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Background: While recent studies have separately explored mutational

signatures and the tumor microenvironment (TME), there is limited research on

the associations of both factors in a pan-cancer context.

Materials and methods: We performed a pan-cancer analysis of over 8,000

tumor samples from The Cancer Genome Atlas (TCGA) project. Machine learning

methods were employed to systematically explore the relationship between

mutational signatures and TME and develop a risk score based on TME-

associated mutational signatures to predict patient survival outcomes. We also

constructed an interaction model to explore howmutational signatures and TME

interact and influence cancer prognosis.

Results: Our analysis revealed a varied association between mutational

signatures and TME, with the Clock-like signature showing the most

widespread influence. Risk scores based on mutational signatures mainly

induced by Clock-like and AID/APOBEC activity exhibited strong pan-cancer

survival stratification ability. We also propose a novel approach to predict

transcriptome decomposed infiltration levels using genome-derived

mutational signatures as an alternative approach for exploring TME cell types

when transcriptome data are unavailable. Our comprehensive analysis revealed

that certain mutational signatures and their interaction with immune cells

significantly impact clinical outcomes in particular cancer types. For instance, T

cell infiltration levels only served as a prognostic biomarker in melanoma patients

with high ultraviolet radiation exposure, breast cancer patients with high

homologous recombination deficiency signature, and lung adenocarcinoma

patients with high tobacco-associated mutational signature.

Conclusion:Our study comprehensively explains the complex interplay between

mutational signatures and immune infiltration in cancer. The results highlight the

importance of considering both mutational signatures and immune phenotypes

in cancer research and their significant implications for developing personalized

cancer treatments and more effective immunotherapy.
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Introduction
Mutational signatures refer to the specific patterns of mutations

arising in cancer genomes due to DNA damage from endogenous

and exogenous sources (1, 2). They have become increasingly

important in understanding the underlying mechanisms of

carcinogenesis and have been extensively studied to gain insight

into various factors contributing to cancer development (3–6). The

significance of mutational signatures in cancer research extends to

both basic and clinical studies, providing important information for

developing targeted therapies and improving patient outcomes (7,

8). Studies on mutational signatures, such as those related to

homologous recombination repair defects (9–12), mismatch

repair defects (13, 14), and AID/APOBEC mutagenesis (15–17),

have significant implications for the progress of precision medicine

and immunotherapy in cancer. These mutational signatures provide

valuable insights into the underlying mechanisms of tumorigenesis,

allowing for more informed therapeutic decisions based on a

patient’s specific genetic landscape. By identifying and targeting

specific mutational signatures, researchers can develop tailored

treatments optimized for the unique genetic characteristics of an

individual patient’s tumor.

The tumor microenvironment (TME) is an essential aspect of

cancer biology that involves the interactions of various components

within the microenvironment, such as tumor cells, immune cells,

stromal cells, and the extracellular matrix (18, 19). The composition

and functions of the TME have a significant impact on tumor growth

and progression, as well as cancer treatment efficacy (20–22). Recent

studies have demonstrated the crucial role of the TME in regulating

anti-tumor immunity and shaping responses to cancer therapies (23,

24). In particular, the presence of immune cells, such as T cells and

immune checkpoint molecules, and their interactions with tumor cells

and the surrounding stroma can either inhibit or promote tumor

progression and influence the response to cancer treatments (25–27).

As a result, TME has become a promising target for cancer therapy

and is attracting increasing attention from the scientific community.

The relationship between mutational signatures and the TME

remains largely unknown, despite their growing recognition and

importance. Therefore, investigating the interplay between

mutational signatures and the TME is crucial to improve current

cancer diagnosis and treatment approaches, including the discovery

of novel checkpoint immunotherapy biomarkers (28), the

transformation of non-responsive “cold” tumors into responsive

“hot” tumors (29), and the development of strategies to overcome

resistance to checkpoint immunotherapy (30) and T cell-based

immunotherapy (31). To address this knowledge gap, this present

study aims to comprehensively analyze the interplay between

mutational signatures and the tumor immune microenvironment

via pan-cancer analysis. The primary aim of this analysis is to

identify the immune features and cell types influenced by specific

mutational signatures. Given the pivotal role of this interaction in

determining the clinical outcome of tumors, our study is expected to

improve our understanding of the mutational processes involved in

tumor immune response and help advance the field of precision

cancer therapy.
Frontiers in Immunology 02
Results

Overview of pan-cancer
mutational signatures and
the tumor microenvironment

Overview of our study is shown in Figure 1A. In total, 47 non-

artificial single base substitution (SBS) mutational signatures annotated

in the COSMIC mutational signature database (https://

cancer.sanger.ac.uk/signatures/sbs/) are included. These mutational

signatures were further aggregated as 13 types of “etiology-associated”

mutational signatures to facilitate the biological interpretation of these

signatures. In this process, seven SBS mutational signatures with

annotation related to defects in mismatch repair (dMMR) were

merged into the dMMR-associated mutational signature (Figure 1B).

In comparison, only SBS3 is related to homologous recombination

deficiency (HRD), therefore we just renamed SBS3 as HRD-associated

mutational signature. To accurately describe the tumor

microenvironment, we adopted the data of 21 cell types from the

state-of-the-art approach Kassandra (32).We observed a heterogeneous

distribution of tumor immune infiltration, with cancer type DLBC

having themost inflamed tumormicroenvironment while UVMhaving

the most non-inflamed phenotype (Figure 1C). This observation is

consistent with previous reports (33).

