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Combining WGCNA and
machine learning to construct
basement membrane-related
gene index helps to predict the
prognosis and tumor
microenvironment of HCC
patients and verifies the
carcinogenesis of key gene CTSA

Weijie Sun1,2†, Jue Wang1†, Zhiqiang Wang1, Ming Xu1,
Quanjun Lin1, Peng Sun1* and Yihang Yuan1*

1Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of
Medicine, Shanghai, China, 2Department of Infectious Diseases, The First Affiliated Hospital of Anhui
Medical University, Hefei, China
Hepatocellular carcinoma (HCC) is a malignant tumor with high recurrence and

metastasis rates and poor prognosis. Basement membrane is a ubiquitous

extracellular matrix and is a key physical factor in cancer metastasis. Therefore,

basement membrane-related genes may be new targets for the diagnosis and

treatment of HCC. We systematically analyzed the expression pattern and

prognostic value of basement membrane-related genes in HCC using the

TCGA-HCC dataset, and constructed a new BMRGI based on WGCNA and

machine learning. We used the HCC single-cell RNA-sequencing data in

GSE146115 to describe the single-cell map of HCC, analyzed the interaction

between different cell types, and explored the expression of model genes in

different cell types. BMRGI can accurately predict the prognosis of HCC patients

and was validated in the ICGC cohort. In addition, we also explored the

underlying molecular mechanisms and tumor immune infiltration in different

BMRGI subgroups, and confirmed the differences in response to immunotherapy

in different BMRGI subgroups based on the TIDE algorithm. Then, we assessed

the sensitivity of HCC patients to common drugs. In conclusion, our study

provides a theoretical basis for the selection of immunotherapy and sensitive

drugs in HCC patients. Finally, we also considered CTSA as the most critical

basement membrane-related gene affecting HCC progression. In vitro

experiments showed that the proliferation, migration and invasion abilities of

HCC cells were significantly impaired when CTSA was knocked down.
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1 Introduction

Hepatocellular carcinoma (HCC) is responsible for about 90%

of primary liver cancers (1). It is also one of the most fatal malignant

tumors worldwide, with high morbidity and mortality rates (2, 3).

The frequent occurrence of metastasis and recurrence is a major

contributing factor to the poor prognosis of HCC patients (4).

Despite the development of numerous drug combination strategies

for the treatment of HCC, the current level of patient survival time

has not yet met satisfactory standards. Consequently, there is an

urgent need to identify new biomarkers that can more accurately

predict the prognosis of HCC.

Basement membranes (BM) are a ubiquitous and unique type of

extracellular matrix that plays a key role in cancer cell metastasis

(5). In the case of HCC and the surrounding uninvolved liver tissue,

the BM is primarily made up of three components: fibronectin

(FN), laminin (LAM), and collagen IV (Coll IV) (6). BM is known

to affect numerous physiological and pathological activities of cells

including cell proliferation, adhesion, migration, and vascular

remodeling (7, 8). As a result, in most cancers, BM plays a crucial

role in driving cell metastasis (5, 9, 10). Due to the significant role of

BM in cancer metastasis, it is an ideal target for anticancer drugs.

Previous studies have found that stable markers can be created

using different gene sets such as cuproptosis and necroptosis to

predict the prognosis of HCC patients (11, 12). Recently, Jayadev

et al. have redefined 222 BM-related genes (BMRG) and proteins

(13), but a robust prognostic model based on BMRG in HCC is yet

to be developed.

In this study, we screened 222 BMRG and identified 4 that were

used to construct the basement membrane-related gene prognostic

index (BMRGI). This index helps to more accurately predict the

prognosis of patients with hepatocellular carcinoma (HCC).

Furthermore, we evaluated the clinical relevance and impact of

BMRGI on the tumor microenvironment. More importantly, we

identified CTSA as a key BMRG in HCC, and comprehensively

analyzed the expression differences of CTSA in HCC, and have

confirmed that the expression of CTSA has a significant impact on

the proliferation, migration, and metastasis of HCC cells.
2 Methods and materials

2.1 Data download and processing

The mRNA expression data of HCC patients with

corresponding clinical information and somatic mutation data

were downloaded from The Cancer Genome Atlas (TCGA,

https://portal.gdc.cancer.gov/) database, and the mRNA

expression data and clinical information from the Japan-HCC

cohort were downloaded at International Cancer Genome

Consortium (ICGC, https://dcc.icgc.org/). When performing

correlation data analysis, we excluded cases with missing data.

