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Development of tolerance to
chemokine receptor antagonists:
current paradigms and the need
for further investigation

Patrick Grudzien, Henry Neufeld, Mbasogo Ebe Eyenga
and Vadim Gaponenko*

Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at
Chicago, Chicago, IL, United States
Chemokine G-protein coupled receptors are validated drug targets for many

diseases, including cancer, neurological, and inflammatory disorders. Despite

much time and effort spent on therapeutic development, very few chemokine

receptor antagonists are approved for clinical use. Among potential reasons for

the slow progress in developing chemokine receptor inhibitors, antagonist

tolerance, a progressive reduction in drug efficacy after repeated administration,

is likely to play a key role. Themechanisms leading to antagonist tolerance remain

poorly understood. In many cases, antagonist tolerance is accompanied by

increased receptor concentration on the cell surface after prolonged exposure

to chemokine receptor antagonists. This points to a possible role of altered

receptor internalization and presentation on the cell surface, as has been shown

for agonist (primarily opioid) tolerance. In addition, examples of antagonist

tolerance in the context of other G-protein coupled receptors suggest the

involvement of noncanonical signal transduction in opposing the effects of the

antagonists. In this review, we summarize the available progress and challenges in

therapeutic development of chemokine receptor antagonists, describe the

available knowledge about antagonist tolerance, and propose new avenues for

future investigation of this important phenomenon. Furthermore, we highlight the

modern methodologies that have the potential to reveal novel mechanisms

leading to antagonist tolerance and to propel the field forward by advancing the

development of potent “tolerance-free” antagonists of chemokine receptors.

KEYWORDS

chemokine receptors, antagonist, antagonist tolerance, clustering, oligomerization,
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Abbreviations: GPCR, G-protein coupled receptor; ACKR3, Atypical Chemokine Receptor 3; CCR, C-C
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Chemokine receptors: functions and
pharmacology

Chemokine receptors belong to a subfamily of rhodopsin-like

class A G-protein coupled receptors. Their primary function is to

orchestrate directional migration of cells (chemotaxis) in response

to stimulation by small extracellular proteins (chemokines).

Chemokines are secreted at the sites of infection or inflammation

and create a concentration gradient that is sensed by the chemokine

receptors on the surface of immune cells. Activation of chemokine

receptors promotes engagement of immune cells in the

inflammatory response. Recognition of chemokine receptors by

chemokines is frequently promiscuous with several different

chemokines being able to bind and activate the same receptor.

However, some chemokine receptors have monogamous cognate

ligand binding partners rather than being promiscuous.

While obtaining insight into activation of chemokine receptors

from X-ray structures has been challenging due to difficulties

associated with crystallization of chemokine-bound receptors,

mechanistic details are emerging with the advent of cryo-electron

microscopy and advanced crystallography studies. The structures of

agonist-occupied CCR2, CCR5, viral chemokine receptor US28, and

CXCR2 (1–5) are consistent with the previously proposed two-step,

two-site mechanism (6, 7). This mechanism involves the initial

recognition of the chemokine by the flexible N-terminus of the

receptor. The encounter complex matures after the chemokine

inserts its N-terminal region into the helical bundle of the

receptor, shifting its conformational ensemble towards the active

state characterized by repositioning of helix 6. While the general

features of activation are preserved among chemokine receptors, for

which structural information is available, the interactions of

chemokines and their receptors differ in detail. For example, the

N-terminus of CXCL8 does not penetrate deep into the helical

bundle of CXCR2, but, instead, interacts with a shallow pocket,

primarily establishing contacts with electrostatic residues in TMs 5

and 6 (5). Differences in chemokine:receptor interaction modes

suggest the existence of several distinct activation mechanisms.

Conventional chemokine receptors in the active state accelerate the

exchange of GDP for GTP in the coupled Ga (primarily Pertussis

toxin sensitive Gai), while the atypical chemokine receptors ACKRs

do not. Instead, the ACKRs tend to act as chemokine scavengers but

can also modulate the function of conventional chemokine

receptors through heterodimerization (8). Interestingly, the

structures of agonist-bound ACKR3 resemble those of active

conventional chemokine receptors (9). However, distinct

conformations and dynamics of ACKR3’s intracellular loops and

the more compact cytoplasmic pocket may explain its bias against

G-protein activation.

