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Platelet-neutrophil interaction in
COVID-19 and vaccine-induced
thrombotic thrombocytopenia
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Coronavirus disease 2019 (COVID-19) is known to commonly induce a

thrombotic diathesis, particularly in severely affected individuals. So far, this

COVID-19-associated coagulopathy (CAC) has been partially explained by

hyperactivated platelets as well as by the prothrombotic effects of neutrophil

extracellular traps (NETs) released from neutrophils. However, precise insight

into the bidirectional relationship between platelets and neutrophils in the

pathophysiology of CAC still lags behind. Vaccine-induced thrombotic

thrombocytopenia (VITT) is a rare autoimmune disorder caused by auto-

antibody formation in response to immunization with adenoviral vector

vaccines. VITT is associated with life-threatening thromboembolic events and

thus, high fatality rates. Our concept of the thrombophilia observed in VITT is

relatively new, hence a better understanding could help in the management of

such patients with the potential to also prevent VITT. In this review we aim to

summarize the current knowledge on platelet-neutrophil interplay in COVID-19

and VITT.

KEYWORDS
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1 Introduction

Coronavirus disease 2019 (COVID-19) is caused by infection with severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2). The disease was initially recognized

as a predominantly respiratory illness after its first appearance in the city of Wuhan, China

in late 2019, but the presence of the virus at extrapulmonary sites and its fatal effects were

subsequently demonstrated (1–3).

COVID-19 patients often suffer from coagulopathy in addition to mortality due to

respiratory failure. These are mainly consequences of the prothrombotic state, especially in

moderate and severe cases. Venous thromboembolism (VTE), thrombocytopenia and

disseminated intravascular coagulation (DIC) were early described as common

complications in SARS-CoV-2 infected patients (4–7). Agarwal et al. calculated the
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overall prevalence of VTE to be as high as 20.7%, with the risk being

doubled in COVID-19 cases admitted to the intensive care unit (8).

A large retrospective analysis of more than 370,000 cases from

England found that 86% of hospitalized COVID-19 patients

with VTE also suffered a concomitant pulmonary embolism,

highlighting the coagulation-related risks in COVID-19 (9).

The pathophysiology of COVID-19-associated coagulopathy

(CAC) is still under investigation and both cellular and plasmatic

constituents of the coagulation system appear to be affected by

infection with SARS-CoV-2. It has been established that

hyperactivated platelets play a major role in CAC (10–14).

Recently, the contributions of cells of the immune system during

thrombus formation have been discussed in the setting of

immunothrombosis. Histopathological examinations of thrombi

from COVID-19 patients have demonstrated an increased

deposition of neutrophils within the thrombus matrix in the lung

vasculature suggesting that platelet-neutrophil interplay may be

crucial in initiation and perpetuation of thrombosis in (hyper-)

inflammatory diseases such as COVID-19 (13, 15–18). Several

studies have already shown an increase in platelet-neutrophil

aggregates (PNAs) circulating in blood of COVID-19 patients.

However, the exact mechanisms of interaction between platelets

and neutrophils remain unclear as little research was conducted yet

on how these cells interact in promoting CAC. Next to their ability

of phagocytosis and secretion of antimicrobial enzymes, neutrophils

are capable of releasing neutrophil extracellular traps (NETs)

mainly consisting of DNA (19). NETs serve as attachment

structures for enzymes such as myeloperoxidase (MPO) or

neutrophil elastase but also trap pathogens and allow their

degradation by the antimicrobial substances. NETs have been

studied extensively in the last decade for their impact on

thrombus formation (20, 21). Various prothrombotic conditions

including DIC in septic patients (22), neoplasms (23) and heparin-

induced thrombocytopenia (HIT) (24, 25) have been found to be

associated with elevated levels of NETs. SARS-CoV-2 was also

demonstrated to directly induce NETosis (26–28). Thus, the

detrimental consequences of severe COVID-19 have been

partially attributed to both direct and indirect effects of NETs.