Next, we examined the pan-cancer level abundance of mutational

signatures in SBS mutational signature or etiology-associated

mutational signature manner, respectively (Figures 1D, E). We

found that the constitution of mutational signatures varied greatly

across tumor types. For instance, SBS1 activity decreased from 40% in

colorectal cancer (CRC) to 5% in lung squamous cell carcinoma

(LUSC) (Figure 1D). Similar patterns were observed for the etiology-

associated mutational signature “Clock-like”, indicating that aging

contributes significantly to the tumor mutation load and the history

of tumor formation and development (Figure 1E) (34). Meanwhile,

we also identified cancer type-specific mutational signatures such as

UV (ultraviolet radiation exposure) in skin cutaneous melanoma

(SKCM) and Tobacco in lung adenocarcinoma (LUAD) and lung

squamous cell carcinoma (LUSC). Interestingly, the dMMR-

associated mutational signature accounted for approximately 20%

of colorectal cancer, which could explain the presence of MSI-H in

around 15% of colorectal cancer (35). The dMMR-associated

signature was also active in pancreatic cancer and diffuse large B

cell lymphoma, suggesting that it may be a valuable immunotherapy

marker in these cancers. Conversely, kidney cancer, nasopharyngeal

carcinoma, as well as head and neck squamous cell carcinoma have

low dMMR proportions (36), suggesting that the dMMR signature

may not be a suitable immunotherapy marker for these cancers.
Panorama of interrelation between
mutational signatures and the
tumor microenvironment

We further explored the relationship between mutational

signatures and the TME and found their broad connections in

cancer (Figure 2; Supplementary Figure 1). Mutational signatures
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SBS1, SBS2, SBS5, SBS13, SBS40, etc. have extensive pan-cancer

associations with immune microenvironments, while SBS4, SBS7,

SBS11, SBS15, SBS17, etc. exhibit cancer type-specific property or

immune cell type bias. In the meantime, more than half of SBS
Frontiers in Immunology 03
mutational signatures lack correlation to the TME (Figure 2A). We

listed the top cancer types for each cell type with the highest number

of significantly associated SBS mutational signatures and found that

PD1 high CD8 T cell was associated with four SBS mutational
A

B

D E

C

FIGURE 1

Study flowchart and data overview. (A) Flowchart of this study. (B) Summary of etiology-associated mutational signatures. The number of SBS
mutational signatures combined with each etiology has been shown as the number above the bar. Detailed data are available in Supplementary
Table 1. (C) Abundances heatmap of 21 cell types in the TME across cancer types based on the Kassandra approach. (D) Averaged proportions of SBS
mutational signatures across cancer types. The mutational signatures are sorted according to the proportion of SBS1. (E) Averaged proportions of
etiology-associated mutational signatures across cancer types. The mutational signatures are sorted according to the proportion of Clock-like-
associated mutational signatures.
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signatures in both ESCA and DLBC (Figures 2A, B). We also listed

the top cell types for each cancer type with the highest number of

significantly associated SBS mutational signatures (Figure 2C). For

example, cell type “lymphocytes” was associated with seven SBS

mutational signatures in cancer type ESCA (Figures 2A, C). We

conducted additional analyses to investigate whether the association

between mutational signatures and TME is dependent on age,

gender and tumor stage. Our results show that these factors do

not seem to significantly impact our findings (Supplementary

Figure 2A, B).

By analyzing etiology-associated mutational signatures, we

identified three distinct connection patterns. The first pattern

involves Clock-like and AID/APOBEC activity-associated mutational

signatures, which have a pan-cancer impact on diverse TME cell types

(Figure 2D; Supplementary Table 3). In detail, we found that the Clock-

like associated mutational signature is associated with more than 26

cancer types across 17 cell types, except for a few cell types such as

macrophages M2 (four cancer types), NK (nine cancer types),

macrophages (11 cancer types), and monocytes (one cancer type).

Similarly, the AID/APOBEC activity associated mutational signatures

is associated with 15 cancer types across 20 cell types. The second

pattern includes endogenous ROS (reactive oxygen species), dMMR,

and dBER (DNA base excision repair) associated mutational

signatures, which exhibit associations with multiple TME cell types

in a few cancer types. The ROS-associated mutational signature is

related to 16 cell types in six cancer types: ACC, DLBC, ESCA, KICH,

STAD, and THYM. The dBER-associated mutational signatures are

associated with nine cell types in three cancer types: BRCA, GBM, and

MESO. The dMMR-associated mutational signatures involves 15 cell

types, such as B cells, CD4T cells, CD8T cells, fibroblasts, NK cells, and

macrophages, and are associated with nine cancer types: CRC, DLBC,

PCPG, STAD, TGCT, THCA, THYM, UCEC, and UVM. The third

pattern involves cancer type-specific mutational signatures from

environmental or endogenous causes, such as the HRD-associated

mutational signatures in BRCA, the Tobacco-associated mutational

signatures in lung cancer including LUAD, and LUSC, and UV-

associated mutational signatures in SKCM.

The remaining etiology-associated mutational signatures including

Polymerase mutation, Aristolochic acid, Aflatoxin and Haloalkanes,

show little association with TME cell types under a significance level of

FDR < 0.1. Additionally, we validated our data with other two

recommended TME decomposition methods EPIC and quanTIseq

fromTIMER 2.0 database (37, 38), similar associations and patterns are

observed (Supplementary Figures 2C–F).
Prediction of immune infiltration levels by
mutational signatures in cancer

The tumor microenvironment plays a significant role in tumor

evolution and can serve as a predictor for both prognosis and response

to immunotherapy (25). In recent years, transcriptome analysis has

been widely used to evaluate the infiltration levels of TME cells.