GTP-loaded Gai disengages from the receptor and from the

Gb/g heterodimer and interacts with adenylyl cyclase to inhibit

production of cAMP. At the same time, Gb/g activates MAPK,

PI3K, phospholipase C, Ca2+ flux, and promotes remodeling of the

cytoskeleton necessary for the formation of cellular protrusions.

Together, the signaling of Ga and Gb/g initiates chemotaxis of cells

towards increased concentrations of the chemokines. After G-

protein signaling is initiated, chemokine receptors recruit GRK,
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PKC, and Pim1 kinases to their intracellular portions and undergo

phosphorylation. The phosphorylation sites attract b-arrestins 1/2
that interact with membrane phosphoinositides and assemble the

clathrin machinery, promoting receptor endocytosis and

desensitization (10, 11). Additionally, b-arrestins participate in

signal transduction, primarily through the MAPK pathway

(12) (Figure 1).

The concept of homologous (limited to the stimulated receptor)

(13–15) and heterologous (includes the stimulated receptor and

other receptors) (16, 17) desensitization is well studied. Chemokine

receptor desensitization is the result of prolonged contacts with the

agonist, leading to reduced cell surface receptor levels and

activation. Mechanistically, desensitization is linked to rapid

receptor internalization followed by degradation or by slow

repopulation of the cell surface by the recycled or newly

synthesized receptors. This process can be influenced by the

extracellular environment, receptor type, and the exact effectors

and downstream signaling involved in receptor function (13).

Desensitization was found to be ligand type dependent for

chemokine receptors that have multiple ligands. One of the best

examples of this phenomenon is CCR4 that can be activated by

either CCL22 or CCL17 (18, 19). CCL22 stimulates CCR4

desensitization at a much higher level compared to CCL17 (20).

This sensitivity to chemokine types might be required for the

sequential functions of CCL17 and CCL22, allowing for precise

recruitment of Th2 lymphocytes into tissues (20).. Heterologous

desensitization of chemokine receptors can be exemplified by the

cross-talk between opioid and chemokine receptors (21). For

instance, pretreatment of cells with RANTES, a chemokine for

CCR5 or with CXCL12, a CXCR4 specific chemokine, reduces the

subsequent efficacy of DAMGO, µ-opioid receptor’s agonist.

Remarkably, simultaneous treatment with chemokine and µ-

opioid receptor agonists produced a significantly greater effect,

indicating a rapid desensitization of the opioid receptor. This

reaction also works in the opposite direction, where the activation

of the µ-opioid receptor desensitizes the chemokine receptors, but

to a lesser degree (22).

Selective activation of either G-proteins or receptor

internalization can be achieved through biased agonism, a

phenomenon that has received significant attention in the context

of chemokine receptors (23–25). Biased agonists have been

identified for multiple chemokine receptors, such as CXCR4 (26),

CXCR3 (27, 28), CCR2 and CCR5 (29). There are additionally a few

instances of a natural ligand or receptor modifications that

stimulate biased signaling. Specific examples can be found in the

N-terminal modifications of CCL15, a CCR1 ligand (30), and TM

helical modifications of CCR5 (31). Structural characterization of

two CCR1-bound truncation variants of CCL15 (one balanced

agonist and one biased agonist) revealed differences in their

binding modes and resulting receptor conformations (32). The

residue Y291 in helix 7 of CCR1 acts as a “toggle switch” for

biased signaling. Binding of the balanced agonist causes Y291 to

form hydrogen bonds with Y113 in helix 3 and Y255 in helix 6,

promoting the conformation of the receptor favorable for

recruitment of b-arrestin. However, upon binding of the biased

agonist, Y291 exists in two alternative conformations, one
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resembling the balanced agonist bound state and one resembling

the apo-state of the receptor. Thus, CCR1 bound to the biased

agonist displays reduced recruitment of b-arrestin (32).

Partial agonists that induce incomplete response in the

stimulated receptor have been described for multiple chemokine

receptors (29, 33). In some cases, these are promiscuous

chemokines that induce more robust responses in the context of

other receptors (34, 35) or chemokines with altered N-termini (36–

40). The presence of subdued functional outcomes in chemokine

receptors stimulated with partial agonist chemokines suggests

several possible receptor binding modes that engage alternative

mechanisms of activation. Sometimes, the partial agonistic activity

of chemokines is related to their ability to form homo-dimers (41–

43), while small molecule and peptide partial agonists likely employ

allosteric mechanisms (44, 45).

