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Integrative bioinformatics and
validation studies reveal KDM6B
and its associated molecules as
crucial modulators in Idiopathic
Pulmonary Fibrosis
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Background: Idiopathic Pulmonary Fibrosis (IPF) can be described as a

debilitating lung disease that is characterized by the complex interactions

between various immune cell types and signaling pathways. Chromatin-

modifying enzymes are significantly involved in regulating gene expression

during immune cell development, yet their role in IPF is not well understood.

Methods: In this study, differential gene expression analysis and chromatin-

modifying enzyme-related gene data were conducted to identify hub genes,

common pathways, immune cell infiltration, and potential drug targets for IPF.

Additionally, a murine model was employed for investigating the expression

levels of candidate hub genes and determining the infiltration of different

immune cells in IPF.

Results: We identified 33 differentially expressed genes associated with

chromatin-modifying enzymes. Enrichment analyses of these genes

demonstrated a strong association with histone lysine demethylation, Sin3-

type complexes, and protein demethylase activity. Protein-protein interaction

network analysis further highlighted six hub genes, specifically KDM6B, KDM5A,

SETD7, SUZ12, HDAC2, and CHD4. Notably, KDM6B expression was significantly

increased in the lungs of bleomycin-induced pulmonary fibrosis mice, showing a

positive correlation with fibronectin and a-SMA, two essential indicators of

pulmonary fibrosis. Moreover, we established a diagnostic model for IPF

focusing on KDM6B and we also identified 10 potential therapeutic drugs

targeting KDM6B for IPF treatment.

Conclusion: Our findings suggest that molecules related to chromatin-

modifying enzymes, primarily KDM6B, play a critical role in the pathogenesis

and progression of IPF.

KEYWORDS

Idiopathic Pulmonary Fibrosis, chromatin-modifying enzymes, disease biomarker, hub
genes, gene ontology, drug molecule
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1 Introduction

Idiopathic Pulmonary Fibrosis (IPF) is a chronic and

progressive lung disorder that is characterized by injuries to the

alveolar epithelial cells, leading to anomalous epithelial repair,

fibroblast buildup, and excessive deposition of extracellular matrix

(1, 2). The pathogenesis of IPF is complex and involves complicated

interactions between various cell types and signaling pathways.

Despite considerable advancements in our understanding of IPF

and the availability of different treatment strategies, the morbidity

and mortality linked to IPF remain severe, accounting for

approximately 20% of all cases of interstitial lung disease and

affecting approximately 3 million individuals across the globe (3).

Chromatin-modifying enzymes regulate the chromatin

structure via post-translational modifications, communication,

and interaction between the enzymes (4). The most common

chromatin modifications can be divided into 4 categories, such as

DNA methylation, histone methylation, histone acylation/

acetylation, and histone ubiquitination (5, 6). Histone tails

possess different modified residues, and the post-translational

histone modifications help in changing the chromatin structure.

The Jumonji structural domain-containing protein-3 (KDM6B) is a

histone demethylase that regulates H3K27me3 trimethylation.

Histone HDAC4 helps in the TGFb1-induced differentiation of

myofibroblasts, which is a vital step in IPF pathogenesis (7).

Recent advancements in microarray technology have facilitated

biological research. The mRNA databases that are derived using the

microarray technology offer valuable data to identify pathogenic

variables and also inspire further research (8–10). Even though

chromatin-modifying enzymes play a vital role in the onset and

progression of IPF, very little information regarding their effect on

IPF is available. Therefore, it is imperative to study the correlation

between chromatin-modifying enzymes and IPF pathogenesis.

