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osteoarthritis and COVID-19
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genome-wide cross-trait analysis
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Cong Sui3* and Jing Ni1*

1Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University,
Hefei, Anhui, China, 2Department of Endocrinology, The First Affiliated Hospital of Anhui Medical
University, Hefei, Anhui, China, 3Department of Orthopedics Trauma, The First Affiliated Hospital of
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Background: Patients with osteoarthritis (OA) are exposed to an increased risk of

adverse outcomes of COVID-19, and they tend to experience disruption in

access to healthcare services and exercise facilities. However, a deep

understanding of this comorbidity phenomenon and the underlying genetic

architecture of the two diseases is still unclear. In this study, we aimed to

untangle the relationship between OA and COVID-19 outcomes by

conducting a large-scale genome-wide cross-trait analysis.

Methods: Genetic correlation and causal relationships between OA and COVID-

19 outcomes (critical COVID-19, COVID-19 hospitalization, and COVID-19

infection) were estimated by linkage disequilibrium score regression and

Mendelian Randomization approaches. We further applied Multi-Trait Analysis

of GWAS and colocalization analysis to identify putative functional genes

associated with both OA and COVID-19 outcomes.

Results: Significant positive genetic correlations between OA susceptibility and

both critical COVID-19 (rg=0.266, P=0.0097) and COVID-19 hospitalization

(rg=0.361, P=0.0006) were detected. However, there was no evidence to

support causal genetic relationships between OA and critical COVID-19

(OR=1.17[1.00-1.36], P=0.049) or OA and COVID-19 hospitalization OR=1.08

[0.97-1.20], P=0.143). These results were robustly consistent after the removal of

obesity-related single nucleotide polymorphisms (SNPs). Moreover, we identified

a strong association signal located near the FYCO1 gene (lead SNPs: rs71325101

for critical COVID-19, Pmeta=1.02×10
-34; rs13079478 for COVID-19

hospitalization, Pmeta=1.09×10
-25).

Conclusion: Our findings further confirmed the comorbidity of OA and COVID-

19 severity, but indicate a non-causal impact of OA on COVID-19 outcomes. The
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study offers an instructive perspective that OA patients did not generate negative

COVID-19 outcomes during the pandemic in a causal way. Further clinical

guidance can be formulated to enhance the quality of self-management in

vulnerable OA patients.
KEYWORDS

osteoarthritis, COVID-19 severity, genetic correlation, Mendelian randomization, cross-
trait analysis
Introduction

The global pandemic of Coronavirus disease (COVID-19) pandemic

has been plaguing the world since late 2019. As of 18 August, 2022, the

cumulative number of confirmed patients worldwide exceeded 59

million (1). Analysis of epidemiological data showed an increased risk

of adverse outcomes of COVID-19 in patients with immune-mediated

arthritis (2–4). In fact, COVID-19 also has a significant impact on the

most prevalent type of chronic arthritis, osteoarthritis (OA) (5), which is

among the most important public health problems worldwide, with

more than 300 million people currently affected by the condition (6).

Observational studies have reported that patients with OA are

likely to be infected by COVID-19 and that the condition may be

aggravated (7, 8). To avoid infection during pandemics, some patients

with OA have had to endure pain and reduce the frequency at which

they see doctors, undergo operations, or apply non-steroidal anti-

inflammatory drugs (NSAIDs) (9). However, Wang et al. (10) reported

no apparent associations between OA and the risk of COVID-19.

Additionally, according to a UK cohort study, no increased risk of

COVID-19-related adverse outcomes was observed among OA

patients who were prescribed NSAIDs. A deeper understanding of

the phenomenon of comorbidity in patients with COVID-19 and OA

is warranted to offer effective clinical instruction and improve the

quality of self-management in this vulnerable population.

There is growing evidence that COVID-19 traits often share highly

polygenic genetic components with several complex diseases, such as

idiopathic pulmonary fibrosis (11), type 2 diabetes (12), and asthma (13).

Although there have been recent reports that some genetic markers of

OA are associated with COVID-19 outcomes, the underlying genetic

basis of the relationship between these diseases has not been thoroughly

assessed (14–16). Here, we systematically estimate the shared genetic

architecture of OA and three COVID-19 traits, including critical

COVID-19, COVID-19 hospitalization, and COVID-19 infection, as

well as further assessing the causality of OA and COVID-19 traits using a

Mendelian randomization (MR) approach.
Methods

Study design and population

A brief flowchart of the current study is shown in Figure 1.