However, measurements of the TME cell types such as tumor-

infiltrating lymphocytes are limited by a shortage of appropriate data

analysis methods, particularly in genomics. In light of the extensive
Frontiers in Immunology 04
connections between many mutational signatures and TME cell types

observed in our data, we hypothesized that mutational signatures

derived from cancer genomics could be used to predict immune

infiltration levels. To test this hypothesis, we selected mutational

signatures significantly associated with TME and employed LASSO

(39) to develop a prediction model based on mutational signatures to

infer the infiltration levels of TME cell types across cancer types.

Our results show that the prediction performance of our model

varied across different cancer types and TME cell types (Figure 3A).

Specifically, for B cells, T cells, and T helper cells in cancer type CHOL

and neutrophil cells in cancer type KICH, the correlation coefficients

between predicted values and Kassandra inferred values were above

0.6; for T helpers, plasma B cells, monocytes, CD4T cells,

endothelium, and T cells (including CD8T cells with low PD1

expression) in THYM, as well as B cells and plasma B cells in UCS,

the correlation coefficients can still reach a level of 0.4-0.5. Besides, our

model has the statistically significant prediction ability for inferring

the infiltration levels of CD8 T cells in cancer types including CHOL,

CRC, MESO, THYM and UCS instead of BLCA, BRCA, etc. This is

confirmed by using TME decomposition methods EPIC and

quanTIseq (Supplementary Figure 3).

Although the poor prediction performance in BLCA and BRCA,

our further analysis found that classification based on the predicted

infiltration levels of most TME cell types could efficiently distinguish

the abundance distribution of corresponding cell types (Figure 3B;

Supplementary Figure 3). This reflects mutational signatures tend to

indirectly alter the status of the tumor immune microenvironment,

rather than directly causing biological coordinated changes.

Altogether, our data suggest that our prediction model based on

mutational signature to some extent could be a surrogate approach

when no transcriptomic data available.
Pan-cancer prognosis stratification with
immune-related mutational signatures

Prognostic biomarkers enable identification of patients with a

more aggressive tumor evolution (40). Here we first investigate the

prognostic significance of various immune cells by assessing four

survival endpoints (OS, overall survival; PFI, progression free

interval; DFI, disease free interval; DSS, disease specific survival)

in multiple cancer types. Our data show that CD8 T cells and

lymphocytes are protective factors, while cancer-associated

fibroblasts (CAFs) acts as a risk factor, consistent with previous

report (Figure 4A) (18). To further explore the prognosis

significance of mutational signatures related to the immune

infiltration, we established an overall survival risk score using the

LASSO Cox model. We then evaluated the prognostic performance

of the risk score in various cancer types (Figures 4B, C). Notably,

our risk score exhibits effective discrimination in 25 out of 31 cancer

types. Although the tests for CES and UCS are insignificant, they

still showed a stratification trend (Supplementary Figures 4B, C).

Risk scores of most cancer types consists of contribution from

multiple mutational signatures, including the Clock-like signature

(SBS1, SBS5, and SBS40) and the AID/APOBEC activity signature
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1186357
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Luo et al. 10.3389/fimmu.2023.1186357
(SBS2 and SBS13) (Figure 4B). This is consistent with previous

studies showing that Clock-like and AID/APOBEC activity

signatures could significantly affect tumor growth and patient

prognosis (34, 41). Moreover, our etiology-associated mutational

signatures analysis further demonstrated that the Clock-like
Frontiers in Immunology 05
signature and the AID/APOBEC activity signature are the major

contributors of risk scores in many types of cancer, with additional

mutational signatures contributing to some specific cancer types,

such as dMMR in CRC and HRD in BRCA. These findings align

with prognosis analyses of previous studies for dMMR or MSI-H in
A B

D

C

FIGURE 2

Association map between mutational signatures and cell types in the tumor microenvironment. (A) Heatmap depicting the relationship between SBS
mutational signatures and TME cell types in 31 cancer types. Each row represents a SBS mutational signature, and each color represents a cancer type.
The percentage on the left represents the proportion of cell types affected by each SBS mutational signature. The bar chart at the top shows the number
of associations with mutational signatures per cell type. “+” and “-” are signs for positive association and negative association, respectively. Color categories
indicate cancer types where the association has been found. Blank squares indicate that a SBS mutational signature was not found to have an association
with a particular immune cell type with a threshold FDR<0.1. Detailed data are available in Supplementary Table 3. The result of uncalibrated P-values is
shown in Supplementary Figure 1. (B) Top cancer types with the highest number of associations per cell type. (C) Top TME cell types with the highest
number of associations per cancer type. (D) Heatmap depicting the etiology-associated mutational signatures associated with TME cell types in 31 cancer
types. Detailed data are available in Supplementary Tables 3, 4.
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CRC and HRD in BRCA (9–14). In summary, our data support a

novel risk score based on immune-related mutational signatures for

pan-cancer prognosis stratification, which may have important

implications for personalized cancer therapy.
A statistical interaction test identifies
mutational signatures of immune
phenotype alteration

Given few systematic studies jointly exploring mutational

signatures and the tumor immune microenvironment, whether

their interactions would affect clinical outcomes or not remains
Frontiers in Immunology 06
largely unclear. We posit that combining tumor mutational

signatures, immune status, and patient survival outcomes could

reveal key TME regulatory factors. In breast cancer (BRCA), we

found that patients with higher CD8 T cell infiltration in the TME

have poorer survival outcomes, but only when mutational signature

SBS5 activity is low (Figure 5A). Wei et al. found that sufficient

Clock-like signatures were associated with worse prognosis and the

reduction of cytotoxic cell infiltration in melanoma and lung cancer

immunotherapy cohorts, increasing the reliability of our

results (42).