Finally, when performing prognostic analysis, we chose to exclude

cases with a survival time ≤30. The single-cell RNA seq (scRNA-

seq) data of 4 HCC patients were obtained from GSE146115 in the
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GEO database (https://www.ncbi.nlm.nih.gov/geo/), with a total of

27227 genes and 3200 cells obtained.
2.2 Screening of WGCNA and
differential BMRG

The “WGCNA” package was used to construct the gene co-

expression network of BMRG in the TCGA-HCC dataset (14). The

core module was considered the one with the highest Pearson

coefficient and also the one most associated with clinical traits.

Furthermore, we analyzed differentially expressed genes (|log2FC| >

0.585, False Discovery Rate (FDR)< 0.05) in the TCGA-HCC

dataset using the “Limma” package. Finally, we further

investigated the 47 common genes.
2.3 Construction and verification of BMRGI

47 common genes were analyzed by univariate Cox analysis

based on the “survival” package, and potential BMRG affecting the

overall survival of HCC patients were screened out (p<0.05). Then,

these candidate genes were analyzed by using the least absolute

shrinkage and selection operator (LASSO). Based on the analysis

results, we established a four-gene optimal prognostic model. The

calculation formula of BMRGI for each HCC patient is as follows:

BMRGI =o
n

i=1
Expression(i)*Coefficient(i)

Where X refers to the expression level of the selected gene, and

Coef is the coefficient of the selected gene. In addition, the same

calculation method is applied to the verification queue ICGC.

According to the median BMRGI, HCC patients were divided

into high BMRGI group and low BMRGI group. Kaplan–Meier

curves were used to assess differences in OS between different

BMRGI groups.
2.4 scRNA-seq data processing
and analysis

The Seurat package is used for preprocessing and filtering of

scRNA-seq (15). The PercentageFeatureSet function is used to

calculate the mitochondrial gene content in cells. We further

analyzed the cells in which the number of genes was >200 and

the proportion of mitochondrial genes was<10%. We set the

number of principal components (PC) to 20, the resolution to

0.4, and the 1500 genes with the largest variation between cells to

cluster the cells.
2.5 CellChat analysis

We use CellChat to quantify and infer the communication links

between different cell types from scRNA-seq data, and identify the
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signal input and output among them. In this study, we filtered for

cell communication of less than 10 cells.
2.6 Gene ontology analysis, kyoto
encyclopedia of genes and genomes
analysis and gene set enrichment analysis

The “Limma” package was used to analyze differentially

expressed genes (DEGs) between high and low BMRGI groups (|

log2FC| > 1, FDR< 0.05). GO analysis was performed based on the “

clusterProfiler” package. KEGG analysis was performed based on

the “clusterProfiler”, “org.Hs.eg.db”, “enrichplot” package. In

addition, we also performed GSEA using the “clusterProfiler”

package to explore biological differences among different

BMRGI groups.
2.7 Analysis of immunological properties

The enrichment scores of 16 immune-related cells and 13

immune-related terms in HCC samples were calculated using the

ssGSEA algorithm based on the R packages “GSVA”

and “GSEABase”.

We also summarized common immune checkpoint molecules

and HLA family genes, and analyzed the correlation between

BMRGI and the expression of each gene, and displayed it with a

radar map. Furthermore, we explored the somatic mutation profile

of TCGA-HCC samples and listed the top10 mutation-prone genes

in different BMRGI subgroups. In addition, we also compared the

difference of TMB in the high BMRGI group and the low BMRGI

group. Finally, the TIDE (http://tide.dfci.harvard.edu/) algorithm

was used to predict and evaluate the response of HCC patients

to immunotherapy.
2.8 Sensitivity analysis of common drugs

We use the R package “oncoPredict” (16) for the evaluation of

common drug sensitivities.
2.9 Identification of core BMRG

SVM-REF (17), LASSO (18)and RandomForest (19) are

commonly used machine learning methods with excellent

classification performance. In biology-related research, it is often

used for the screening of characteristic genes (20). In this study, we

use these three types of machine learning to filter out characteristic

BMRG, and use intersection to filter out the most critical BMRG.
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2.10 Multilevel expression verification
of CTSA

We analyzed the differential expression of CTSA at the mRNA

level of HCC tissues online from the GEPIA2 database (http://

gepia2.cancer-pku.cn/#index) (combined samples from TCGA and

GTEx databases) (21). In addition, we analyzed the expression

differences of CTSA at the protein level in the CPTAC database

online using the UCLCAN database (http://ualcan.path.uab.edu/

index.html) (22). Finally, the HPA database obtained the

immunohistochemical images of CTSA in normal liver tissues

and HCC tissues (23), and obtained the basic information of the

corresponding tissue samples.
2.11 RNA extraction, and real-time
quantitative PCR

Cell total RNA was extracted using Trizol reagent (Invitrogen,

USA)). RNA extraction and RT-qPCR as previously described (24).