Up until now several vaccine candidates have been approved

worldwide to mitigate the burden on society and healthcare caused

by the COVID-19 pandemic. Among the first vaccine platforms

authorized in Europe were mRNA-based vaccines and vaccines

using adenoviral vectors. Shortly after the rollout of immunization

programs, cases of thrombocytopenia accompanied by thrombotic

events have been reported in individuals recently vaccinated with

Vaxzevria (ChAdOx1 nCoV-19 vaccine, AstraZeneca) or Janssen

Covid-19 vaccine (Ad26.COV2.S, Johnson & Johnson) – both

vaccines relying on the adenoviral vector technique. For the first

(or unknown) immunization with Vaxzevria, the UK´s Medicines

and Healthcare products Regulatory Agency (MHRA) calculated

the overall reported incidence of thromboembolic events associated

with thrombocytopenia to be 15.9 cases/million doses (29). This

specific syndrome, termed vaccine-induced thrombotic

thrombocytopenia (VITT), is caused by the formation of

antibodies against platelet factor 4 (PF4). Thrombosis and

particularly cerebral venous sinus thrombosis (CVST) is the key
Frontiers in Immunology 02
finding of VITT with the case fatality rate estimated to be

approximately 18% (30, 31). The diagnosis of VITT usually

requires a history of immunization with an adenoviral vector

anti-SARS-CoV-2 vaccine (mainly Vaxzevria or Janssen)

minimum 4 days prior, detection of anti-PF4 antibodies in serum

and additional more specific platelet aggregation tests (32–34).

Treatment options in VITT include non-heparin anticoagulants,

administration of intravenous immunoglobulins (IVIG) as well as

supportive care (35, 36).

Here, we give an overview of the current state of research on the

interaction between platelets and neutrophils in CAC and VITT.
2 Platelets and neutrophils in CAC

2.1 Altered platelet functionality
in COVID-19

Besides a reduction in platelet count, the functional properties

of platelets are reportedly deranged during COVID-19. Platelets of

patients infected with SARS-CoV-2 were found to have higher

expression of activation markers than non-COVID-19 controls (11,

12, 37–40). Table 1 lists markers for platelet and neutrophil

activation described in COVID-19. Moreover, platelets in

COVID-19 had an increased tendency towards aggregation and

showed greater responses to stimuli as ADP, thrombin receptor

activator peptide 6 (TRAP-6) or thrombin itself (10, 14, 37, 38).

This indicates both a hyper-active and hyper-reactive platelet

phenotype during infection with SARS-CoV-2.

Direct and indirect aspects of platelet activation have been

proposed. Zhu et al. confirmed the presence of SARS-CoV-2

RNA within platelets. Six out of the seven patients with this

finding deceased shortly after. On the contrary, only one out of

24 COVID-19 patients from the survivor group was found to have

RNA positive platelets (47). The principal mechanism of cellular

uptake of SARS-CoV-2 is assumed to occur via the angiotensin-

converting enzyme (ACE2) receptor in combination with the

transmembrane serine protease/serine subfamily member 2

(TMPRSS2) (48). However, whether ACE2 and TMPRSS2 are

expressed on platelets is still under debate and other mechanisms

of viral entry have also been proposed (37, 49, 50). Furthermore,

CD147may serve as a site of direct interaction between platelets and

SARS-CoV-2 and was also described to be a mediator of viral entry

into cells via endocytosis (51, 52). Additionally, glycoprotein Ib (or

CD42b) was identified as a receptor used by the spike protein of

SARS-CoV-2 (53). Furthermore, the direct effects of SARS-CoV-2

on platelets appear to be mediated through the upregulation of both

caspase-dependent (apoptosis) and caspase-independent pathways

(necroptosis) (54, 55).