GWAS summary level data for COVID-19 were obtained from the
02
5th edition data (release date: 18 January, 2021) of the COVID-19

host genetics consortium (17). To minimize the bias introduced by

population stratification, participants were restricted to those of

European descent. Three COVID-19-related traits were

characterized as follows: 1. critical COVID-19, defined as

COVID-19-confirmed individuals with very severe respiratory

symptoms or those who died from the disease (up to 5101 cases

and 1,383,241 controls); 2. COVID-19 hospitalization, (up to 9986

cases and 1,877,672 controls); and 3. SARS-CoV2 infection (up to

38,984 cases and 1,644,784 controls). We obtained the largest

GWAS summary data for hospital-diagnosed OA susceptibility

from a GWAS meta-analysis comprising a sample size of 314,870

individuals of European ancestry (18). Hospital-diagnosed OA was

defined as individuals with an ICD-10 and/or ICD-9 hospital record

code captured from the hospital episode statistic (HES) for OA at

any site (18). Summary-level data for rheumatoid arthritis (RA)

were extracted from the most extensive GWAS meta-analysis of

European ancestry, comprising a total of 58,284 individuals (14,361

cases and 43,923 controls) (19). Details of the data sources used in

the current study are summarized in Supplementary Table 1.
Linkage disequilibrium score regression

Linkage disequilibrum score regression (LDSC) software (https://

github.com/bulik/ldsc) was used to estimate the single nucleotide

polymorphism (SNP)-based heritability of each trait and genetic

correlations between OA and COVID-19 outcomes, based on GWAS

summary statistics (20). SNPs within the major histocompatibility

complex (MHC) region were removed due to the complex structure of

linkage disequilibrium (LD) structure in the region. The 1000 Genomes

Project European LD score reference panel was adopted throughout the

analyses. As obesity is a recognized independent risk factor for both

arthritis (21) and COVID-19 (22), we performed further LDSC analysis

to estimate the genetic correlation between RA and COVID-19

outcomes. A Bonferroni-corrected P-value < 0.017 (0.05/3 = 0.017)

was set as the threshold for significance in the LDSC analysis.
Multi-trait analysis of GWAS

A generalized inverse-variance-weighted meta-analysis was

conducted using Multi-trait analysis of GWAS (MTAG) to
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identify risk SNPs associated with joint phenotypes of OA and each

of the analyzed COVID-19-related traits. This approach enabled

combined analysis of multiple traits and thus boosted the statistical

power to detect genetic associations for each trait (23). A genome-

wide significance level of P < 5 × 10-8 was set for MTAG.
Colocalization analysis

Summary data-based Mendelian Randomization (SMR) and

Heterogeneity in Dependent Instrument (HEIDI) methods were

applied to identify putative pleiotropic genes underlying OA and

each of the critical-COVID-19 and COVID-19 hospitalization

traits, by jointly analyzing the results of the cross-trait meta-

analysis and the publicly available cis-eQTL summary data from

whole blood and lung tissue of the Genotype-tissue expression

(GTEx) project (24). Significant SMR associations were defined if

they passed the FDR correction (PFDR < 0.05) and also surpassed the

HEIDI-outlier test (PHEIDI > 0.05).
MR analysis

A two-sample MR analysis was conducted to examine whether

the relationships between OA and COVID-19 outcomes were

causal. Instrumental variants (IVs) for OA were required to meet

three criteria, including that the markers: 1. were strongly associated
Frontiers in Immunology 03
with OA; 2. affected COVID-19 infection only through their effect

on OA, and, 3. most importantly, were independent of any

confounding variables of associations between OA and COVID-

19-related traits. LD clumping (r2<0.001, 10000kb) was used to

select independent SNPs. Methods used for MR analysis included

inverse variance weighted (IVW) (25), weighted median (26),

weighted mode (27), and MR-Egger (28), followed by pleiotropy

test and leave-one-out analysis. Phenoscanner v2 (29) was applied

to check whether any of the selected IVs for OA were associated

with obesity-related phenotypes (P<1×10-5). A sensitivity analysis

was conducted by removing all obesity-related SNPs. All statistical

analyses were performed in R (version 4.1.3) using the packages

MendelianRandomization (version 0.5.6) and MRPRESSO (version

1.0). A Bonferroni-corrected threshold of P=0.017 was considered

significant for MR analyses.
Results

Genetic correlation of OA with
COVID-19 outcomes

As shown in Table 1, the liability-scale SNP heritability values

were 8.92% for OA, 0.35% for critical COVID-19, 0.19% for

COVID-19 hospitalization, and 0.13% for COVID-19 infection,

respectively. We found significant positive genetic correlations

between OA susceptibility and critical COVID-19 (rg=0.266,
FIGURE 1

Flowchart of the current study. OA patients were contained with a sample size of 314870. Three COVID-19-related traits include critical COVID-19,
COVID-19 hospitalization, and COVID-19 infection, and their sample sizes are 1388342, 1887658, and 1683768 respectively. Study approaches
consist of assessing causal relationships using Mendelian Randomization, and identifying genetic correlations, shared risk SNPs, and functional genes
using LDSC, MTAG, and SMR analysis. OA, osteoarthritis; SNP: single nucleotide polymorphism; LDSC, linkage disequilibrium score regression;
MTAG, multi-trait analysis of GWAS; SMR, summary data-based Mendelian randomization.
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P=0.0097), as well as with COVID-19 hospitalization (rg=0.361,