Inverse agonists of chemokine receptors that inhibit their basal

activity by stabilizing the inactive conformations can be successful

therapeutics. For example, maraviroc, an inverse agonist of the HIV

cellular entry portal CCR5, is approved by the FDA for treatment of

AIDS (46, 47). Motixafortide, an inverse agonist of CXCR4, has

been successfully tested in clinical trials and might gain FDA

approval as a hematopoietic stem cell mobilizing agent (48).

Other inverse agonists of chemokine receptors have been

identified and some of these might also lead to the development

of promising therapeutics (49) or used as tools to study the

functions of chemokine receptors (50–52). Inverse agonists of

chemokine receptors utilize allosteric mechanisms of action (53–

55). The mechanistic structural data describing the inhibitory

activity of maraviroc has been particularly insightful (3, 56, 57).
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Maraviroc’s phenyl group interacts with hydrophobic residues in

helices 3 and 6 of CCR5 and prevents the downward movement of

helix 6 that is necessary for receptor activation (57). The phenyl

group also blocks the activation-promoting signal transmitted

through M287 in helix 7 (56, 58).

The ability of chemokine receptors to stimulate chemotaxis of

cells explains their role in multiple diseases (59). In acute and

chronic inflammatory disorders, chemokine receptors drive

excessive chemotaxis of leukocytes to the sites of inflammation.

These disorders include asthma, acute respiratory distress

syndrome, autoimmune diseases, such as multiple sclerosis and

rheumatoid arthritis, and others (60–65). The critical importance of

proper management of these conditions is highlighted by the

devastating COVID-19 pandemic where the most common

comorbidities were linked to the proinflammatory state (66).

Chemokine receptors participate in the pathogenesis of

cardiovascular disease by recruiting leukocytes to the areas of

arterial damage and by promoting smooth muscle migration into

the intima and thrombus formation over atherosclerotic plaques

(67). Chemokine receptors play an important role in viral and

bacterial infections. Chemokine receptors facilitate HIV cellular

entry (68), and mediate exacerbation of immune response in

coronavirus (69) and Ebola infections (70). Normal chemokine

receptor signaling is subverted by poxviruses and herpesviruses that

induce production of viral chemokines and chemokine receptors

(71). Chemokine receptors balance pathogenic and protective

immune responses in Mycobacterium tuberculosis infections (72).

Chemokine receptors are also key mediators of cancer-related

inflammation and can promote angiogenesis, tumor growth, and
FIGURE 1

Brief schematic of GPCR pharmacology.
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metastasis (73). Thus, it is not surprising that chemokine receptors

are important therapeutic targets in many diseases. However, the

development of chemokine receptor antagonists has been

challenging primarily due to toxicity and low efficacy of these

molecules in clinical trials (74). While toxicity of chemokine

receptor antagonists is likely related to their promiscuous binding

to secondary targets and associated off-target effects, the issue of low

efficacy is harder to explain. One potential reason for the low

efficacy in clinical trials is divergent functions of chemokine

receptors in animals used for the preclinical development and in

humans. In addition, we previously observed that after prolonged

treatment with antagonists of chemokine receptors CXCR4 and

CCR3, cells eventually became tolerant to the antagonists and were

able to mount a robust chemotactic response even in the presence of

the inhibitors (75, 76). Antagonist tolerance can also explain

multiple failures in clinical trials with chemokine receptor

antagonists, particularly those that reported low efficacy of the

molecules under investigation. Although antagonist tolerance has

been reported for several GPCRs (77–80), this phenomenon

remains understudied and the underlying mechanisms are not

delineated. Here, we summarize the available knowledge on

antagonist tolerance in the context of therapeutic targeting of

chemokine receptors and encourage deeper investigation of

this problem.

Optimism in the community remains high as there are multiple

groups currently studying chemokine receptors. Seven clinical trials

testing potential therapeutics targeting chemokine receptors are

ongoing at the time of this publication, and there have been over 30

since 2005, twelve of which specifically focused on chemokine

receptor antagonists. Despite much effort and significant financial

investment, only three drugs have ever been approved for clinical

use. These three (plerixafor, maraviroc and mogamulizumab) have

proven therapeutic efficacy for their approved purpose despite the

development of tolerance.