Examples for indirect mechanisms of platelet activation during

SARS-CoV-2 infection include specific immunoglobulins found in

sera of COVID-19 patients that induce procoagulant platelets via

FcgRIIa signaling (11, 12), endothelial dysfunction with increased

expression of von Willebrand factor (vWF) (56, 57) and stimulation

of platelets by proinflammatory markers during the cytokine storm

complicating severe cases of COVID-19 (58, 59). Tissue factor (TF)
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secreted from SARS-CoV-2 infected cells such as epithelium also

indirectly activates platelets via thrombin-mediated signaling (59,

60). Moreover, thrombopoietin (TPO), which promotes in vitro

platelet hyperresponsiveness and platelet-leukocyte interaction, is

found to be increased in COVID-19 patients (61, 62) Additionally,

platelets also secrete cytokines during SARS-CoV-2 infection

themselves and consequently contribute to the hyperinflammatory

state increasing the risk of CAC (63, 64).
2.2 The role of neutrophils and
NETs in CAC

Leukocytosis and thus, neutrophilia are common laboratory

findings in COVID-19 as the mobilization of immune cells from the

bone marrow is one of the earliest responses to combat pathogens

(65). The phenotype of neutrophils changes during the infection

with SARS-CoV-2. As expected, serum levels of typical markers of

neutrophil activation (degranulation and NETosis) such as MPO-

DNA complexes or citrullinated histone H3 (Cit-H3) in COVID-19

patients were found to be correlating with disease severity (41, 46).

Furthermore, TF increases on neutrophils isolated from patients

with severe COVID-19 (66). This suggests how among other

pathways primed neutrophils potentially promote or even elicit

thrombus formation. As mentioned, NETs are composed of DNA,

DNA-associated structures (e.g., histones) and contents of

neutrophil granules. Noubouossie et al. reported on the ability of

neutrophil DNA to induce thrombin generation (TG) in both

platelet-rich and platelet-free plasma although histone-mediated

TG appeared to require the presence of platelets (67). For the latter,

the toll-like receptors (TLR) 2 and 4 on platelets seem to be of

importance in mediating the increase in TG (68).
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In a mouse model for SARS-CoV-2 infection, Sung et al.

demonstrated the importance of TLR2 and C-type lectin domain

family 5 member (CLEC5A) in neutrophils for NETosis and the

release of proinflammatory cytokines such as interleukin 6 (IL-6).

Interestingly, further in vitro experiments with SARS-CoV-2 and

mice neutrophils showed accumulation of MPO, Cit-H3 and DNA

within the neutrophilic cytoplasm after 5 hours. However, marked

NETosis became evident only when incubated with autologous

platelets. This suggests that platelet presence could be necessary

for further neutrophil activation and NETosis in the case of SARS-

CoV-2 infection. Interestingly, in contrast to former evidence with

the Dengue virus where NET formation was found to be thread-like,

the authors concluded that NETosis elicited by SARS-CoV-2 had a

different, more aggregated appearance (69).

Additionally, low-density neutrophils (LDNs) appear to be

increasing in number in COVID-19 more than other neutrophil

subpopulations (44). These cells - termed CD16int due to their

behavior to only intermediately stain with anti-FcgRIII (CD16) –
also display an upregulation of genes that are related to NETosis

when compared to the CD16high neutrophils. As expected, the

authors reported spontaneous in vitro formation of NETs in these

LDNs (42). Schulte-Schrepping et al. have further elaborated on the

myeloid response in severe COVID-19 giving rise to distinct

neutrophil precursor subclasses which are characterized by

different gene activation signatures including genes involved in

NETosis (70). Previously, LDNs have commonly been described in

rheumatological diseases as systemic lupus erythematosus or anti-

phospholipid syndrome for their proinflammatory effects although

consensus on their precise characterization in terms of origin,

function and fate has not been reached (71, 72).

As a side note, neutrophils contribute to CAC by releasing a

variety of immune mediators causing a cytokine storm and DIC
TABLE 1 Markers of platelet and neutrophil activation described in COVID-19.