P=0.0006). A positive genetic correlation was also detected between

OA susceptibility and COVID-19 infection, although it did not

achieve the Bonferroni-corrected significance threshold

(rg=0.280, P=0.0238). Moreover, no genetic correlations were

detected between RA susceptibility and COVID-19 outcomes

(Supplementary Table 2).
Multi-trait analysis of OA and
COVID-19 severity

We performed MTAG to conduct a cross-trait meta-analysis to

detect the loci that were significantly associated with both OA and

COVID-19 severity. We identified 357 shared genetic loci

associated with both critical COVID-19 and OA and 288

associated with both COVID-19 hospitalization and OA

(Pmeta<5×10
-8) (Supplementary Tables 3, 4). After excluding loci

with an inconsistent direction of effect, shared signals for COVID-

19 severity and OA were mainly mapped to chromosomes 3, 19, and

21. The strongest association signals for the two COVID-19 traits

with OA mapped close to the FYCO1 gene (lead SNP: rs71325101

for critical COVID-19, Pmeta=1.02×10
-34; rs13079478 for COVID-

19 hospitalization, Pmeta=1.09×10
-25).
Colocalization analysis

By conducting SMR and HEIDI methods, several non-MHC

region SNPs were identified as common shared genetic loci

including rs143334143 (TCF19), rs2277732 (DPP9), rs77534576

(DLX3), and rs13081151 (FLT1P1), among others, which were

s ign ificant ly assoc ia ted wi th OA-cr i t i ca l COVID-19

combined trait. Rs2277732 (DPP9), rs13081151 (FLT1P1), and

rs11085727 (TYK2), among others, were considered significantly

associated3with OA-COVID-19 hospitalization combined trait

(Supplementary Table 5).
MR analysis

After LD clumping, 34 independent IVs were selected for OA

(Supplementary Table 6). Based on the IVW method, there was no

evidence to support significant causal genetic relationships between
Frontiers in Immunology 04
OA and critical COVID-19 (OR=1.17[1.00-1.36], P=0.049), OA and

COVID-19 hospitalization (OR=1.08[0.97-1.20], P=0.143), or OA

and COVID-19 infection (OR=1.06[1.00-1.11], P=0.034). Using the

MR Egger method, we found that a genetically predicted OA was

positively correlated with a higher risk of suffering from critical

COVID-19 (OR=1.72[1.18-2.51], P=0.009) (Table 2). In addition,

our analysis suggested no significant evidence of horizontal

pleiotropy. The direction and precision of the summary

association between OA and COVID-19 remained largely

unchanged using a leave-one-out approach (Supplementary

Figure 1). Among the selected SNPs of OA, four of which were

associated with obesity phenotype at a significant level of P<1×10-5

(rs2820436, rs73080980, rs6977416, and rs143383) (Supplementary

Table 7). The results were robust after removing four obesity-

related SNPs (Supplementary Table 8 and Supplementary Figure 2).
Discussion

Our study was the first to decipher in-depth the genetic

architecture underlying the relationships between OA and three

COVID-19 traits. Leveraging large-scale GWAS summary statistics

data, we identified positive genetic correlations and shared genetic

loci, genes between OA and COVID-19 traits. Further, MR analysis

did not support that OA increased the risk of COVID-19

susceptibility and severity.

Our findings support a shared genetic contribution to OA and

COVID-19 outcomes and indicate that the relationships are likely

to be comorbid, rather than causal. COVID-19 is devastatingly

deleterious to the human body by causing an aggressive immune

response designated as a cytokine storm, which leads to multi-organ

failure and finally death (30). The pro-inflammation effects of

various cytokines are also well-established factors contributing to

the pathophysiology of OA (31). It an plays important role in OA

progression by stimulating matrix metalloproteinase (MMPs)

development, thereby leading to matrix degradation (32).

Recently, there have been reports that mesenchymal stem/stromal

cells (MSCs) secrete immunomodulatory cytokines such as TGFBI

(33), PGE2, and IL-6, which are expected to be promising

therapeutic targets for both OA and critical COVID-19 (34),

strongly supporting shared features in the etiological pathways

leading to these two conditions. Obesity is an established risk

factor for both arthritis and COVID-19 (35–37). To eliminate the

effect of obesity, we further estimated the genetic correlation
TABLE 1 Genetic correlations between osteoarthritis and COVID-19.

