, there are relatively few

studies on the pathway mechanism of SCFA-TLRs in innate

immunity, and the correlation between SCFAs and TLR signaling

pathways is not clear. However, existing studies have clearly shown

that SCFAs play an anti-inflammatory role by regulating the

expression of TLRs, which is important for the regulation of

immune homeostasis in the body.

Regulation of neutrophils by SCFAs
Neutrophils are considered the most abundant innate immune

cells in the bone marrow and peripheral blood (95). SCFAs affect

the recruitment of neutrophils to the site of inflammation and

reduce inflammation. SCFAs increase the expression of L-selectin

on the surface of neutrophil granulocytes, activate neutrophil

chemotactic recruitment to the inflammatory site, and aggravate

the inflammatory process without affecting the expression of b2
integrin mRNA (96). SCFAs induce the aggregation of neutrophils

to the site of inflammation through the CPR43 receptor. This

process is associated with the activation of intracellular protein

kinase P38 and the coupling of Gi/o and Gq proteins (97). In a

model of gout induced by sodium urate monohydrate (MSU), C2

promoted neutrophil reactive oxygen species (ROS) production in a

GPR43-dependent manner, indirectly activated the NLRP3

inflammasome, led to neutrophil recruitment to the inflammatory

site, promoted inflammasome activation, and promoted the release

of IL-1b and IL-10 (98). C4 significantly inhibits the production of

proinflammatory cytokines (e.g., IL-6, TNF-a and IFN-g) and

chemokines (e.g., CCL3, CCL4, CXCL1 and IL-8) secreted by

neutrophils in the intestines of patients with colitis to reduce

intestinal inflammation, and C4 inhibits the secretion of

proinflammatory cytokines in an HCDAC-dependent manner

(99). C2 also reduces the infiltration of pancreatic neutrophils

and significantly reduces pancreatitis in mice (100).

Macrophages
Macrophages are essential for maintaining homeostasis in the

gut (101). Previous studies have shown that the process by which C4

inhibits the production of inflammatory cytokines by intestinal

macrophages is related to the inhibition of HDAC activity (102). C4

induces anti-inflammatory properties of macrophages in a
Frontiers in Immunology 05
GPR109-dependent manner (44). A recent study showed that C4

alters macrophage metabolism and increases their antibacterial

activity. Metabolomic analysis of butyrate-treated macrophages

revealed a substantial reduction in glycolysis. This was associated

with higher amounts of adenosine monophosphate, an inducer of

MAPK, which, in turn, inhibits mTOR. As mTOR is a positive

regulator of glycolytic enzymes, its inhibition may explain the

observed reduction in glycolysis (103–105). Moreover, mTOR is

considered a key regulator of autophagy (106). The bacteria-

associated autophagy protein microtubule-associated protein 1

light chain 3a (LC3) is a key participant in autophagy, and

experiments have shown that the conversion rate of LC3 and

ROS production are increased. Further analysis by single-cell

RNA sequencing revealed that the C4-induced antibacterial

signature is characterized by increased expression of the S100A8

and S100A9 genes, which encode calprotectin, a protein with

antibacterial properties. Therefore, C4 helps increase the

antibacterial activity of macrophages by inhibiting mTOR (103–

105). In addition, in the presence of C4 and pertussis toxin (GPCR

inhibitors), macrophages exhibit enhanced antibacterial activity,

indicating that C4 enhances the antibacterial activity of

macrophages without the involvement of GPCR. Further studies

have shown that butyrate increases the expression of the S100A8

mRNA gene through its inhibition of HDAC3. Changes in

metabolism enhance the bactericidal function of macrophages

(103–105). Similarly, in mouse pancreatitis caused by

Staphylococcus aureus, C4 enhances the antibacterial program of

macrophages by inhibiting HDAC3 (107). Earlier studies have also

found that the in vitro stimulation of mouse macrophages with

butyrate leads to inhibition of inflammatory responses and

decreases in nitric oxide levels, a process mediated by HDAC

(102). In addition, SCFAs downregulate M2 polarization in

human and mouse alveolar macrophages in vitro and may

activate GPR43 but not GPR41. Butyrate and propionate (but not

acetate) increase H3 acetylation and inhibit M2 polarization in part

through HDAC inhibition (108).
Natural killer cells
Natural killer cells, which are the first identified ILC subtype,