In statistical terms, the interaction between two variables occurs

when one variable’s effect depends on the other variable’s value. In

our example, the impact of higher PD1 high CD8 T cell infiltration
A

B

FIGURE 3

Performance of predicting tumor immune infiltration with LASSO regression modeling on mutational signatures. (A) Spearman correlation of predicted and
true infiltration values for different cell types. Only absolute Spearman correlation coefficients >0.3 have been shown. Blank boxes indicate that the
constructed model could not predict the cell type. (B) Evaluation of the status of actual infiltration by grouping the predicted values. Wilcoxon test, *
p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001. More results are provided in Supplementary Figure 3. Detailed data are available in Supplementary Table 7.
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on survival outcome depends on SBS5 signature activity, illustrating

a typical case of variable interaction. By using the Cox interaction

model inspired by Jiang et al. study (26), we tested possible

interactions between mutational signatures and infiltration of

TME cell types on overall survival, with controlling potential
Frontiers in Immunology 07
confounding factors age, gender, and pathological stage under a

false discovery rate (FDR) below 0.1 (Figure 5B). Across 14 selected

cancer types, ten mutational signatures, including SBS1, SBS2, SBS3,

SBS4, SBS5, SBS7b, SBS7d, SBS13, SBS17a and SBS40, showed

significant interactions with immune infiltration (Figure 5C).
A B

C

FIGURE 4

Stratification of patient survival based on immune-related SBS mutational signatures. (A) TME cell types associated with pan-cancer survival. Hazard
ratio (HR) values ranging from 0 to 1 are colored in green and represent protective factors, while HR values exceeding 1 are colored in red and
represent risk factors. (B) Forest plot displaying the associations between immune-related mutational signatures derived risk scores and patient
overall survival using univariate Cox regression analysis. (C) Kaplan–Meier analysis for patients with high and low risk scores in different cancer types.
High-risk scores are associated with generally poor survival. Detailed data are available in Supplementary Table 8. #*p<0.05, ** p<0.01, *** <0.001,
**** p<0.0001.
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Altogether, our results demonstrate the complex interplay

between mutational signatures and immune cell infiltration in the

TME and some detail interactions have significant implications for

patient survival outcomes, this provides a deeper understanding of

mutational signature involved TME regulation and rich resources

for further investigations.
Cancer type-specific interactions
between mutational signatures
and the tumor microenvironment

Further analysis based on etiology-associated mutational

signatures also shows the widespread impact of mutational

signatures on the TME in 11 cancer types (Supplementary
Frontiers in Immunology 08
Figure 5A), such as AID/APOBEC activity, affected three or more

cell types of TME in three cancers (Supplementary Figures 5B, C).

Furthermore, we identified several pathogenic factors that exhibited

cancer-specific interaction effects (Figure 6).

One example is the strong relationship between UV-associated

mutational signature and skin cutaneous melanoma (SKCM). The

higher UV exposure, the stronger inhibitory effect of lymphocytes,

T cells, and Tregs cells on tumor growth. This observation is

consistent with previous reports that UV exposure can affect the

genomic and immune phenotypes of SKCM, ultimately promoting

cancer occurrence and development (43–45).

Breast cancer (BRCA) is the most common cancer type with

HRD phenotype (also named BRCAness). the presence of HRD can

affect the occurrence and development of the disease and is closely

related to prognosis (46, 47). Comparing to 30 other cancer types,
A

B

C

FIGURE 5

The interaction test identifies mutational signatures of immune phenotype alteration. (A) The association between the CD8 T cell level and overall
patient survival for kidney renal papillary cell carcinomas with different SBS5 mutational signature activities. Overall survival was analyzed by the two-
sided Wald test in the Cox-PH regression to assess the association between TME cell level and overall survival. Samples were categorized by SBS5
mutational signature activity, and were further classified into “High TME cells” (red) and “Low TME cells” (blue) based on TME cell values to show the
association between TME cell level and overall survival outcome. (B) An interaction test in a Cox-PH regression to identify mutational signatures
associated with immune phenotypes. The variable “TME” denotes the level of TME cell infiltration, while “MutSig” represents the activity of a
candidate mutational signature. The coefficient “d” reflects the effect of the interaction between TME cells and MutSig on the death hazard outcome
estimated from the overall survival data. The graphs depict the association slopes between TME cells and death hazard, with the black and gold
arrows indicating the association slopes before and after increasing the level of MutSig. (C) Mutational signatures with significant immune phenotype
interactions in multiple cancer types. Fourteen cancer types have ten mutational signatures passing the FDR threshold of 0.1. The mutational
signatures that have significant immune phenotype interaction scores, defined as the z-score of d/standard error (s.e.), are marked with stars. The
two-sided Wald test P-values corresponding to an FDR less than 0.1 were used to determine the significance of the mutational signatures. Detailed
data are available in Supplementary Table 9.
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our analysis reveals that the interaction effects of HRD only

manifest in breast cancer, typically promoting the beneficial

survival effect of T cell, CD4 T cell, Tregs, and Th cell

(Figure 6B). Patients with high infiltration levels and high HRD

signature activity achieved better survival outcomes.