Briefly, RNA was reversed to cDNA using PrimeScript™ RTMaster

Mix (Takara Bio, JAPAN). Fluorescence quantification was

performed by TB-Green qPCR (Takara Bio, JAPAN) and

normalized to b-actin. The information of all designed primers is

listed in Supplementary Table 1.
2.12 Cell culture, transient transfection

All cell lines used in this study (including normal liver cell line

LO2 and HCC cell lines HEPG2, BEL7402 and HCCLM3) were

donated by Dr. Dai (25). All cell lines were cultured in complete

DMEM medium (DMEM medium with 10% fetal bovine serum

and 1% penicillin-streptomycin). Transient transfections were

performed using jetPRIME Transfection Reagent (Polyplus,

China) and followed the manufacturer’s instructions. siRNA

sequences were designed by Tsingke Biotechnology Co., Ltd. The

SiCTSA sequence is as follows, SiCTSA-1: sense-GCCUCUUUC

CGGAGUACAA; antisense-UUGUACUCCGGAAAGAGGC.

SiCTSA-2: sense-CUGCUUAGCUCACAGAAAU; antisense-

AUUUCUGUGAGCUAAGCAG.
2.13 Cell counting kit-8 (CCK8) experiment

We planted 2×103 cells in a 96-well plate, and set 5 replicate wells

in each group, cultured them for 0 hour, 24 hours and 48 hours,

respectively, and then added 10ul CCK8 reagent (Targetmol, USA)

and incubated at 37°C for 2 hours. Absorbance was then measured at

450 nm using a microplate reader (TECAN, Switzerland).
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2.14 Transwell experiment

We planted 5×104 cells in the upper chamber (Corning, USA)

containing 250ul serum-free medium. The upper chamber was

without Matrigel (Corning, USA) for migration experiments, with

Matrigel for invasion experiments, and the lower chamber add

800ul complete medium. After 24 hours of incubation, the cells

were fixed with 4% paraformaldehyde and stained with 0.1% crystal

violet. The cells on the upper surface of the upper chamber were

wiped with a cotton swab, photographed under a microscope (Leica,

Germany) at 100 times, and then counted.
2.15 Statistical analysis

All bioinformatics analyzes were performed on R software

(version 4.1.2). Continuous variables that were not normally

distributed were tested using the Wilcoxon test. Correlation

analysis between BMRGI and drug IC50 was performed using the

spearman method. The Kaplan-Meier method was used to draw the

survival curves of different subgroups. All experimental data were

analyzed for variance using Student’s T-test. p or FDR< 0.05

represents a statistical difference.
3 Result

3.1 WGCNA identified BM key
module genes

According to the Materials and methods section, we identified

222 BMRG. First, we conducted WGCNA on 222 BMRG. By setting
Frontiers in Immunology 04
a minimum of 25 genes within a module, module connectivity

(Figure 1A), 4 modules were finally identified (Figure 1B).

According to the correlation thermograms of the modules, we

found that the blue modules had the highest correlations with

clinical traits (Figure 1C). Therefore, we choose the blue module for

further analysis. Second, we performed differential analysis on 222

genes, and the results showed a total of 131 DEGs, of which 122

BMRG were up-regulated and 9 BMRG were down-regulated

(Figure 1D). Furthermore, we showed the correlation of blue

module genes with DEGs by Venn diagram, and finally obtained

47 common genes (Figure 1E).
3.2 Construction of BMRGI for
HCC patients

We first performed univariate Cox analysis on 47 common

genes, and the results showed that 18 BMRG were risk factors

affecting OS in HCC patients (Figure 2A). LASSO analysis was

further performed on 18 prognostic genes, and finally we identified

4 BMRG (Figure 2B). In addition, we also analyzed the expression

differences and prognostic value of the 4 BMRG. Differential

analysis showed that CTSA, ADAM9, LAMB3, and SPON2 were

highly expressed in HCC (Figure 2C), and kaplan-meier analysis

showed that high expression usually means poor prognosis

(Figure 2D). Finally, we constructed the basement membrane-

related gene prognostic index BMRGI based on the results of

LASSO analysis.

According to the median BMRGI, HCC patients were divided

into high BMRGI group and low BMRGI group. We use TCGA-

HCC as the training cohort and ICGC as the validation cohort.