can respond to virus-infected or virus-transformed cells with a

variety of effector functions, primarily cell killing and

proinflammatory cytokine production (109, 110). The

combination of IL-12 and IL-15 activates natural killer cells and

promotes metabolic changes needed for increased receptor

expression and cytokine secretion (111). In IL-12/IL-15-

stimulated natural killer cells, C4 inhibits the expression of the

cell surface receptors TRAIL, NKp44, NKp30, and NKG2D and

significantly inhibits the production of the proinflammatory

cytokines TNF-a, IFN-g, IL-22, soluble Fas ligand, granzyme A,

granzyme B and perforin. C3 inhibits the expression of the receptor

NKp30 and the production of the proinflammatory cytokines IFN-g
and granzyme B, but C2 does not have the same effect (112).

Researchers have found that C4-treated natural killer cells express

higher levels of bromodomain-containing protein 2 (BRD2). BRD2
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is an inflammatory cytokine that controls the production of natural

killer cells (113). mTORC1 is a key regulator of natural killer cell

metabolism (114). c-Myc regulates the secretion of survival

cytokines in natural killer cells (115, 116). C4 has been shown to

have anti-inflammatory effects by reducing mTOR activity and c-

Myc mRNA expression in natural killer cells (113). In addition, C4

inhibits glycolysis and oxidative phosphorylation in natural killer

cells by inhibiting the expression of the first enzyme in the glycolysis

pathway, HK2 (113).

Eosinophils
Eosinophils promote a variety of complex immunomodulatory

functions. Under inflammatory conditions, proinflammatory factors

can activate eosinophils and prolong their survival. Activated

eosinophils are important participants in the inflammatory process

and secrete proinflammatory factors, including IL-3, IL-6, and tumor

necrosis factor-a (117). These cells also secrete proinflammatory lipid

mediators, including platelet activating factor and cysteine-

leukotriene. Anti-inflammatory lipid mediators, including

lipoxygenase, lysins and protectors, release reactive oxygen species

(118–121). In a mouse model of allergic airway inflammation, a high-

fiber diet, probiotics, or direct administration of SCFAs effectively

reduced airway eosinophils by altering the gut microbiome and SCFA

levels (122–125). Similarly, SCFAs exert the same effect in

eosinophilia-related diseases (including asthma, atopic dermatitis,

inflammatory bowel diseases, and eosinophilic oesophagitis) (126,

127). A recent study illustrated the mechanism through which SCFAs

directly affect eosinophils. Eosinophils treated with C3 and C4 exhibit

decreased cell size and number, loss of bilobate nuclei, mitochondrial

membrane potential depolarization, and effector caspase activation,

which results in the induction of apoptosis by regulating intracellular

pathways, a process that may be mediated by inhibition of HDAC

independent of the GPR41 and GPR43 receptor pathways. However,

C2 does not impair the survival of eosinophils (128). These findings

are consistent with a previous study that revealed that C4 alleviates

airway hyperresponsiveness and eosinophilic increases in patients

with allergic asthma through HDAC inhibition and a process

independent of GPR41 and GPR43 receptor activation (125). C2

and C3 bind to GPR43 in human eosinophils, resulting in increased

intracellular calcium influx (128). Moreover, C2 and C3 stimulate the

production of ROS in human eosinophils in a concentration-

dependent manner (128). Researchers have further investigated the

potential of SCFAs to regulate the transcription of genes involved in

eosinophilic adhesion, migration, and survival. C3 and C4 have been

shown to inhibit eosinophilic adhesion and migration to the

endothelial monolayer in response to eotaxin-2 (CCL24) (128). In

addition, the surface expression of L-selectin on eosinophils is not

affected by SCFAs (128, 129).

Basophils
At present, there are many studies on the relationship between

SCFAs and eosinophils, but there are relatively few studies on the

relationship between SCFAs and basophils. C2-treated basophils
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resulted in increased intracellular calcium influx, but treatment

with C3 and C4 did not have the same effect (130). Activation of

basophils is associated with IL-3 induction of CD69 on the cell

surface (130, 131). C3 and C4 showed increased IL-3-induced

CD69 expression and increased cell IL-13 and IL-4 secretion by

inhibiting HDAC (130, 132, 133). In addition, C3 and C4 promote

an increase in IgE-mediated basophil degranulation (130, 134).