Phenotype SNP-heritability (SE)
Genetic correlation with osteoarthritis

rg (SE) P-value

Osteoarthritis 8.92% (0.0114) – –

Critical COVID-19 0.35% (0.0007) 0.266 (0.103) 9.70E-03

COVID-19 hospitalization 0.19% (0.0005) 0.361 (0.106) 6.00E-04

COVID-19 infection 0.13% (0.0003) 0.280 (0.124) 0.0238
SNP, single nucleotide polymorphism; SE, standard error.
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between RA and COVID-19 and did not detect any genetic

correlations between RA susceptibility and COVID-19 outcomes.

In the primary IVWMR analysis, genetically predicted OA was not

associated with any of the COVID-19 outcomes. Although a

significant causal effect of OA on critical COVID-19 was detected

using the MR-Egger method, this approach is relatively imprecise

compared with the IVW analysis (38). These results were robustly

consistent after the removal of obesity-related SNPs. Diseases such

as depression and diabetes are also risk factors for OA and COVID-

19 according to recent studies (39–42). Therefore, to control the

confounders we have additionally searched whether any of the

selected IVs for OA were associated with depression and diabetes-

related phenotypes (P<1×10-5) in Phenoscanner v2. We did not find

any IVs which are correlated with depression or diabetes.

FYCO1 gene was observed to be strongly associated with two

COVID-19 traits and OA. It encodes a RAB7 adapter protein

implicated in the microtubule transport of autophagosomes (43).

Previous GWAS studies have also reported an association signal

with COVID-19 at the 3p21.31 locus, which contains a cluster of

genes including FYCO1 (15, 17). We also identified several putative

functional genes as associated with both diseases, including DLX3,

DPP9, TCF19, and TYK2. Distal-less (DLX) family genes play

crucial roles in bone tissue development and regulate osteoblast

differentiation (44). A recent study revealed that the osteogenic

differentiation of human bone marrow MSCs is enhanced by DLX3

overexpression through the Wnt/b-catenin pathway (45). On the

other hand, the outcomes of COVID-19 patients were substantially

improved by MSCs treatment in experimental studies and this

approach is expected to be applied to patients with COVID-19 in

the clinic (46, 47). These reports are consistent with our results

showing that OA patients are not causally susceptible to COVID-19

infection. DPP9 encodes a serine protease with a key role in
Frontiers in Immunology 05
inflammasome activation (48). On the contrary, TYK2 is thought

to be one of the four gene targets for JAK inhibitors and the anti-

inflammatory properties of which have nowadays been

enthusiastically discussed. Symptoms of gastrointestinal

inflammation or psoriasis are frequently observed in patients with

critical COVID-19 and OA (49, 50), indicating comorbid properties

among those diseases, and the genes discussed above are likely to be

future therapeutic targets.

We acknowledge several limitations of the current study. First,

the available summary statistics used in our MR analysis consist

solely of data from a population with European ancestry and

therefore are not typical of the overall population. Second, data

were not organized by age or sex, precluding the possibility of

further analysis of the relationship between the two diseases in

stratified populations. Finally, despite the fact we explicitly explored

the underlying genetic architecture of OA and COVID-19, the

specific mechanisms involved remain unclear and further analysis

on molecules and pathways is warranted.
Conclusion

In summary, our study provides innovative insights into the

genetic architecture underlying the relationship between OA and

three COVID-19 traits. We identified positive genetic correlations

and putative shared functional genes between them. However, OA

did not increase the risk of COVID-19 susceptibility or severity.

Therefore, the cancellation or delay in elective joint replacement

surgeries and the reduction in physical activities were not

compulsory. Our study is of great significance to the transition of

management and clinical guidance of OA patients during the

COVID-19 pandemic.
TABLE 2 Results of Mendelian randomization analyses evaluating causal relationships between osteoarthritis and COVID-19 outcomes.

Outcomes n.SNPs Methods OR 95% CI P value

Critical COVID-19 28 Inverse variance weighted 1.17 1.00, 1.36 0.049

MR Egger 1.72 1.18, 2.51 0.009

Weighted median 1.18 0.95, 1.46 0.143

Weighted mode 1.46 0.97, 2.19 0.081

COVID-19 hospitalization 26 Inverse variance weighted 1.08 0.97, 1.20 0.143

MR Egger 1.16 0.88, 1.53 0.298

Weighted median 1.08 0.94, 1.23 0.281

Weighted mode 1.05 0.82, 1.34 0.713

COVID-19 infection 26 Inverse variance weighted 1.06 1.00, 1.11 0.034

MR Egger 1.09 0.95, 1.24 0.250

Weighted median 1.03 0.96, 1.11 0.366

Weighted mode 1.03 0.90, 1.17 0.716
fron
n.SNPs, number of single nucleotide polymorphisms; OR, odds ratio; CI, confidence interval.
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