First, we showed the risk scores of the training cohort and validation
B

C D E

A

FIGURE 1

DEG screening of key module genes. (A) Scale independence and mean connectivity. (B) Gene clustering dendrogram, a total of 4 modules were
identified. (C) Correlation heatmap of modules and clinical traits. (D) Volcano plot for BMRG differential analysis. (E) Venn diagram showing common
genes of key module genes and differential genes.
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cohort more intuitively (Figure 2E). Furthermore, in both the

TCGA-HCC cohort and the ICGC cohort, the higher the BMRGI,

the shorter the survival time of HCC patients (Figure 2F). Finally,

we performed a kaplan-meier analysis, and the results showed that

the OS of the high BMRGI group was significantly lower than that

of the low BMRGI group in both the TCGA cohort and the ICGC

cohort (Figure 2G).
3.3 Single-cell transcriptional profiling and
cell-cell interactions in HCC tissue

We used tSNE to perform dimensionality reduction and

clustering on the preprocessed scRNA-seq data, and finally
Frontiers in Immunology 05
obtained 12 clusters (Figure 3A). In addition, we also displayed

the most significantly expressed genes in the 12 clusters using a

heatmap (Figure 3B). Cell types were automatically annotated by

the SingleR package, and these 12 clusters were clustered into 5 cell

types, including Hepatocytes, T cells, Macrophage, B cell and NK

cell (Figure 3C).

In addition, we further evaluated the interactions between

different cells using the “CellChat” package. Figure 3D shows

the number and weight of interactions among the five cell

types. Furthermore, we present these results separately for a

clearer picture of the strength of cell-cell interactions (Figure 3E).

Overall, Hepatocytes rarely act as receptors for signals from

the other four types of immune cells, but they can communicate

with immune cells by emitting signals. Immune cells interact and
B

C

D

E G

F

A

FIGURE 2

Construction of BMRGI and verification of its prognostic value. (A) Univariate Cox regression analysis of common genes. (B) LASSO analysis. (C)
Expression difference analysis of CTSA, ADAM9, LAMB3 and SPON2. (D) Kaplan-Meier survival curves of CTSA, ADAM9, LAMB3 and SPON2. (E) Visual
distribution of risk scores for TCGA cohort and ICGC cohort. (F) Survival status and time of TCGA and ICGC cohort. (G) Kaplan-Meier survival curves
of BMRGI in TCGA and ICGC cohort.
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receive signals frequently. In addition, receptor ligand

molecules when mediating cell-cell interactions are shown

in Figure 3F.

Finally, we explored the distribution of model genes in different

cell types and showed the expression levels of the model in different

cell types in bubble plots (Figures 3G, H). In brief, CTSA was highly

expressed in hepatocytes, NK cells, and macrophages, SPON2 was

highly expressed only in hepatocytes, whereas ADAM9 and LAMB1

were expressed at low levels in all cell types.
Frontiers in Immunology 06
3.4 Comprehensive analysis of clinical
parameters in HCC patients

As shown in Figure 4A, the heat map of BMRGI and common

clinicopathological parameters, the results showed that the tumor

stages of HCC patients with different BMRGI groups had statistical

differences. In addition, we further determined the prognostic value

of BMRGI in patients with different pathological features. The

results showed that the high BMRGI group had significantly
A B

D

E

F

G
H

C

FIGURE 3

scRNA-seq analysis and CellChat Analysis (A) tSNE analysis to classify cell clusters. (B) Heatmap showing highly expressed genes in cell clusters. (C)
The “SingleR” package annotates cell clusters into 5 cell types. (D) Network diagram of the number and weight of connections between different cell
types. (E) Diagram of the communication network between cells and other cells. (F) Bubble diagram of receptor ligand molecules involved in cell
communication. (G, H) Distribution and expression levels of model genes in 5 cell types.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1185916
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Sun et al. 10.3389/fimmu.2023.1185916
worse OS than the low BMRGI group in HCC patients with

different clinicopathological parameters (age, gender, tumor grade

and stage) (p< 0.1, Figures 4B–I). These results suggest that our

BMRGI can effectively predict the prognosis of HCC patients with

different clinicopathological features.
3.5 Construction and evaluation of clinical
nomogram based on BMRGI