This suggests that SCFAs may be one of the important factors

regulating alkaline granulocyte activation, IL-13 expression

and degranulation.

Differential regulation of ILC subpopulations
by SCFAs

ILCs were divided into groups 1 (NK cells and non-NK cells

ILC1), 2 (ILC2) and 3 (ILC3) according to their developmental and

functional characteristics (135). It was found that C2, C3, and C4

triggered the P13K, AKT, and mTOR signaling pathways through

the excitatory action of GPR43 receptors, thereby promoting the

proliferation of intestinal ILC1s and ILC3s but inhibiting the

proliferation of intestinal ILC2s (136–138). Similarly, C4 has been

shown to inhibit ILC2 proliferation in allergic asthma, but this

process may be related to the inhibitory effect of HDAC (125). This

suggests that the effect of SCFAs on ILCs is mediated by both GPR

receptors and HDAC.

ILC3s are a major producer of intestinal barrier IL-22, which is

a member of the IL-10 family and a key cytokine regulating

inflammation. It is upregulated in chronic inflammation and

achieves anti-inflammatory effects by inducing intestinal epithelial

cells to produce AMP and mucin and repair the integrity of the

damaged intestinal epithelial barrier (139). In ILC3s, SCFAs

differentially activate AKT or ERK signaling and increase IL-22

secretion via the AKT and STAT3 axes. Among them, C2 increased

the secretion of IL-22 to a greater extent by activating the GPR43

receptor, and C3 increased the secretion of IL-22 to a lesser extent

by activating the GPR43 receptor, but C4 had no effect on the

secretion of IL-22 (140). The reasons for these findings may be that,

on the one hand, C2 and C3 activate the GPR43 receptor in ILCs

more easily than C4. On the other hand, it may be that there are

other pathways of regulation. For example, C2 enhances the

expression of IL-1R in ILC3 cells by activating the GPR43

receptor, and the increased level of IL-1R increases the sensitivity

of IL-1b, thereby indirectly inducing the production of IL-22 (141).

In addition, SCFAs can promote IL-22 secretion in ILC3s by

activating the GPR41 receptor and inhibiting the HDAC pathway

(Figure 2). After SCFAs enter cells, they upregulate the expression

of hypoxia-inducing factor 1a (HIF1a) and aromatic receptor

(AhR), which are differentially regulated by mTOR and STAT3

(141–143). HIF1a directly binds to the IL-22 promoter (144).

Finally, histone modification increases the binding of HIF1a to

the IL-22 promoter to increase IL-22 secretion (144). In conclusion,

different types of SCFAs have different regulatory effects on different

types of ILCs, and the mechanism is closely related to the expression

of the GPR receptor and the inhibition of HDAC.
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Adaptive immunity

T cells
Previous studies have shown that 17 strains in the mouse gut

microbiota (belonging to clusters IV, XIVa, and XVIII of

Clostridium difficile) induce the TGF-b response by producing

SCFAs, which may contribute to the differentiation and

amplification of Tregs in the colons of mice (145). It was later

determined that SCFAs promote the proliferation of Tregs (145).

Treg cells include FoxP3+ T cells, which prevent inflammatory

reactions in the gut by producing IL-10 (146). In the presence of

Treg cell polarization, C4 treatment of naive T cells enhanced

histone H3 acetylation in the promoter, specifically inducing

differentiation of mouse colon Treg cells by upregulating the

acetylation of conserved noncoding sequences at FoxP3 (147).

SCFAs can also indirectly promote the proliferation of Treg cells

and IL-10 production through other cell types. For example, C4 can

act on macrophages and DCs in a GPR109A-dependent manner,

indirectly inducing FoxP3+ T-cell and IL-10 production (44).

However, a recent study found that C5 did not increase the

amplification of Treg cells but increased the amount of additional

acetyl-CoA in T cells, enhanced glycolysis through the mTOR

activation pathway, and increased IL-10 production in

lymphocytes by acting as a substrate for HAT to regulate the

gene recoding process (76, 148).

SCFAs regulate T-cell metabolism through HDAC inhibition.