Plerixafor, a CXCR4 antagonist, releases hematopoietic progenitors

from the bone marrow by blocking binding of the chemokine CXCL12

to the receptor and inhibiting downstream signaling. Mobilizing these

cells allows their collection and purification from peripheral blood for

transplantation. Plerixafor, also known as AMD3100 or Mozobil, is

additionally used to treat non-Hodgkin’s lymphoma or multiple

myeloma (81). Plerixafor is the only clinically approved CXCR4

antagonist, which inhibits downstream activation of G-proteins and

b-arrestin. Apheresis occurs 11 hours after administration of the drug.

Plerixafor displaces stroma-attached progenitor cells by blocking

CXCL12 from homing cells to the bone marrow. This prevents

progenitor cells from returning to the bone marrow, where they

develop chemoresistance. The short treatment time for Plerixafor

may aid in overcoming tolerance related issues, however, in cases of

longer treatment times tolerance development remains a concern.

Drugs similar to AMD3100, like AMD11070 and Filgrastim, which

suffer from prolonged apheresis fall victim to tolerance (82, 83).

Mogamulizumab is another anti-chemokine/anti-CCR4 antibody that

targets lymphomas as well, and has been clinically approved for

Cutaneous T-cell lymphomas and Adult T-cell leukemia/lymphoma

(84). This drug increases antibody-dependent cellular cytotoxicity

(ADCC) (73). Mogamulizumab increases ADCC by high-affinity
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binding with the Fc receptor on effector cells (85). Mogamulizumab

inherently deals with the common problem of tolerance by labeling the

tumor cells expressing CCR4 for destruction through the mechanism

of ADCC.

The third and final chemokine receptor drug approved by the

FDA through clinical trials is maraviroc. This drug targets the

cellular entry of HIV by interfering with the coreceptor CCR5 (86–

88). Other indicators of success are a high nadir CD4 cell count,

detectable viral load, protease inhibitor exposures and young age.

Maraviroc is always used in combination with other HIV drugs and,

therefore, has its own challenges in determining efficacy and

tolerance. The combination of drugs may create unintended or

exacerbate existing issues potentially speeding up tolerance

development on top of other negative effects.

Addressing chemokine receptor tolerance should be essential when

considering efficacy of antagonists but is often overlooked. Low efficacy

is a surprisingly frequent problem during chemokine antagonist clinical

trials because the preclinical phase of development is expected to be

highly selective for efficacious drugs. This being said, there are a

number of possible reasons for the low efficacy, tolerance being one

of these. Tolerance, manifested by cell surface receptor accumulation is

cited as a reason for the low efficacy of AMD3100 in prolonged

treatments (75), but this idea of tolerance is hardly mentioned

elsewhere. In many completed and terminated chemokine antagonist

clinical trials, efficacy is investigated but not the specific factors leading

to inefficacy are not mentioned or remain overlooked. For example, the

CXCR2 antagonist AZD5069 was studied in its role in controlling

severe exacerbations in patients with asthma in a clinical trial by

AstraZeneca (89). It was determined that CXCR2 antagonist did not

reduce the frequency of severe exacerbations, but no connection was

made to specific mechanisms. Another case of inefficacy is

demonstrated by chemokine CCR2 receptor antagonists. Although

the preclinical phase of development should select highly efficacious

and selective drugs, efficacy became a major issue in NCT00992186,

which studied a biased antagonist (90). PF-04634817, designed to treat

Diabetic Macular Edema was said to be well tolerated with a high level

of CCR2 antagonism, inefficacy was a major issue, with no reasons

concluded. Carlumab, another CCR2 antagonist also had problems

with inefficacy, with 0 complete or partial responses in reducing

tumors. The list goes on with similar outcomes, inefficacy was

observed but no conclusion was made regarding the contributing

factors leading to this result.