In order to construct a more practical and stable nomogram, we

incorporated several common clinicopathological parameters (age,

gender, tumor grade and stage). Univariate Cox analysis showed

that tumor stage and BMRGI were risk factors affecting the

prognosis of HCC patients (Figure 5A). Multivariate Cox analysis

confirmed that tumor stage and BMRGI were independent risk

factors affecting the prognosis of HCC patients after adjusting

for other clinicopathological parameters (Figure 5B). Given

the high correlation between BMRGI and prognosis of HCC

patients. We constructed a new nomogram combining common

clinicopathological parameters and BMRGI (Figure 5C). We first

evaluated the AUC value of various indicators to predict the

prognosis of HCC patients using the ROC curve, and the results

showed that the ability of BMRGI to predict the prognosis of HCC
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patients was significantly better than other clinicopathological

features (including the classic indicator tumor stage), and the

nomogram constructed based on this further improved the

accuracy of predicting the prognosis of HCC patients

(Figure 5D). In addition, the excellent accuracy and robustness of

the nomogram in assessing the 1-year, 3-year, and 5-year survival of

patients was further illustrated by ROC curves and calibration

curves (Figures 5E, F).
3.6 GO, KEGG and GSEA analysis
related to BMRGI

First, we analyzed the genetic differences between the high

BMRGI group and the low BMRGI group (|log2FC| > 1, FDR<

0.05). Based on these differential genes, we further performed GO

analysis and KEGG analysis to explore their biological

characteristics. GO analysis results showed that, in terms of

biological process, DEGs were mainly enriched in “ membrane

invagination, phagocytosis, engulfment, phagocytosis, recognition,

plasma membrane invagination, phagocytosis, humoral immune

response mediated by circulating immunoglobulin, humoral

immune response, B cell receptor signaling pathway, cell

chemotaxis, leukocyte migration” . In terms of cellular
B

C

D

E

F

G

H

I

A

FIGURE 4

Correlation analysis between BMRGI and clinicopathological features. (A) Heatmap of the distribution of clinical case characteristics of patients in the
high BMRGI group and low BMRGI group. (B, C) Kaplan-meier survival curves of high BMRGI group and low BMRGI group in different age groups. (D,
E) Kaplan-meier survival curves of high BMRGI group and low BMRGI group in different gender groups. (F, G) Kaplan-meier survival curves of high
BMRGI group and low BMRGI group under different grading groups. (H, I) Kaplan-meier survival curves of high BMRGI group and low BMRGI group
in different stages.
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composition, DEGs were mainly enriched in “immunoglobulin

complex , co l l agen−conta in ing ex t race l lu l a r mat r i x ,

immunoglobulin complex, circulating, external side of plasma

membrane, basal plasma membrane, Golgi lumen, basal part of

cell, apical plasma membrane, basolateral plasma membrane, apical

part of cell”. and in terms of molecular functions, DEGs were

mainly enriched in “antigen binding, immunoglobulin receptor

binding, extracellular matrix structural constituent, collagen

binding, glycosaminoglycan binding, fibronectin binding, sulfur

compound binding, heparin binding, growth factor binding,

insulin−like growth factor binding” (Figure 6A). The results of
Frontiers in Immunology 08
KEGG analysis showed that DEGs were only enriched in the Focal

adhesion signaling pathway (Figure 6B).

In addition, GSEA analysis was further carried out in this study.

The results showed that the signal pathways affected by the high

BMRGI group were mainly enriched in “ KEGG CELL ADHESION

MOLECULES CAMS, KEGG CYTOKINE CYTOKINE

RECEPTOR INTERACTION, KEGG ECM RECEPTOR

INTERACTION, KEGG FOCAL ADHESION, KEGG

NEUROACTIVE LIGAND RECEPTOR INTERACTION”. The

signal pathways affected by the low BMRGI group were mainly

enriched in “KEGG DRUGMETABOLISM CYTOCHROME P450,
B

C

D E F

A

FIGURE 5

Construction of clinical nomogram. (A, B) Forest plots for univariate and multivariate Cox regression analysis. (C) Nomogram combining common
clinical parameters and BMRGI. (D) ROC curves for clinical parameters, BMRGI and nomogram. (E) ROC curves of nomograms predicting 1-year,
3-year and 5-year survival rates. (F) Calibration curves for nomograms.
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KEGG FATTY ACID METABOLISM, KEGG GLYCINE SERINE

AND THREONINE METABOLISM, KEGG METABOLISM OF

XENOB IOT IC S BY CYTOCHROME P45 0 , KEGG

RETINOL METABOLISM”(Figure 6C).
3.7 Comprehensive analysis of the
correlation between BMRGI and tumor
microenvironment