Tobacco-associated mutational signatures in lung cancer had

much broader impacts on the TME than the previous two tumors,

which is consistent with previous research results (48). Overall, the

interaction effect is synergistic, with markedly more substantial

immune status and higher exposure will prolong life, especially in

myeloid cells, lymphocytes, T cells, B cells, macrophages, and

macrophages M2 (Figure 5A). Interestingly, fibroblasts display a

different form of combined effect in LUAD.When tobacco exposure

was low, lower CAF infiltration was associated with a better

prognosis (Figure 6C). These findings suggest that the impact of

mutational signatures on the TME was not uniform across different

cancers and might be influenced by cancer-specific factors.

We conducted additional analyses to investigate the influence of

mutational signature and tumor microenvironment (TME)

interactions on patient survival in three separate cohorts of patients

receiving immunotherapy [Van Allen et al., 2015 (49); Hugo et al.,

2016 (50); Snyder et al., 2017 (51)]. These include two melanoma

datasets and one urethral carcinoma dataset. We observed that UV

signatures are both dominant in two melanoma datasets

(Supplementary Figures 6A, B, E, F) and AID/APOBEC activity is

dominant in the urethral carcinoma dataset (Supplementary

Figures 6H, I). Importantly, in both the Van Allen et al., 2015 (49)

and Hugo et al., 2016 (50), the interaction between the TME and the

UV signatures affects the patient survival outcome (Supplementary

Figures 6C, D, G); in Snyder et al., 2017 (51), the interaction between

the TME and the APOBEC signatures affects the patient survival

outcome (Supplementary Figures 6J, K). Significant survival

differences were only observed in group with low dominant

signature activity. The data underline the impact of mutational

signatures on TME constitution and function, emphasizing the

potential clinical importance of mutational signatures.
Discussion

This study investigated the relationship between the well-

established SBS mutational signatures and the tumor immune

microenvironment across multiple cancer types. Our data

revealed that specific mutational signatures could impact the

tumor immune microenvironment, and their interaction plays a

crucial role in shaping clinical outcomes. Smoking was found to

disrupt the immune system’s balance and promote tumor growth

and spread, with high levels of tobacco activity associated with a

stronger correlation between immune status and better prognosis in

LUAD. Homologous recombination deficiency (HRD) was also

found to enhance CD8 T cell-mediated killing, which may be

important for improving treatment in BRCA and other cancer

types. Moreover, a close association between UV radiation and skin

cutaneous melanoma (SKCM) was observed. Collectively, this study

emphasizes the importance of understanding the interactions of

specific mutational signatures and tumor immunophenotypes,
Frontiers in Immunology 09
and their synergistic or antagonistic effects on patient

survival outcomes.

Although previous research has established that high levels of

APOBEC mutagenesis are enriched in Bladder (BLCA), head and

neck (HNSC), and lung cancers (LUAD and LUSC) (52), the

present study demonstrates that the APOBEC signature exerts

different interaction effects in these cancers. Specifically, we

observed a significant antagonistic effect between APOBEC

act iv i ty and var ious types of immune ce l ls in lung

adenocarcinoma (LUAD) but not in LUSC, indicating that higher

APOBEC levels in tumors could inhibit the beneficial association

between high immune infiltration and prolonged overall survival

(Supplementary Figures 5B, C). Conversely, in head and neck

squamous cell carcinoma (HNSC) and bladder urothelial

carcinoma (BLAC), there were synergistic effects between

APOBEC activity and immune cell infiltration levels in the

survival outcomes of cancer patients (Supplementary Figure 5C).

Patients with high immune cell infiltration levels exhibited

favorable prognosis under high APOBEC activity. We also

observed a correlation between dMMR-associated mutational

signatures and tumor neo-antigen burden, further supporting the

formation of new antigens from hypermutation processes and

corresponding close changes of immune microenvironments

(53–55).

Despite the significance of the findings, the study is not without

limitations. First, APOBEC mutagenesis is generally associated with

heightened immune activity and improved survival in most cancers,

including BLCA (56, 57), HNSC (58), and BRCA (59, 60). However,

early evidence suggests that APOBEC correlates with the

overexpression of the immune checkpoint molecule PD-L1, which

may contribute to the development of immune exhaustion within

cancer, leading to poor survival (61). Second, we acknowledge that

our sample size, particularly for certain tumor types, may be

insufficient for detecting subtle associations between mutational

signatures and TME. Third, while our analysis was primarily

conducted using TCGA data, we recognize that the lack of other

pan-cancer datasets may limit the generalizability of our findings.

Fourth, no significantly consistent interactions were observed in the

two melanoma immunotherapy datasets. This may due to the

insufficient sample size or dataset heterogeneity. Therefore,

further research is needed to validate the interaction risk model

and address any disputes that may arise regarding the findings.

However, despite these limitations, we believe that our study

provides valuable insights into the relationship between

mutational signatures and TME across multiple cancer types and

lays the groundwork for future research in this area.