SCFAs can increase the differentiation of naive T cells into effector T

cells, such as Th1 and Th17 effector T cells, which may be related to

the inhibitory activity of HDAC. In T cells, SCFAs were found to

increase the acetylation of p70 S6 kinase and the phosphorylation of

rS6 by inhibiting HDAC activity, thereby increasing mTOR activity

to increase the production of Th17 and Th1 cells and IL-10(+) T

cells (149, 150).
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SCFAs can affect T cells during the antiviral process. It was found

that oral SCFAs may affect CD8+ T-cell metabolism in a GPR-

dependent manner and by inhibiting HDAC action during active

immunity to ensure rapid activation of effector T cells in response to

viral infection (151). Further studies later found that the regulation of

C4 on CD8+ T cells was mediated by the inhibitory activity of

HDAC, independent of the GPR41 and GPR43 receptors (152).

SCFAs (specifically C4) also increase the number of CD8+ memory

T cells in the spleen and liver and play an important role in

establishing an optimal secondary antigen-specific response (153).

This process is generally thought to increase glycolysis and

mitochondrial mass to promote the survival and activation of CD8

+ memory T cells (153). SCFAs have been widely recognized as an

energy source for cells. In the tumor microenvironment, SCFAs can

enhance the ability of CD8+ T cells to compete with tumor cells for

glucose, thus increasing the survival and activation of CD8+ T cells

(154). SCFAs enhance the antitumor activity of CD8+ T cells and

chimeric antigen receptor (CAR) T cells through metabolic and

epigenetic reprogramming (148). Therefore, SCFAs can regulate the

metabolism of T cells according to the states of the host.

B cells
B cells require glycolysis, oxidative phosphorylation, and the

synthesis of palmitic acid (PA) in the processes of proliferation,

differentiation, and secretion of antibodies. Glycolysis and oxidative

phosphorylation are essential for the survival of germinal B cells,

and fatty acids (FAs) are involved in the process of antibody

secretion by regulatory plasma cells (PCs) (155). Previous studies

have shown that certain probiotics, such as Lactobacillus and

Bifidobacterium species, increase fecal and serum IgA and IgG

levels but decrease fecal and serum IgA levels in germ-free and

antibiotic-treated mice (156). In mice fed prebiotics, SCFA content

and IgA levels in feces and the large intestine increased in a dose-
FIGURE 2

Effects of SCFAs on ILCs (125, 136–138, 140, 141).
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dependent manner, with increased IgA and IgG levels in serum and

no change in IgE and IgM levels. These findings suggest that SCFAs

produced by prebiotics may promote the differentiation of B cells

and the production of antibodies (157). The differentiation of B cells

into PCs and the production of antibodies require energy

metabolism within the cell to produce sufficient ATP. Previous

studies have shown that SCFAs can be converted to acetyl-CoA

(which produces ATP in the TCA cycle) via acetyl/propionyl/

butyryl CoA (158). Acetyl-coA is the main substrate for FA

synthesis (159). FA contributes to the differentiation of plasma B

cells and stimulates B cells to produce antibodies (160). The

contents of acetyl-CoA, ATP, lipids, malonyl CoA and fatty acid

synthase (FAS) were increased in B cells treated with SCFAs, and

ATP, malonyl CoA and FAS were essential for FA production (161).

In addition, SCFAs promote B-cell differentiation and antibody

production by increasing glycolysis in B cells (39).

SCFAs affect B-cell differentiation and antibody production

through HDAC inhibition and GPR receptor mediation. Studies

have found that SCFAs change the expression of B-cell-related

genes (IgGs, IgA, Igj, Igk, Igl, Aicda, Xbp1, Irf4, etc.) by inhibiting

HDAC. These genes participate in the differentiation of B cells and

promote their differentiation into antibody-producing PCs (39,

162–164). B cells can express the GPR receptor, and studies have

found that compared with wild-type mice, mice lacking the GPR43

receptor have relatively low IgA levels in the gut (165).

SCFAs regulate B cells through a number of indirect

mechanisms. SCFAs increase glucose uptake by T helper cells and

follicular helper T-cell (Tfh) induction, which regulates B-cell and

antibody production (39, 166). C2 amplifies TLR signals in Tfh

cells, and TLR selectively changes the levels of some IgA-producing

microorganisms by sensing LPS from different microorganisms

(167). In addition, C2 regulates antibody secretion by regulating

dendritic cells (DCs), activates B cells by producing BAFF/APRIL

and produces retinoic acid (RA) to induce IgA production (165).