In view of the important guiding significance of immune

checkpoint molecules and HLA family molecules in

immunotherapy. We analyzed the correlation between BMRGI

and 48 common immune checkpoint molecules and 24 HLA

family molecules. The results showed that BMRGI was

significantly positively correlated with 41 immune checkpoint

molecules as well as 23 HLA family molecules (Figures 7A, B). In

addition, we assessed the levels of 16 immune-related cells and 13

immune-related terms in tissue samples from HCC patients using

ssGSEA. In terms of immune-related cells: Compared with the low

BMRGI group, aDCs, DCs, iDCs, Macrophages, pDCs, Th1_cells,

Th2_cells, and Treg were significantly increased in the high BMRGI

group, while NK_cells were significantly decreased (Figure 7C). In

terms of immune-related terms, compared with the low BMRGI

group, the levels of APC_co_Stimulation, CCR, Check-point, HLA,

MHC_class_I, and Parainflammation were significantly increased,

while Type_II_IFN_Reponse was significantly decreased

(Figure 7D). Then, we analyzed the somatic mutation profile of

HCC patients and identified the top 10 mutated genes in the

high and low BMRGI groups. The results showed that TP53

mutations were significantly lower in the high BMRGI group than

in the BMRGI group (Figures 7E, F). However, there was no

statistical difference in TMB between the high and low BMRGI

groups (Figure 7G). Finally, we assessed the sensitivity to

immunotherapy in the high and low BMRGI groups. The results
Frontiers in Immunology 09
showed that TIDE was lower in the high BMRGI group, indicating

that the lower the possibility of immune escape, the better the effect

of immunotherapy (Figure 7H).
3.8 Screening for sensitive drugs in
HCC patients

We evaluated and observed the differences in sensitivity to

6 common drugs in HCC patients between the two groups.

The lower the IC50 value, the higher the sensitivity to the drug.

The results showed that patients in the low BMRGI group

were more sensitive to sorafenib, oxaliplatin, cytarabine

and fludarabine, whereas patients in the high BMRGI group

were more sensitive to 5-fluorouracil and gefitinib higher

(Figures 7I, J). All in all, these results provide a good

reference for clinical medication.
3.9 Identification of key BMRG

We conducted a more refined analysis based on the 47

common genes screened above. First, we identified marker

molecules of HCC by 3 machine learning methods (LASSO,

SVM-REF, and RandomForest) (Figures 8A–C). Among them,

CSTA, ITGA6, ITGB8 and LAMC1 are common marker

molecules (Figure 8D). Then we evaluated the diagnostic value

of the four marker molecules through the ROC curve, and the

results showed that CSTA (AUC = 0.952), ITGA6(AUC = 0.942),

ITGB8(AUC = 0.756) and LAMC1(AUC = 0.936) all had high

diagnostic value (Figures 8E–H). At the same time, we found that

CTSA not only has the highest diagnostic value, but also

constitutes one of the members of BMRPI. Therefore, we

considered CTSA as the most critical BMRG in HCC for

further study.
FIGURE 6

GO analysis, KEGG analysis and GSEA analysis. (A) Circle and bubble charts for GO analysis. (B) Barplot and bubble charts for KEGG analysis.
(C) GSEA analysis of high BMRGI group and low BMRGI group.
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3.10 Multilevel expression verification and
in vitro functional exploration of CTSA

We further investigated the differential expression of CTSA in

HCC. First, we searched through GEPIA2.0, and the results showed

that CTSA was highly expressed in HCC (Figure 9A). Second, we

explored the differential expression of CTSA at the protein level.

The UALCAN database (https://ualcan.path.uab.edu/index.html)

showed that the protein level of CTSA in HCC was significantly

higher than that in the normal group (Figure 9B). Likewise, the

HPA database showed that CTSA was highly expressed in HCC

tissues compared with normal liver tissues (Figure 9C). Finally, we

detected the expression of CTSA in normal liver cell lines (LO2) and

liver cancer cell lines (BEL7402, HEPG2, HCCLM3), and the results

showed that the expression level of CTSA in liver cancer cell lines

was significantly higher than that in normal liver cell

lines (Figure 9D).

To gain insight into the in vitro function of CTSA in HCC, we

characterized the oncogenic phenotype of HCCLM3 and BEL-7402

cells (SiCTSA-1 and SiCTSA-2) with CTSA knockdown. The RT-

qPCR results showed that siCTSA-1 and siCTSA-2 could

significantly inhibit the CTSA expression of HCC cells (BEL-7402
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and HCCLM3 cells) (Figure 9E). We studied the role of CTSA in