Although multiple types of mutational signatures including SBS

signatures, double-base substitution (DBS) signatures, insertion-

deletion (INDEL) signatures and copy number signatures have been

proposed (1, 62), only well-established SBS signatures are

considered in this study due to several reasons. Firstly, the sample

size of TCGA with available information on DBS signatures and

INDEL signatures is very low compared to SBS signatures. This is

because DBS and INDEL mutations are much less frequent than

SBS mutations, which limits our ability to obtain reliable results

across different tumor types and pan-cancer analyses. Therefore, we
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excluded these signatures from our initial explorations. Secondly,

we did explore copy number variation (CNV) signatures, but we did

not observe any positive results, particularly regarding the

interaction between CNV patterns and the composition of

immune microenvironments. As a result, we did not include

CNV signatures in our presented data. Expanding our analysis to
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include other mutational signatures in future studies if sample sizes

allow could potentially provide further insights into the relationship

between mutational processes and the immune system.

In conclusion, this study contributes significantly to

understanding the complex interaction between mutational

signatures and the tumor immune microenvironment, which can
A

B

C

FIGURE 6

Cancer-type specific mutational signatures are associated with immune phenotypes and patient clinical outcomes. (A) Kaplan-Meier curves and log-
rank tests were used to evaluate overall survival in 352 skin cutaneous melanoma (SKCM) samples, based on UV-associated mutational signature
activity and TME cell infiltration. TME cell levels were classified into high and low abundance groups, using the average infiltration level as the
threshold. (B) Kaplan-Meier curves and log-rank tests were used to evaluate overall survival in 888 breast cancer (BRCA) samples, according to HRD-
associated mutational signature activity and TME cell infiltration. (C) Kaplan-Meier curves and log-rank tests were used to evaluate overall survival in
444 lung adenocarcinoma (LUAD) samples, based on tobacco-associated activity and TME cell infiltration. Detailed data are available in
Supplementary Table 9.
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potentially improve precision cancer therapy. Further research is

warranted to validate these findings and devise novel strategies that

can specifically target mutational signatures and immune cell

components for improved clinical outcomes. Additionally, more

extensive investigations should explore the molecular mechanisms

underlying the interaction between mutational signatures and the

tumor immune microenvironment to identify promising targets for

the development of novel therapies, ultimately leading to improved

cancer treatment efficacy and patient outcomes.
Methods

Data collection

In this study, we analyzed data of cancer patients from The

Cancer Genome Atlas (TCGA) project. Patient clinical

information including survival data were acquired from R package

UCSCXenaShiny (63). Mutational signature activities were obtained

from Alexandrov et al. (2). Kassandra decomposed tumor

microenvironment estimations were obtained from (32), EPIC (64),

and quanTIseq (65) decomposed tumor microenvironment

estimations were obtained from TIMER 2.0 database (http://

timer.cistrome.org) (38). Three immunotherapy genomics datasets

including Van Allen et al., 2015 (49), Hugo et al., 2016 (50), and

Snyder et al., 2017 (51) were collected from the TIGS study (66). In

more detail, the Van Allen et al. (2015) (49) study is a melanoma

immune cohort targeting CTLA-4, including 110 whole-exome

sequencing samples, 110 patient clinical information, and 43 RNA-

seq samples. The Hugo et al. (2016) (50) study targets PD-1 in the

melanoma immune cohort, including 38 whole-exome sequencing

samples, 37 patient clinical information, and 27 RNA-seq samples.

Lastly, the Snyder et al. (2017) (51) study is a urothelial cancer cohort

targeting PD-L1, including 25 whole-exome sequencing samples, 25

patient clinical information, and 25 RNA-seq samples.
Data preprocessing

TCGA cohort LAML (Acute Myeloid Leukemia) was excluded

from our analysis due to the distinctive immunological status. COAD

and READ were combined into CRC. In total, 31 cancer types were

included in our study. Cancer patients with data of both SBS

mutational signature activities and Kassandra decomposed tumor

microenvironment estimations were kept. Next, we removed SBS

mutational signatures which are categorized as “Possible sequencing

artefacts” in COSMIC mutational signature database (https://

cancer.sanger.ac.uk/signatures/sbs/). Furthermore, we only kept SBS

mutational signatures with non-zero signature activity exceeded 15%

of the total sample size for each cancer type. Themutational signature

activities were normalized by Z-score method and scaled to range 0 to

1. The activities of etiology-associated mutational signatures were

calculated as the sum of signature activities of SBS mutational

signatures with the same etiology (Supplementary Table 1), such as

concurrent POLE/POLD1 mutations, concurrent polymerase epsilon
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mutation, DNAmismatch repair andMSI were attributed to dMMR-

associated mutational signatures. We excluded mutational signatures

with “unknown” etiology for subsequent analysis to enhance the data

interpretability. For our analysis, we used immune infiltration data

from tumor samples that matched the filtered mutation

data mentioned above. To ensure the reliability, accuracy, and

biological significance of our results, we primarily use TME data

from Aleksandr et al. (2022) (32). We retained 21 cell types in the

Kassandra algorithm: B cells, CD4 T cells, CD8 T cells, CD8 T cells

PD1 high, CD8 T cells PD1 low, Endothelium, Fibroblasts, Immune

general, Lymphocytes, Macrophages, Macrophages M1, Myeloid

cells, NK cells, Neutrophils, Non-plasma B cells, T helpers, and

Tregs. We also included seven cell types identified by the EPIC

method: B cells, CAFs, CD4+ T cells, CD8+ T cells, Endothelium,

Macrophages, and NK cells; and four cell types detected by the

quanTIseq method: B cells, NK cells, CD8+ T cells, and Tregs.
Association analysis between mutational
signatures and the tumor
microenvironment estimations