SCFAs can regulate the production of B10 cells (regulatory B

cells (Bregs) that produce IL-10 to maintain immune homeostasis)

by a different mechanism. C2 can be converted to acetyl-CoA

synthetase (ACSS), which increases the differentiation of B10 cells

in the peritoneal cavity of mice by promoting the acetylation of ATP

and lysine produced by the TCA cycle. C3 has no direct effect on the

differentiation of B10 cells (168). C4 has been reported to induce an

increase in splenic B10 cells by indirectly promoting the production

of the serotonin-derived metabolite 5-hydroxyindole-3-acetic acid

(169). C4 can also induce IL-10-producing splenic B10 cells by

regulating the circadian clock-related genes RAR-associated orphan

receptor a and nuclear receptor subfamily 1 group D member 1

(170, 171). A subsequent study showed that SCFAs upregulated

peritoneal B10 cells in colitis mice in a manner dependent on their

HDAC inhibitory activity. Independent of the GPR receptor

pathway, transcriptional analysis showed that the action of C4 on

B10 cells was related to the activation of p38 MAPK (172). C5 can

not only increase the secretion of IL-10 but also significantly inhibit

the apoptosis of Bregs (145). These results indicate that different

SCFAs have different effects on B10 cell development, which

encourages us to conduct further research.
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Association of SCFAs with disease

Allergic asthma

The pathogenesis of allergic asthma is not well understood.

Clinical treatment focuses on reducing symptoms by inhalation of

corticosteroids and b-2 adrenergic agonists. Recently, mice fed

SCFAs showed the protective effects of SCFAs against allergic

airway inflammation (122, 173). The inflow of eosinophils into

the lung parenchyma is the signature feature of the most common

allergic asthma.

During allergic inflammation, IL-5, IL-13, and granulocyte

macrophage colony-stimulating factor (GM-CSF) secreted by Th2

and ILC2 cells promote eosinophil survival (174, 175). Activated

eosinophils are major sources of cytokines, growth factors, and

cytotoxic granulocytes (such as eosinophil-derived neurotoxins and

major basic proteins) that can cause tissue damage and airway

remodeling when released (176, 177). Recent in vitro studies using

human peripheral blood eosinophils have shown that C3 and C4

inhibit eosinophils from adhering to endothelial cells in response to

CCL24 flow, and C4 inhibits eosinophil migration and promotes

eosinophil apoptosis (128). Surprisingly, these effects may be

independent of GPR43 or GPR41 receptors but depend on the

flow of these SCFAs into eosinophils via monocarboxylate

transporters (128). In addition, we found that the biological

effects of SCFAs on eosinophils are consistent with epigenetic

regulation of gene expression by class IIa DAC, suggesting that

these effects of SCFAs on eosinophils may be mediated by HDAC

(128, 177). However, a previous study showed that diet-induced C3

prevents airway inflammation, resulting in decreased eosinophilic

infiltration in lung tissue and decreased concentrations of the

cytokines IL-4, IL-5, and IL-17A. This effect requires the

participation of GPR41 but not GPR43 and is attributable to

impaired DC activation (178, 179). Therefore, whether the effect

of SCFAs on eosinophils depends on GPR43 or GPR41 receptors

needs to be further investigated.

ILCs function to coordinate immunity, inflammation and tissue

repair and can be present on the mucosal surface of the lung and

drive allergic airway inflammatory responses (180, 181). ILC2s are

of great concern in the context of asthma and allergic diseases

because they promote Th2 immunity. Systemic and local

administrat ion of C4 attenuates ILC2-driven airway

hyperresponsiveness and eosinophil inflammation. C4 can

regulate the expression of ILC2s and inhibit their proliferation at

the transcriptional level. C4 inhibits the proliferation of ILC2s and

the production of the cytokines IL-5 and IL-13 by inhibiting the

activity of HDAC without affecting cell viability and without being

mediated by the activation of GPR41 or GPR43 (125, 182). C2 may

increase the acetylation of the Foxp3 promoter through the

inhibition of HDAC9, thus inhibiting the occurrence of allergic

asthma (183). In addition, SCFAs can also affect allergic airway

inflammation by affecting lung airway mast cells, Treg cells, Th9

cells, DCs, etc. (166, 173, 184–187). There are multiple mechanisms

for the beneficial effects of SCFAs on the human airway immune

inflammatory response, and further well-controlled long-term
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intervention studies are needed to confirm the beneficial effects of