HCC cell proliferation by CCK8 assay, and the role of CTSA in

HCC cell migration and invasion using Transwell assay. CCK8

assay and Transwell assay analysis showed that the reduction of

CTSA impaired the proliferation (Figures 9F, G), migration

(Figure 9H) and invasion (Figure 9I) abilities of HCC cells

(BEL7402 and HCCLM3).
4 Discussion

HCC is the most prevalent histological type of primary liver

cancer, known for its high metastatic and recurrence characteristics

(4). Unfortunately, most HCC patients are diagnosed at an

advanced stage, which significantly reduces the chance of curative

treatment and leads to a poor prognosis (26). BM, as an important

component of the extracellular matrix, is an important barrier that

cancer cells must overcome to form metastasis (5, 27). Numerous

studies have demonstrated the association between the main

components of BM and HCC tumor metastasis, as well as poor

prognosis (28–30). Current study shows that systematic analysis of

specific gene sets achieves promising results in predicting cancer
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FIGURE 7

Correlation analysis between BMRGI and tumor microenvironment and common drug sensitivity. (A) Correlation between BMRGI and immune
checkpoint molecules. (B) Correlation between BMRGI and HLA family molecules. (C) Differences in immune cell infiltration between high and low
BMRGI groups. (D) Differences in immune-related terms between high and low BMRGI groups. (E) TOP10 mutated genes in high BMRGI group.
(F) TOP10 mutated genes in low BMRGI group. (G) Difference analysis of TMB between high BMRGI group and low BMRGI group. (H) Difference
analysis of TIDE scores between high BMRGI group and low BMRGI group. (I) Difference analysis of IC50 values of 6 commonly used drugs in high
BMRGI group and low BMRGI group. (J) Correlation analysis between IC50 values of 6 commonly used drugs and BMRGI. * represents p < 0.05, **
represents p < 0.01, and *** represents p < 0.001.
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prognosis (31, 32). Despite advancements in research, there is still a

lack of reliable prognostic models for HCC based on basement

membrane genes. To address this gap, our study utilized WGCNA

and machine learning to develop a strong prognostic index based on

BMRG. Our model has demonstrated high accuracy in predicting

the prognosis of HCC patients. This study utilized the TCGA-HCC

dataset to identify 4 BMRG (CTSA, ADAM9, LAMB1, and SPON2)

through WGCNA and machine learning techniques. These BMRG

were used to construct BMRGI. Previous research has shown that

all four BMRG are closely associated with HCC. Wang et al.

discovered that CTSA has potential as a diagnostic and

prognostic marker for HCC patients (33). In HCC, ADAM9 is

known to be overexpressed and is responsible for inducing ROS

generation, which in turn promotes HCC cell invasion (34).

Additionally, LAMB1 has been shown to be regulated by the

RNA helicase DDX24, which contributes to the malignant

progression of HCC (35). However, the role of SPON2 in HCC is

still a matter of debate. While high expression of SPON2 has been

linked to poor prognosis in HCC patients (36), it has also been

found to inhibit tumor metastasis by promoting the infiltration of

M1-like macrophages (37). Taken together, these studies showed

that the four BMRG were closely related to HCC and its prognosis,

which indicated the correctness of our BMRGI based on them.

By analyzing the single-cell atlas of HCC tissue, we identified five

types of cells present. Our findings suggest that hepatocytes are capable

of acting as ligands to send signals to immune cells, while immune cells

exhibit a weaker ability to send signals to liver cells. We conducted an

analysis of the expression of model genes across various cell types and

found that CTSA expression was particularly high in hepatocytes, NK

cells, and macrophages. This suggests that any abnormal expression of

CTSA could potentially impact the progression of HCC by influencing

the immune microenvironment of HCC.

We conducted related validation on BMRGI. Survival analysis

revealed that the prognosis of the high BMRGI group was
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significantly worse than that of the lower BMRGI group in the

TCGA-HCC cohort. Furthermore, we validated the ability of

BMRGI to predict the prognosis of HCC patients in the ICGC

cohort. The study found that BMRGI is an independent risk factor

for the prognosis of HCC patients, as determined by the results of

multivariate Cox analysis. Additionally, ROC curve analysis revealed

that BMRGI is a better predictor of HCC patient prognosis compared

to other clinicopathological parameters. Subgroup analysis based on

clinical characteristics demonstrated that BMRGI has a strong ability

to predict prognosis for HCC patients with varying clinical

characteristics. In order to facilitate clinical application and

improve the accuracy of predicting the prognosis of HCC patients,

we combined common clinicopathological parameters with BMRGI

to construct a nomogram.

We conducted further analysis of the differentially expressed

genes (DEGs) between the high and low BMRGI groups to

investigate the biological properties of these subgroups. Our

analysis, which included Gene Ontology (GO), Kyoto

Encyclopedia of Genes and Genomes (KEGG), and Gene Set

Enrichment Analysis (GSEA), revealed significant differences in

biological processes related to immunity and cell adhesion (BM is

closely related) between the different BMRGI subgroups.