Investigation into lack of efficacy is oftentimes overlooked leading

to a loss of usable information for future studies where the same factors,

tolerance included, could be having a significant impact. Another issue

plaguing clinical trials is that efficacy and tolerance are often disguised

by other problems, such as species-dependent biology or disease

pathogenesis, resulting in unsuccessful clinical trials. In a clinical

trial, NCT01160224, for an oral CCR3 antagonist, GW76694, 68% of

subjects reported adverse events. The issue of efficacy is grouped into

broader categories of why the drug is ineffective without further

exploration into the mechanistic effects of the antagonist itself. These

broader categories, involving questions regarding the role of CCR3 in

the pathogenesis of asthma, potentially overshadow the molecular

mechanisms at play, such as tolerance. This is just another example

of a lack of inquiry into the biochemical basis for the failure of clinical
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drugs. To more coherently investigate chemokine antagonists, reasons

for inefficacy must be thoroughly investigated. Through investigations

such as those done by Hitchinson et al (75) tolerance will likely have an

important impact. By considering lack of efficacy as contingent of

tolerance, the current paradigms of chemokine receptor antagonism

may be challenged. The mechanisms at play by antagonists within

GPCR pharmacology is much less understood compared to the

abundant agonist information. This is likely a major obstacle to the

successful development of chemokine receptor antagonists.
Antagonist tolerance

Although antagonist tolerance in the context of chemokine

receptors is not well documented, there are multiple reported cases

regarding the development of tolerance to antagonists of other GPCRs.

A large portion of these studies focuses on tolerance to antipsychotics,

specifically those targeting Dopamine receptors. These studies tend to

only examine clinical occurrence and symptoms as a result of tolerance

but do not focus on the mechanisms of antagonist tolerance (91–93).

The few studies beyond the scope of antipsychotics explore tolerance as

a secondary aim, usually in cases where the use of antagonists is

preceded by inverse agonist treatments.

An important GPCR target of investigation of antagonist tolerance

has been the Histamine H1,2,3 receptor. Cases exploring histamine

receptor antagonists acting as inverse agonists oftentimes connect this

activity to the development of tolerance (94–96). This view considers

tolerance as part of a larger mechanistic process where the mode of the

interaction of pharmacological agents with their targets depends on the

cellular environment, previous treatments, and changes over time.

These molecules tend to be evaluated for potential use against various

diseases (97–99) without addressing the reasons for failure to produce

new and effective antagonists that can succeed in clinical trials. Even

among studies exploring the difficulties in developing antagonists and

ways to overcome these challenges (100, 101), investigation of

antagonist tolerance is often omitted. A good launch point is

applying FDA-approved antagonists of chemokine receptors to

situations that require prolonged use and asking questions about

tolerance and its mechanisms (75). However, many more studies

need to be done. Given the lack of information specifically regarding

tolerance to antagonists of chemokine receptors, in this review we will

explore how cellular responses to antagonists of other GPCRS may be

mechanistically informative or related to the development of tolerance

to antagonists of chemokine receptors.
Mechanistic insights into antagonist
tolerance

Similarities between antagonist tolerance
and agonist tolerance

Given significant gaps in knowledge of antagonist tolerance, it is

helpful to compare it to a better studied phenomenon of agonist

tolerance. There is an excellent in-depth review by Raehal et al.

(102) that discusses the development of agonist tolerance to opioids.
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The primary concepts that are relevant to both agonist and

antagonist tolerance are regulation of receptor levels on the cell

surface and complexity of the signaling cascades related to both

events. Raehal et al. discuss how different drugs for the same opioid

receptor lead varying levels of tolerance development. Typically,

agonist tolerance is associated with a reduction in receptor levels on

the cell surface, while in antagonist tolerance receptor levels on the

cell surface rise. The conformational state induced by the agonist,

signaling pathway stimulated and secondary or off-target effects all

play key roles in determining the timeline and the severity of

tolerance. As a brief example; DAMGO, a drug that induces a

significant phosphorylation of the µ-opioid receptor utilizing GRK2

has been shown to produce lessened tolerance as compared to

morphine, which has been shown to promote phosphorylation of

the µ-opioid receptor through GRK and PKC (103). The idea that

signaling, cellular environment and conformational state influence

the presence and severity of tolerance is one we believe applies to

antagonist tolerance as well.
Timeline for tolerance

The time needed for the development of antagonist tolerance is

likely dependent on many factors, including the antagonist type, the

dosing regimen, and the lack for target selectivity. For example, the

tolerance to Biperiden, a selective antagonist of the muscarinic M1

receptor, begins to develop clinically around the 3rd night of drug

administration (104). Clozapine, an antipsychotic, which targets the

dopamine D2 receptor begins to exhibit reduced effectiveness

within 2 days and its potency gradually decreases further (105,

106). However, other antipsychotics targeting the same receptor,

such as Thioridazine, show a slight reduction in efficacy beginning

at 4 days with a very slow development of tolerance afterwards

(106). Two of the most frequently prescribed antipsychotics,

Haloperidol and Risperidone, are heralded for their ability to

avoid tolerance in patients. However, the progressive nature of

the side-effects, associated with reduced on-target efficacy, suggests

the potential involvement of antagonist tolerance (107–109).