A linear regression model was constructed for each TME cell type

by using the mutational signature matrix and a matrix containing

one-hot encoded patient-specific cancer type as covariable. To test if

clinical factors could significantly impact the regression results, we

also built a similar model, but with age, gender and tumor stage

included as covariates. We performed individual corrections for each

type of cancer to get the values of false discovery rate (FDR). The

result data were visualized by R package ComplexHeatmap (67).
Least absolute shrinkage and selection
operator analysis

Prediction of tumor immune infiltration. Firstly, we selected immune-

related mutational signatures, defined as those with FDR-corrected P-

values < 0.1 from previous association analysis. Subsequently, LASSO

linear regression was performed using R package glmnet (v4.1.4) (68), with

10-fold cross-validation to select the most relevant subset of features for

predicting immune cell infiltration across cancer types. The optimal

penalty parameter was chosen based on the lambda value corresponding

to theminimummean cross-validation error. In the event that none of the

signatures were significant after selection, this may indicate high

collinearity, and all variables were retained as the optimal features.

Linear regression was used to obtain the TME prediction value when

only one variable was included in the LASSO selection process. To facilitate

the use of this approach, we developed a user-friendly R language-based

prediction function available at https://github.com/luolz/TME-mutational-

signature-interaction. Tumors were also grouped based on their average

TME cell type prediction values, and we used Wilcoxon tests to examine

differences in the true infiltration values between the two groups in different

cancer types.

Constructing risk scores. We determined the immune cells

significantly associated with overall survival (OS) and then

extracted all related mutational signatures in each cancer type for
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subsequent analysis. For each type of cancer, we conducted LASSO

Cox regression with 10-fold cross-validation to select prognostic

mutational signatures. The predictors with non-zero coefficient

were used to compute the risk score in the final model. If none of

the predictors are significant after selection, all variables were

retained. The risk score based on etiology mutational signatures

was calculated in the same manner.
Modeling the survival hazard associated
interaction of mutational signatures and
cell types in the tumor microenvironment

In this analysis, we included cancer types with more than 50

patients and a mortality rate greater than 10%. Furthermore, we kept

cancer types that both SBS-high and SBS-low groups have at least 20

samples. In total, 18 cancer types were selected, including ACC,

BLCA, BRCA, CHOL, CRC, ESCA, HNSC, KICH, KIRC, KIRP,

LIHC, LUAD, LUSC, MESO, PAAD, SKCM, STAD and UVM. We

then used multivariate Cox-PH regression and applied an interaction

test to assess if mutational signatures interact with TME cell types to

affect survival outcomes. Potential confounding factors were

incorporated into modeling covariates, such as age, gender, and

pathological stage. We defined the TME-MutSig interaction score

for each mutational signature using the Wald test z-score, which is

the coefficient d divided by its standard error. We used the

Benjamini-Hochberg method to convert two-sided Wald test P-

values to FDRs and identified significant mutational signatures in

cancer types with over 1% mutational signatures and FDR below 0.1.

To confirm the existence of interaction effect between mutational

signatures and the tumor microenvironment, we performed survival

analysis on the significant mutational signatures (P<0.05) to compare

the difference of distinct groups with a log-rank test.
Exploration of interaction effects in
immunotherapy cohort data

We obtained the original mutation data for the immunotherapy

cohort from the relevant literature and acquired the MAF file after

ANNOVAR (69) annotation. We used the Sigminer package (70) to

obtain 72 SBS signatures corresponding to the COSMIC V3 version

(1). Following the filtering process, we retained 47 SBS for further

analysis. We acquired the normalized gene-level RNA-Seq data and

clinical information following the steps outlined by Wang et al (66).

Since the Kassandra method is not applicable for the immunotherapy

datasets, here we computed the EPIC immune infiltration according

to the workflow of the IOBR package (71).

For final processed data, in the Van Allen et al. (2015) (49), Hugo

et al. (2016) (50), and Snyder et al. (2017) (51) cohorts, the number of

samples with mutational signatures, immune infiltration, and survival

information are 40 samples, 26 samples, and 22 samples, respectively.

Due to the lack of data in the immunotherapy cohort and the absence

of clinical information for some samples, we did not include age,

gender, and stage as covariates when testing the interaction effect. The

remaining steps were carried out as before.
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Statistical analysis

Correlation analysis was performed using the Spearman

correlation coefficient. Kaplan-Meier survival curves were

depicted to compare the difference of distinct groups with a log-

rank test. All reported P-values are two-tailed, P<0.05 is considered

statistically significant, unless otherwise specified. Multiple testing

P-values were corrected by Benjamini–Hochberg FDR method,

with FDR<0.1 as the significant threshold. All statistical analyses

of this study were implemented in R v4.0.1.
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SUPPLEMENTARY FIGURE 1

Picture and validation of interplay between mutational signatures and the

immune microenvironment in different cancer types. (A-C) Heatmaps
showing association p values between SBS mutational signatures and TME

cell types derived from approaches (A) Kassandra, (B) EPIC, and (C)
quanTIseq. (D-F) Heatmaps showing association p values between
etiology-associated mutational signatures and TME cell types derived from

approaches (D) Kassandra, (E) EPIC, and (F) quanTIseq. Detailed data are
available in Supplementary Tables 3, 5, 6.