Found in/on Clinical significance Citations

Platelets

P-Selectin/CD62P a granules parameter of platelet activation (12, 13, 37–39, 41)

Phosphatidylserine (PS) cell membrane procoagulant platelets defined as PS+/CD62P+ (11, 12)

CD63 d granules parameter of platelet activation (39)

PAC-1 activated GP IIb/IIIa parameter of platelet activation (13, 37)

Mitochondrial membrane potential, DYm
(e.g., TMRE)

mitochondria loss of DYm is seen in procoagulant and
apoptotic platelets

(11)

Neutrophils

CD66b granulocyte membrane general PMN marker, but also increases with activation/
degranulation

(42, 43)

CD11b and CD18 Mac-1 markers of activation (13, 38, 42–45)

Citrullinated histone (CitH3) formed in process of NETosis, part
of NETs

markers for NETosis

(40, 41, 46)

Myeloperoxidase (MPO) or MPO-DNA
complexes

Primary (azurophilic) granules, part
of NETs
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(73). For instance, Kaiser et al. proposed a vicious cycle of IL-8

released from neutrophils in severe COVID-19 which further

attracts and activates additional neutrophils (74).

2.3 Direct and indirect interplay between
platelets and neutrophils in COVID-19

2.3.1 Platelet-neutrophil aggregates as the result
of direct interaction

The first quantifiable endpoint of platelet and neutrophil

interaction in CAC is represented by complex formation. As

mentioned, such platelet-neutrophil aggregates (PNAs) are

abundant in SARS-CoV-2 positive patients (37, 41, 45, 75–77).

COVID-19 disease severity correlates with blood levels of PNAs

(78). Both normal-density neutrophils (NDNs) and LDNs form

PNAs although complexes of platelets and CD16int had significantly

higher expression of P-selectin (CD62P) and CD40 than PNAs with

CD16high neutrophils (42). This could be an additional hint for the

hyperactive properties of LDNs and their dominant role in

mediating a potential synergy between activated platelets and

neutrophils in thrombosis.

In the following, we provide an outline of the most relevant

receptors in the process of aggregate formation. Figure 1 illustrates

the direct and indirect aspects of platelet-neutrophil interaction in

COVID-19.

2.3.1.1 P-selectin and PSGL-1

Platelet CD62P (P-selectin) and neutrophil P-selectin

glycoprotein ligand-1 (PSGL-1, CD162) are a long-known
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interaction site for platelets and granulocytes (79, 80). Wang et al.

demonstrated the major role of PSGL-1 in the coagulopathy

associated with systemic inflammation suggesting that CD62P-

PSGL-1 coupling also is involved in CAC (81). P-selectin has

been identified as the major platelet receptor for monocyte-

platelet aggregation in COVID-19 patients (82). Interestingly,

platelets in vitro activated by SARS-CoV-2 spike protein were

shown to cause activation of monocytes via CD62P-PSGL-1

coupling (53). Non-specific gene signature analysis of whole

blood from severe to critical COVID-19 patients additionally has

shown an upregulation of SELPG, the gene encoding PSGL-1 (83).

2.3.1.2 Mac-1

The macrophage-1 antigen (Mac-1) is made up of the two

integrins aM (CD11b) and b2 (CD18) and serves several purposes

including binding complement and regulation of leukocyte

extravasation (84). Despite the name, neutrophils also express

Mac-1 and determination of CD11b is considered a typical

marker of neutrophil activation beside CD66b (Table 1).

Previously, it was shown that Mac-1 interacts with platelet

glycoprotein Iba (vWF receptor) in mediating thrombosis (21,

85). Increased expression of both CD11b and CD18 on

neutrophils isolated from COVID-19 patients was noted when

compared to healthy volunteers suggesting one potential

mechanism of platelet activation via Mac-1 binding of platelet GP

Ib (43, 45). Additionally, the behavior of three different neutrophil

subpopulations in COVID-19 patients was investigated by Reyes

et al. First, neutrophils isolated by density gradient centrifugation

from both the PMN and PBMC layer were separated into NDNs
FIGURE 1

Graphical illustration of platelet-neutrophil interaction in COVID-19. Inflammatory mediators released from immune cells as well as endothelial cells
during COVID-19 activate both platelets and neutrophils independently. After activation, several receptors are known to be involved in platelet-
neutrophil interaction in COVID-19 which in turn leads to NETosis, subsequent platelet activation and thrombus initiation. CD40L - CD40 ligand;
SLC44A2 - solute carrier family 44 member 2; GP IIb/IIIa - glycoprotein IIb/IIIa; Mac-1 - macrophage-1 antigen complex; GP Ib - glycoprotein Ib;
PSGL-1 - P-selectin glycoprotein ligand-1. Created with BioRender.com.
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and LDNs. LDNs were further characterized for maturity based on

expression of CD10 and CD16. Interestingly, mature LDNs

(CD16+/CD10+) showed high levels of Mac-1 similar to NDNs

but formed more complexes with platelets than NDNs. On the

other hand, immature LDNs (CD16-/CD10-) showed lower levels of

Mac-1 and appeared to form fewer PNAs (43).