Tolerance development for both typical and atypical

antipsychotics has been partially associated with the dosing

method (intermittent vs continuous) as well as the non-specific

binding events with the serotonin 5-HT receptor, ideas that we will

discuss further in this review (108, 110). The phenomenon of

tolerance is a crucial variable when considering the treatment of

psychosis and other mental disorders and this concept should be

applied to other GPCRs, especially chemokine receptors. When it

comes to chemokine receptor antagonist tolerance, CXCR4-

expressing Jurkat cells develop tolerance to Plerixafor (AMD3100)

after 72 hours of treatment (75).
Cell surface density increases in antagonist
tolerance

In all cases of reported tolerance to antagonists targeting

GPCRs, including chemokine receptors, an increase in receptor
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density on the cell surface is invariably observed. Although, there

may be several different mechanisms leading to increased receptor

expression in antagonist tolerance, it is likely related to inhibition of

receptor turnover by antagonists that can inhibit recruitment of b-
arrestin to the receptor. Internalization is a key regulatory

mechanism for transmembrane receptors (111). Endocytosis

maintains an appropriate concentration of receptor at the cell

surface to prevent overpopulation, which can impact receptor

function and signaling (112). GPCRs and especially chemokine

receptors are fairly prone to hetero- and homo-oligomerization at

high receptor density; both processes can significantly affect

receptor signaling and regulation (113, 114). It is not surprising

that directly affecting the cell surface concentration and receptor

trafficking mechanisms may have effects on receptor

oligomerization and structure. A prime example of antagonist-

induced receptor density increases comes from observations by

O’Dowd et al. who explored Dopamine D1, D5, and 2 serotonin

receptors antagonist-induced cell surface density changes (115).

They found that antagonist’s dose-dependently increases receptor

density up to 15-fold. Even at lower antagonist concentrations, up

to 8.5-fold density increases were seen. Hess et al. observed the

effects of a dopamine D1 and D2 antagonist, cis-flupentixol on

receptor upregulation and cataleptic effects of the drug (116).

Researchers found that there was a significant upregulation of D2

receptors following treatment with cis-flupentixol. Moreover, the

time to cataleptic effects in rats was increased, leading to the

conclusion that upregulation of the receptor was associated with

antagonist tolerance. Hitchinson et al. came to a very similar

conclusion, suggesting that prolonged treatment of cells with

Plerixafor (AMD3100) increased CXCR4 on the cell surface and

led to the development of antagonist tolerance. Thus, there is

significant evidence linking tolerance to increased levels of

receptors on the cell surface after prolonged administration of

the antagonists.
Potential oligomerization of receptors in
antagonist tolerance

The mechanistic importance of GPCR oligomerization has been

a long-studied topic and yet its functional significance is not firmly

established. Recent studies have suggested that oligomerization of

GPCRs plays key roles in signaling and regulation (117, 118) and

this sentiment has been echoed as especially important for

chemokine receptors (114, 119). It is also emphasized that the

formation of oligomers may impact drug discovery, as targeting a

receptor dimer or even trimer may require adaptations for ligands,

which only target monomeric receptors (120, 121). As we described

previously, changes in receptor cell surface density have been

observed after treatment with antagonists and this has been

correlated to tolerance. This increase in receptor density likely

elevates receptor oligomerization, which may be the underlying

cause of the observed antagonist tolerance. This receptor

oligomerization can be in the form of homo- or hetero-oligomers,

both with a significant potential to alter receptor structure and
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function. Examining available structures of oligomerized CXCR4

reveals structural changes caused by oligomerization (122). These

changes in structure can remodel the drug binding sites and reduce

drug binding, leading to tolerance. In addition to forming homo-

oligomers, evidence suggests GPCRs can readily hetero-oligomerize

at the cell surface, such as the dopamine D2/Adenosine A2a,

CXCR4/ACKR3 (atypical chemokine receptor 3), Serotonin 5HT/

mGlu2, and many others. At high receptor cell surface density,

hetero-oligomers can co-exist with homo-oligomers, further

altering receptor signaling and responses to treatment with

antagonists. To explore the potential effects of this increased

heteromerization we will take a look at two systems, the

Adenosine A2a and Dopamine receptor interactions and CXCR4

interactions with multiple other GPCRs.