This study demonstrates the accuracy of BMGPI construction

(closely related to BM-related biological characteristics). Additionally,

BMGPI effectively recognizes differences in the tumor immune

microenvironment. Further analysis was conducted to determine the

correlat ion between BMRGI and the tumor immune

microenvironment. Previous research has shown that immune

checkpoint molecules and HLA family molecules are strong

predictors of response to immunotherapy (38–41). Therefore, we

analyzed the correlation between BMRPI and immune checkpoint

molecules and HLA family molecules. The results showed that BMRGI

was positively correlated with most immune checkpoint molecules and

HLAmolecules, suggesting that BMRGI may also be a good biomarker
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FIGURE 8

Screening for Feature BMRG. Characteristic genes in DEGs selected by LASSO (A), SVM-SEF (B) and RandomForst (C). (D) The Venn diagram shows
the common genes of the three algorithms. (E–H) ROC curve of common genes.
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for predicting immunotherapy response. Second, our results showed

significant differences in terms of immune-related cells between high

and low BMRGI groups, implying that different BMRGI subgroups

may differ in response to immunotherapy. Interestingly, the mutation

rate of TP53 in the high BMRGI group was significantly higher than

that in the low BMRGI group, which may be one of the reasons for the

poor prognosis in the high BMRGI group (42). However, overall TMB

levels were not statistically different between the two groups. In this

study, we used the TIDE algorithm to analyze the response to

immunotherapy in various BMRGI subgroups of HCC patients. Our

findings indicate that patients in the high BMRGI group had a lower

TIDE score, suggesting that they may be less prone to immune escape

and therefore have a better response to immunotherapy. Additionally,

we evaluated the sensitivity of different BMRGI subgroups to six

commonly used therapeutic drugs, providing valuable insights for

clinical decision-making.
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Finally, we screened 47 common gene by multiple machine

learning methods and finally identified 4 BMRG: CTSA, ITGA6,

ITGA8, and LAMC1. ROC analysis showed that these genes have

high diagnostic value for distinguishing HCC. We found that CTSA

not only had the highest diagnostic value (AUC:0.952), but also

constituted one of the core members of BMRGI. Therefore, we

regard CTSA as the most critical member of BMRG and conduct in-

depth research. We verified that the expression of CTSA in HCC

was significantly higher than that in normal tissues at the mRNA

level and protein level by GEPIA2.0 database, UALCAN database

and HPA database. In addition, we also verified by RT-qPCR that

the expression of CTSA in HCC cell lines was significantly higher

than that in normal liver cell lines. Since the oncogenic role of CTSA

in HCC is still unclear, this prompted us to further explore the role

of CTSA in HCC progression. More importantly, our in vitro cell

experiments showed that the proliferation, migration and invasion
FIGURE 9

Multidimensional expression validation of CTSA and modulation of HCC oncogenic capacity in vitro. (A) Differential analysis of mRNA expression of
CTSA in HCC in GEPIA2.0 database. (B) Differential analysis of protein expression levels of CTSA in HCC from UALCAN database. (C) IHC images of
CTSA in HCC tissues and normal liver tissues from HPA database. (D) Expression levels of CTSA in normal liver cell lines and HCC cell lines. (E)
Knockdown efficiency of siCTSA in BEL7402 and HCCLM3 cells. (F, G) CCK8 assay detects the effect of knocking down CTSA on the proliferation
ability of BEL-7402 (Left) and HCCLM3 (Right). (H) Transwell assay was used to detect the effect of knocking down CTSA on the migration and
invasion of BEL7402 cells. (I) Transwell assay was used to detect the effect of knocking down CTSA on the migration and invasion of HCCLM3 cells.
*** represents p < 0.001.
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abilities of HCC cell lines (BEL7402 and HCCLM3) were

significantly reduced after CTSA knockdown.

Like other studies, even this study has some limitations and

shortcomings. First, when we validated the prognostic value of

BMRGI, we did not validate it in real cohorts. Second, the

carcinogenesis of CTSA has not been explored by in vivo

experiments. Finally, the specific molecular mechanism by which

CTSA affects the progression of HCCwas not elucidated in this study.

In conclusion, our study trained and validated a BMRGI that could

effectively predict the prognosis of HCC patients based on 222 BMRG.

Based on this, we also developed a nomogram for clinical application.

The biological and immunological characteristics of BMRGI in HCC

were explored through a series of bioinformatics methods, and some

insights were provided for clinical immunotherapy and targeted

therapy. Finally, we also verified the role of the key BMRG CTSA in

HCC progression through in vivo functional experiments.
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