As discussed later, Mac-1 also recognizes several chemokines

secreted from platelets including PF4.

2.3.1.3 GP IIb/IIIa and SLC44A2

The platelet glycoprotein IIb/IIIa (integrin a2bb3, CD41/
CD61) is known to interact with the widely distributed choline

transporter-like protein 2 (CTL2, SLC44A2) presenting on

neutrophils. The importance of SLC44A2 in hemostasis and

particularly VTE has already been established in both genetic and

animal studies (86–88). Constantinescu-Bercu et al. highlighted the

neutrophil SLC44A2 - platelet integrin a2bb3 axis as an important

communication channel of NETosis. Neutrophils were shown

to form NETs when infused through GP IIb/IIIa-coated

microchannels although simple incubation without flow resulted

in a significant decrease in NETosis (89). This implies that

formation of NETs also depends on mechanistic effects. From

studies on platelet-monocyte interactions, Hottz et al. reported

that in vitro inhibition of GP IIb/IIIa with abciximab limited the

ability of platelets from COVID-19 patients to activate TF

expression by monocytes (82). Up to this point there is no data

available on SLC44A2 in COVID-19 and how it could potentially

impact CAC except for fundamental proteomic data which suggests

a significant downregulation of SLC44A2 in neutrophils from

severe COVID-19 patients (90).

2.3.1.4 CD40 and CD40L

Apart from many immune responses which are regulated by

CD40 and its ligand CD40L (CD154), platelets and neutrophils

were also demonstrated to use this pathway (91, 92). Both CD40L

expressed on the platelet membrane and soluble CD40L released

from platelets (sCD40L) were found to be critical for neutrophil

activation in animal models (93, 94). It was also established that

CD40L is not uniquely limited to bind CD40 as it also interacted

with Mac-1 (95). In general, neutrophil adhesion to platelets was

shown to be enhanced by CD40L but this effect was dependent on

Mac-1 as its inhibition with anti-CD11b reversed the bonding

affinity of neutrophils for platelets (96). Blood from COVID-19

patients had significantly higher concentrations of sCD40L than

healthy volunteers (97, 98). However, this was not consistent with

the report of Blasi et al. where no significant difference in plasma

sCD40L was evident between COVID-19 patients and healthy

controls (99). Interestingly, Al-Tamimi et al. showed soluble

CD40L levels peaking with moderate disease followed by a

decline when disease severity increases (100). This may explain, at

least in part, the inconsistencies observed at different time points in

the course of COVID-19. In vitro stimulation of platelet-rich

plasma with the receptor-binding domain of SARS-CoV-2 caused

the levels of soluble CD40L to increase (101). This suggests a direct

viral effect on platelets causing sCD40L secretion which in turn
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could induce neutrophil activation. Li et al. showed that spike

protein-activated platelets interacted with monocytes using

CD40L (53). This clearly highlights the substantiality of platelet

presence in fully unfolding the effects of SARS-CoV-2.

On the other hand, the expression of CD40 on LDNs

(CD16int) correlated with both disease severity and the

concentration of D-dimers (42). As described previously, such

LDNs are thought to be pro-NETotic. Increased expression of

CD40 on LDNs as binding site for platelet surface CD40L and

sCD40L released from platelets among other cells (e.g.,

endothelium) could render these LDNs more susceptible to PNA

formation and subsequent platelet-mediated neutrophil

activation. For further information on the role of CD40/CD40L

in thromboinflammation we refer to the review by Cognasse

et al. (102).
2.3.2 Indirect pathways of platelet-
neutrophil interaction: inflammatory
mediators and microvesicles

Numerous indirect ways of communication between platelets

and neutrophils have been reported. Precise dissection of these

pathways is challenging and often ambiguous. Most importantly,

inflammatory mediators (e.g., cytokines) secreted from both cell

types and so-called microvesicles (MVs) are thought to participate

in indirect platelet-neutrophil interaction.