In the case of heteromeric A2a/D2, the A2a receptors directly

interact with and antagonize dopamine D2 receptors (123–125).

Further exploration has found that targeting of A2a with agonists

can decrease D2 signaling and treatments with adenosine

antagonists can increase D2 signaling, such interactions can also

be seen in A1/D1 heteromers (123). This interaction not only

impacts the signaling and function of the complexed receptors

but also extends to ligand binding. There have been a few unique

changes in ligand binding events observed from the interaction

between A2a and D2, namely, an allosteric network, which had 2

distinct effects: changed A2a antagonists to have agonist activity and

the appearance of modulated D2 agonist and antagonist affinity and

efficacy (125).

Similarly, the concept of heteromerization can be applied in

the context of a chemokine receptor and antagonist pair. CXCR4

has many heteromerization partners, including but not limited to

the atypical chemokine receptor ACKR3, alpha- and beta-

adrenergic receptors and CXCR3 (126–128). Early studies of

Plerixafor asserted that it was selective to CXCR4 (129, 130),

however, other studies found that it also acts as an ACKR3

agonist (131). Given that Plerixafor can target ACKR3 and

CXCR4, which can form a heteromeric complex, there is a

possibility for additional ligand effects and signal dampening.

ACKR3 can also act as an allosteric modulator of CXCR4 (126).

ACKR3 alters CXCR4 signaling in cancer by changing ligand

binding, internalization, and signal propagation (132, 133).

Remarkably, co-transfection of CXCR4 and ACKR3 caused

degradation of CXCR4 and internalization of ACKR3 (134) and

increased front cell velocity (135). Hetero-oligomerization of

chemokine receptors, much like homo-oligomerization, can

have significant impacts on the ligand binding and signaling

pathways. When considering drug discovery, any changes to the

receptor density and availability of heteromeric partners can

influence the efficacy of drugs and lead to the development of

unintended consequences, such as tolerance.
Addressing antagonist tolerance

Chemokine receptor antagonists tend to be unable to

maintain their therapeutic efficacy when prolonged (three days
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or longer) administration is necessary. Equipotent inhibition of

chemotaxis and receptor endocytosis by unbiased antagonists

may be the root for this progressive reduction in efficacy over

time. Unlike unbiased antagonists, biased antagonists selectively

inhibit G-protein signaling, while leaving b-arrestin recruitment

and receptor internalization intact. Thus, biased antagonists do

not lead to receptor accumulation on the cell surface over time

and can avoid the development of tolerance. For example, the

peptide R321 targeting the eosinophil chemokine receptor CCR3

acts as a biased antagonist by blocking G-protein signaling and

eosinophil recruitment into the lungs. This biased antagonist

then still allows b-arrestin recruitment and receptor endocytosis

(76). Currently, there are no clinically approved CCR3

antagonists: antagonist tolerance may have been the cause of

failure of the previously tested CCR3 antagonist in clinical trials

against asthma. However, biased antagonists of CCR3 may be a

promising alternative. Like R321, the CXCR4 biased antagonist

X4-2-6 permits b-arres t in recrui tment and receptor

internalization but inhibits the G protein signaling. The G-

protein signaling is blocked by the simultaneous interaction of

X4-2-6 with CXCR4 and CXCL12, leading to a partial expulsion

of CXCL12’s N-terminus from the helical bundle of the receptor.