SUPPLEMENTARY FIGURE 2

Validation of the relationship between mutational signatures and cell types

of TME. (A) Association map between SBS mutational signatures and cell
types in tumor microenvironment decomposed by Kassandra, using age,

gender, and tumor stage as covariates. The threshold is FDR < 0.1. (B)
Association map between etiology-associated mutational signatures and

cell types in tumor microenvironment decomposed by Kassandra, using
age, gender, and tumor stage as covariates. The threshold is FDR < 0.1. (C)
Association map between SBS mutational signatures and cell types in tumor

microenvironment decomposed by EPIC. The threshold is FDR < 0.1. (D)
Association map between etiology-associated mutational signatures and

cell types in tumor microenvironment decomposed by EPIC. The threshold
is FDR < 0.1. (E) Association map between SBS mutational signatures and

cell types in tumor microenvironment decomposed by quanTIseq. The
threshold is FDR < 0.1. (F) Association map between etiology-associated

mutational signatures and cell types in tumor microenvironment

decomposed by quanTIseq. The threshold is FDR < 0.1. (G) Color coding
for cancer types.

SUPPLEMENTARY FIGURE 3

Validation of predicting tumor immune infiltration with LASSO regression
modeling on mutational signatures. (A) Predicting EPIC decomposed

immune cell infiltration of the samples. The darker the color, the higher the

correlation between the predicted value and the real value. (B) Boxplot
estimating the stratification ability of EPIC decomposed immune cell

infiltration with predicted immune cell infiltration status. (C) Predicting
quanTIseq decomposed immune cell infiltration of the samples. The darker

the color, the higher the correlation between the predicted value and the real
value. (D) Boxplot estimating the stratification ability of quanTIseq

decomposed immune cell infiltration with predicted immune cell infiltration

status. Detailed data are available in Supplementary Table 7.

SUPPLEMENTARY FIGURE 4

Stratification of patient survival based on etiology-associated mutational

signatures. (A) quanTIseq and (B) EPIC decomposed TME cell types
associated with pan-cancer survival. (C, D) Kaplan–Meier curve showing

survival associated with risk score in cancer types (C) CESC and (D) UCS.
(E) Forest plot displaying the associations between immune-related and
etiology-associated mutational signatures derived risk scores and patient
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overall survival using univariate Cox regression analysis. (F) Kaplan–Meier
curve showing survival associated with immune-related and etiology-

associated mutational signatures derived risk score among 17 cancer types.

Detailed data are available in Supplementary Table 8.

SUPPLEMENTARY FIGURE 5

Etiology-associated mutational signatures of immune phenotype alteration.

(A) Etiology-associated mutational signatures with significant immune
phenotype interactions in multiple cancer types. (B, C) Kaplan-Meier curves

and log-rank tests were respectively used to evaluate overall survival in 444

LUAD samples, 397 HNSC samples and 380 HNSC samples, based on AID/
APOBEC-associated mutational signature activity and TME cell infiltration.

Detailed data are available in Supplementary Table 9.

SUPPLEMENTARY FIGURE 6

Specific mutational signatures are associated with immune phenotype

alteration in immunotherapy cohorts. (A) Box plot of SBS mutational

signatures of samples in the Van Allen study. (B) Box plot of etiology-
associated mutational signatures of samples in the Van Allen study. (C, D)
Kaplan-Meier curves and log-rank tests were used to evaluate overall
survival in 40 melanoma immunotherapy samples based on SBS7b, UV-

associated mutational signature activity, and TME cell infiltration. (E) Box
plot of SBS mutational signatures of samples in the Hugo study. (F) Box plot
of etiology-associated mutational signatures of samples in the Hugo study.

(G) Kaplan-Meier curves and log-rank tests were used to evaluate overall
survival in 26 melanoma immunotherapy samples based on SBS7b, SBS7c,

and TME cell infiltration. (H) Box plot of SBS mutational signatures of
samples in the Snyder study. (I) Box plot of etiology-associated

mutational signatures of samples in the Snyder study. (J, K) Kaplan-Meier
curves and log-rank tests were used to evaluate overall survival in 22

urothelial immunotherapy samples based on SBS13, AID/APOBEC-

associated mutational signature activity, and TME cell infiltration. Detailed
data are available in Supplementary Table 10.

SUPPLEMENTARY TABLE 1

Classification of SBS mutational signatures according to their etiologies.

SUPPLEMENTARY TABLE 2

P-value scaling guidelines for significance representation.

SUPPLEMENTARY TABLE 3

Regression model results of original, scaled, and FDR-adjusted P-value with

Kassandra-derived TME dataset.

SUPPLEMENTARY TABLE 4

The number of cell associations.

SUPPLEMENTARY TABLE 5

Regression model results of original, scaled, and FDR-adjusted P-value with

EPIC-derived TME dataset.

SUPPLEMENTARY TABLE 6

Regression model results of original, scaled, and FDR-adjusted P-value with
quanTIseq-derived TME dataset.

SUPPLEMENTARY TABLE 7

Results of correlation and Wilcoxon test for TME prediction model.

SUPPLEMENTARY TABLE 8

Results of risk score and survival analysis.

SUPPLEMENTARY TABLE 9

Results of interaction effects and associated survival analysis in TCGA cohort.
SUPPLEMENTARY TABLE 10

Results of interaction effects and associated survival analysis in

immunotherapy cohorts.
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