Microvesicles are released from cells through membrane budding

and usually contain intracellular contents. Platelets are well known to

release such extracellular vesicles into circulation in various situations

including COVID-19 (63, 64, 103). High levels of platelet-derived

MVs expressing TF were found in COVID-19 patients highlighting

the thrombotic diathesis of SARS-CoV-2 infection (58, 104).

Neutrophils from COVID-19 patients also release MVs which are

an important source of TF. Skendros et al. suggested that this platelet-

neutrophil-TF axis may be the critical link between immune defense

and both plasmatic and cellular hemostasis, leading to CAC (66).

Previously, a circular relationship between MVs from neutrophils

and platelets has been proposed where direct interaction via P-

selectin/PSGL-1 coupling initiated platelet-induced arachidonic

release from neutrophils. In turn, after uptake into the platelet

interior, thromboxane A2 (TxA2) is generated and released causing

endothelial activation and subsequently leukocyte rolling and

diapedesis (105). Furthermore, TxA2 has been previously reported

to play a role in NET formation in the pathogenesis of transfusion

related acute lung injury (TRALI) (106). However, whether this

applies to NETosis in COVID-19 as well is yet to determine.

The cytokine response to SARS-CoV-2 viremia is complex and

sometimes progresses to an hyperinflammatory state with excessive

cytokine release (“cytokine storm”). Multiple cell types participate

in this process including neutrophils and platelets. As mentioned,

platelets in COVID-19 may secrete soluble CD40L but also other

non-cytokine mediators such as the positively charged PF4 in

COVID-19 (64). PF4 or CXCL4 is known to interact with the

neutrophil Mac-1 receptor and also directly with NETs as by their

anionic nature. In general, its effects are diverse but include

neutrophil chemotaxis, stimulation of NET formation and NET
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1186000
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Hirsch et al. 10.3389/fimmu.2023.1186000
compaction (107–112). The exact role of PF4-mediated platelet-

neutrophil interaction in COVID-19 was not investigated further

albeit a single study on COVID-19 patients that reported elevated

levels of both PF4 and RANTES (Regulated and Normal T cell

Expressed and Secreted), a chemokine released from platelets (76).

High-mobility group box 1 (HMGB1) also plays a role among the

mediators of platelet-neutrophil interplay and high HMGB1 levels

were shown to be associated with COVID-19 mortality (113, 114).

HMGB1 is a damage-associated molecular pattern (DAMP) protein

which can be released from activated or necrotic cells. The function

of HMGB1 in thrombosis has only been superficially covered but

findings from acute myocardial infarction patients suggested that

platelet-derived HMGB1 acts on neutrophils and stimulates the

release of NETs. Here, the RAGE receptor (Receptor for Advanced

Glycation End products) is of importance (115). An animal study

from Vogel et al. has further elaborated on the essential role of

HMGB1 in passing prothrombotic signals from platelets to

neutrophils (116).

Another example of a relevant mediator in platelet-neutrophil

interplay is represented by IL-6 which has already been identified as

a main target in counteracting the hyperinflammatory state

observed in severe cases of COVID-19 (58, 63). Interestingly, IL-6

blockade in COVID-19 plasma with tocilizumab significantly

reduced the high levels of TF+-platelet MVs and PNAs when

compared to control plasma (58).