SCFAs in airway immune inflammatory diseases.
Colitis

High dietary fiber intake and increased SCFA levels play an

important role in protecting colon immune barrier function and in

the colonic secretion of anti-inflammatory factors. SCFA

administration can improve the symptoms of various types of

colitis and reduce the probability of human colitis. Chronic

intestinal inflammation can increase the risk of colon cancer. The

concentration of SCFAs in stool is closely related to the incidence of

colitis and colon cancer. SCFAs can reduce the risk of chronic colitis

developing into colon cancer and promote the apoptosis of cancer

cells to play an antitumor role (188). Studies have shown that the

number of butyrate-producing bacteria in colon cancer patients is

significantly reduced, and the expression of receptors GPR43 and

GPR109A is also reduced considerably, indicating that SCFAs have a

protective effect on colitis and colon cancer (189). The protective

effect of SCFAs on colitis has been discussed extensively. SCFAs can

regulate colon inflammation through innate immunity and antigen-

specific adaptive immunity. As previously discussed, SCFAs can

mediate a natural immune inflammatory response by

inhibiting HDAC activity via GPR receptors. SCFAs can also affect

intestinal IL-10 production and IgA secretion through multiple

mechanisms. SCFAs generally show anti-inflammatory

effects in the colon depending on the concentration and the

immunological environment.
Osteoporosis

Osteohomeostasis is maintained through coordination between

the bone formation process managed by osteoblasts and bone

resorption managed by osteoclasts. Probiotics prevent bone loss,

promote bone formation and increase bone volume in mice (190–

192). Previous studies have shown that SCFAs can indirectly

stimulate bone formation. C4 increases the proportion of CD4

+/CD8+ T cells and the number of Treg cells in the bone marrow.

Treg cells activate NFAT and SMAD signal transduction, which

results in indirect induction of Wnt10b production in CD8+ T cells

and thus indirect stimulation of bone formation (193). A recent

study showed that C3 and C4 directly upregulate osteoblast

differentiation. Alkaline phosphatase (ALP) activity is a marker of

osteogenic differentiation of mouse embryonic osteoblast

progenitor cells (MC3T3-E1 cells). C2 and C3 increase the

activity of ALP, and C2 increases the expression of ALP mRNA;

however, C4 does not affect the activity of ALP or the expression of

ALP mRNA (194). Osteopathic (OPN) is a highly phosphorylated

and glycosylated salivary protein that is expressed in osteoblasts and

osteoclasts (195). C2, C3 and C4 increase the expression of OPN in

MC3T3-E1 cells (194). SCFAs can inhibit osteoclast differentiation

(161). The differentiation of precursor cells into mature osteoclasts

depends on oxidative phosphorylation, and the bone resorption of

mature osteoclasts depends on glycolysis (196, 197). By inducing
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the metabolic recoding of osteoclasts, C3 and C4 weaken the

oxidative phosphorylation of precursor cells through a process

dependent on mature osteoclasts, enhance glycolysis, induce a

stress response, and prevent osteoclast differentiation. Moreover,

C3 and C4 downregulate the expression of the osteoclast genes

TRAF6 and NFATC1 to inhibit osteoclast differentiation (192).

Conclusion

Over the past few decades, by sequencing and analyzing

different types of human gut microbiota and constructing their

metabolic processes, researchers have recognized the important

roles of microbial metabolites in health and disease mediated

through microbe-host interactions. As one of the most important

metabolites of intestinal microorganisms, SCFAs have been shown

to regulate host physiology and health through innate and adaptive

immunity. For example, SCFAs can affect the inflammatory

response of the central nervous system and affect bone diseases

(198–204). In addition, it can regulate rheumatic diseases,

osteoarthritis, hepatitis, vasculitis and so on (169, 205–209).

Although the current review has limitations, it is challenging to

decipher all the complexities of the effects of intestinal SCFAs on

immune metabolism. This calls for further exploration of the

relationship between SCFA pairs and the immune system, which

is critical for identifying treatment options based on SCFAs.
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