The remaining contacts between CXCL12 and the receptor allow

activation of b-arrestin recruitment. The biased antagonists have

the potential to address antagonist tolerance in the context of

chemokine receptors by preventing signaling but permitting

endocytosis, which prevents receptor accumulation on the cell

surface. This mechanism of tolerance avoidance by X4-2-6 and

R321 was tested by comparing potency between the novel

peptides and unbiased antagonists before and after prolonged

treatments. For example, the ability of X4-2-6 and Plerixafor to

inhibit CXCR4-mediated chemotaxis of Jurkat T lymphocytic

leukemia cells before and after the 72-hour treatment was

determined. While the 72 hour exposure to Plerixafor led to a

significant increase in the drug’s IC50 value for the inhibition of

CXCL12-induced chemotaxis (75), cells treated with the biased

antagonist X4- 2-6, had similar IC50 with and without

pretreatment with the peptide. A very similar outcome was

obta ined wi th the CCR3 biased antagonis t R321 in

AML14.3D10-CCR3 cells. Both R321 and X4-2-6 are derived

from the second transmembrane helix of their respective

chemokine receptors and also contain sequences derived from

the extracellular loop 1 of CXCR4 and CCR3 (75, 76). The loop

sequences likely facilitate binding of the chemokines, while the

sequences corresponding to the transmembrane regions can

interact with the receptors. Chemokine binding even in the

absence of the receptors might contribute to the inhibitory

activity of the peptides through the potential chemokine

sequestration mechanism, complicating delineation of

contribution of biased antagonism to successful blocking of

chemokine receptor signaling. Thus, further studies are needed

with simpler peptides and/or small molecule biased antagonists
Frontiers in Immunology 07
to understand how the biased mechanism of chemokine receptor

inhibition prevents antagonist tolerance.

Although biased antagonism is an effective approach to avoid

tolerance, there may be additional ways to accomplish similar

outcomes. Homo- and hetero- oligomerization of chemokine

receptors might be directly related to the development of

antagonist tolerance. A potential methodology to overcome

tolerance would be inhibiting the formation of receptor

oligomers. Drug discovery related to disruption of oligomers is

already underway and has produced reliable data suggesting the

potential druggability of oligomerization interfaces (136, 137).

The logical idea of disrupting oligomer formation is utilizing

peptides synthesized from the transmembrane helices of GPCRs.

A review by Gallo et al (138) does an excellent job in discussing

the current progress in peptide development and how researchers

are slowly addressing the pitfalls of using peptides as drugs.

The review discusses multiple successful attempts at using TM

synthetic peptides to disrupt the formation of oligomers, such

as A2AR homodimers and the cannabinoid receptor 2/5-

hydroxytryptamine:2A heterodimer (139). The use of TM

synthetic peptides as drugs is still a growing idea but the

preliminary data gives an optimistic outlook on the future.
Concluding remarks

Tolerance to chemokine receptor antagonists remains

unaddressed and this likely impedes successful development of

chemokine receptor inhibitors for clinical use. To date, there is

no comprehensive mechanistic understanding of antagonist

tolerance. However, some clues can be derived from a handful of

studies on chemokine receptors and other GPCRs (Figure 2).

Antagonist tolerance tends to be accompanied by receptor

accumulation on the cell surface possibly due to inhibition of

receptor turnover by the antagonists. Thus, we propose that high

receptor density plays a key role in the mechanism of tolerance.

This is different from the low receptor levels at the cell surface

commonly observed in agonist (primarily opioid) tolerance, which

has different mechanisms. It seems likely that accumulation of

chemokine receptors in the plasma membrane leads to their

clustering and oligomerization. Under these conditions, rising

numbers of receptor oligomers can far exceed the numbers of

receptor oligomeric assemblies commonly seen in untreated cells

and start to alter signaling pathways in response to drugs. As only

three chemokine receptor antagonists have been approved for

clinical use, different approaches to inhibition of chemokine

signaling are sorely needed. Biased antagonists that block G-

protein signaling but allow receptor internalization have been

reported to avoid antagonist tolerance. There are likely other

approaches to either avoid or alleviate tolerance. It will be

interesting to test if inhibitors of receptor oligomerization or

blockers of signaling associated with tolerance can be successful
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alternatives to conventional chemokine receptor antagonists. Given

the wide array of diseases and conditions associated with

chemokine receptors, more study into the mechanisms of

tolerance will propel the development of therapeutics targeting

chemokine receptors.
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FIGURE 2

Proposed pathway to tolerance as a result of prolonged antagonist treatment. Here we define prolonged as the time it takes to see development of
tolerance, it is largely receptor/drug dependent. Development of tolerance may be a result of any combination or all of the shown effects.
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