Additionally, neutrophils may release calprotectin or S100A8/A9

upon activation, a protein with the potential to induce procoagulant

platelets via GP Iba in vitro. COVID-19 patients showed high levels

of S100A8/A9 correlating with disease severity (117, 118). Again,

differences in upregulation of both S100A8 and S100A9 gene were

noted among distinct neutrophil precursor subclasses in severe

COVID-19 (70). Additionally, calprotectin deposits have been

identified on lung autopsies of COVID-19 deaths (119). The

procoagulant effects of neutrophil cathepsin G on the other hand is

more certain and direct interaction between this serine protease and

platelets is thought to be mediated by protease-activated receptors,

PAR-1 and/or PAR-4 (120–123). High levels of cathepsin G are

found in COVID-19 but also pneumonia with acute respiratory

distress syndrome of different etiologies (124, 125).
2.4 Platelets, neutrophils and NETs in VITT

Although little is known about platelet-neutrophil interplay in

VITT yet, recent evidence suggests the importance of this

relationship in initiating and perpetuating vaccine-induced

thrombosis. Direct platelet-neutrophil interaction in the form of

PNAs was already found to be upregulated in VITT resulting in

higher levels of PNAs as compared to control (126). On a single

cellular level, both platelets and neutrophils have been

demonstrated to be directly activated in vitro by VITT antibodies

(126–128). Several case reports have highlighted the presence of

NETs within thrombi of VITT patients indicating that NETs are

involved in vaccine-induced thrombosis (129, 130). Additionally,

increased plasma levels of NET markers (e.g., Cit-H3, MPO-DNA
Frontiers in Immunology 06
complex) were observed in VITT patients (126, 129). This is in line

with recent findings in other prothrombotic conditions such as

COVID-19 and HIT. Furthermore, the severity of side effects of the

immunization has been correlated to serum histone 3 levels as

well (131).

For neutrophils, the proportion of NET-releasing granulocytes

was found to be significantly higher in VITT patients compared to

control groups (126). Again, LDNs appear to be particularly

involved here. NETosis from LDNs in VITT was significantly

higher than NET release from NDNs (126, 129). Further research

should be directed towards functions and significance of this

peculiar neutrophil subpopulation to eventually identify potential

pharmaceutical targets in counteracting NET formation in

immunothrombosis. Interestingly, Greinacher et al. reported that

in vitro incubation of isolated neutrophils with VITT serum and

PF4 did not lead to NETosis unless platelets were also added to the

experiment (128). Thus, it could be concluded that platelets have a

crucial role in neutrophil activation and NET formation also in the

setting of VITT. Here, microvesicles released from platelets seem to

be of importance for the prothrombotic milieu and could help in

explaining the cerebral venous tropism of VITT thrombosis (132).

However, future efforts are needed to investigate the exact direct

and indirect mechanisms of intercellular communication and

interplay of neutrophil and platelets in VITT.

Recent studies have focused on neutrophil-activating peptide 2

(NAP2) or CXCL7 released from platelets stimulated with VITT

antibodies which in turn activated neutrophils (133–135).

Hundelshausen et al. proposed the use of Bruton tyrosine kinase

inhibitors (BTKi) in VITT as they were shown to limit platelet P-

selectin expression, reduce neutrophil activation and inhibit

platelet-neutrophil aggregation (136, 137). Apart from stored

VITT sera mainly from spring 2021, future VITT models could

rely on chimeric anti-PF4 antibodies mimicking vaccine-induced

thrombotic thrombocytopenia such as 1E12 (138).
3 Conclusions

In general, both platelets and neutrophils on their own are

considered to be major actors in the prothrombotic state seen in

COVID-19 and VITT . Wi th our under s t and ing o f

thromboinflammation still evolving, further efforts should be

directed towards dissecting the precise mechanisms of direct and

indirect platelet-neutrophil interplay. From our point of view, this

relationship should be seen as bidirectional with both types of cells

closely interacting and potentiating the thrombotic cascade of

initiation, formation and extension of thrombosis. Detailed

insights into this interaction and its pathways could be used to

design targeted therapies that reduce the occurrence of life-

threatening thrombotic complications in COVID-19 and VITT.

Additional research on the role of LDNs may help limit the

consequences of hyperinflammation associated with COVID-19.

In vitro thrombosis models, such as microfluidic systems, might be

helpful in this regard to understand the role of different cells in the

development of thrombosis in patients with COVID-19 as well
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as VITT.
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