In this study, the differentially expressed genes linked to

chromatin-modifying enzymes were used to identify several

important cellular signaling pathways and the gene networks

linked to IPF pathogenesis. The potential application of KDM6B

related molecules as a novel biomarker that could be used for

targeted therapy in IPF patients was further highlighted. This study

helped in screening the probable candidate KDM6B-targeting

drugs, which could be used as an effective treatment strategy for

IPF. In summary, this study offers novel insights regarding the

molecular mechanisms involved in IPF and presents strategies for

developing biomarkers and therapies for treating this

debilitating disease.
2 Materials and methods

2.1 Microarray data source

Figure 1 presents the analytical process used in this study. The

GSE110147 dataset was retrieved from the GEO database, and it

included 48 samples for RNA expression analysis (11). This dataset

included 11 normal lung tissue samples, 10 patients with non-
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specific interstitial pneumonia (NSIP), 22 IPF patients, and 5

patients having mixed IPF-NSIP (Table 1). This study primarily

focused on exploring the 22 IPF and 11 normal lung tissue samples

that were retrieved from the GSE110147 dataset.
2.2 Identifying differently
expressed chromatin-modifying
enzyme related genes

In the IPF samples, we identified differentially expressed genes

(DEGs) using the GEO2R tool (12) with the Benjamini-Hochberg

correction to control for false discovery rate, with a threshold of |

log2 fold change (FC)| > 1 and adjusted P-values (P adj) < 0.05. The

P adj is a modified P-value used in multiple hypothesis testing,

which improves control of false positive rates (13). The Gene Set

Enrichment Analysis (GSEA) (14) database was utilized to retrieve

the 272 genes associated with chromatin-modifying enzymes

(CMERGs) (listed in Supplementary Table S1). The intersection

between DEGs and CMERGs, referred to as DECMEGs,

represented the genes associated with chromatin-modifying

enzymes and showed differential expression in the IPF samples.
2.3 GO, KEGG, and DO enrichment
analyses of DECMEGs

In our study, we utilized the “clusterProfiler” package (15) in R to

identify potential functions and pathways associated with the

DECMEGs. We conducted Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway analyses,

employing an enrichment factor and a standardized metric (P-value <

0.05, Q-value < 0.25) to prioritize the most relevant functional items

and pathways. The enrichment factor represents a statistical method

employed to ascertain whether a set of genes (e.g., upregulated genes

under specific conditions) exhibit overrepresentation or

underrepresentation of particular GO/KEGG terms, based on their

annotations (16, 17). The EnrichR online platform (https://

maayanlab.cloud/Enrichr/) was utilized for DO enrichment

analysis, and disease tool was used to enrich for diseases associated

with IPF (18).
2.4 Protein-protein interaction network
and module analyses

The STRING tool (19) was employed to investigate the protein-

protein interaction (PPI) network using proteins encoded by

DECMEGs (the identified differentially expressed genes associated

with chromatin-modifying enzymes in IPF). The resulting PPI

network was constructed, processed, and analyzed using

Cytoscape (version 3.7.1) (20). The molecular complex detection

(MCODE) plug-in facilitated module analysis within the PPI

network. Genes exhibiting significant correlations in candidate

modules are denoted as hub genes (21). To identify hub genes

within the PPI network, the cyto-Hubba program was utilized,
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followed by Gene Ontology enrichment analysis using the ClueGO

plug-in.
2.5 Immune infiltration analysis

Immune cell infiltration in control and IPF groups was

evaluated using CIBERSORT, a deconvolution algorithm

employing linear support vector regression for precise

quantification of 22 immune cell types within gene expression

profiles (22). This approach, also known as “digital cytometry,”

has demonstrated a strong correlation with flow cytometric analysis

results (23).

Associations among immune cells and between hub genes and

immune cells were analyzed using GraphPad Prism 8.0.2 software

(24). Furthermore, the proportions of each immune cell type in IPF

tissue samples and healthy control samples were determined.
2.6 Exploring the ceRNA network of
hub genes

The ceRNA network analysis was conducted for assessing the

miRNA-mRNA interactions. The TargetScan (25), miRNet (26),

and miRWalk (27) databases were used to identify probable

miRNAs that target hub genes. If the same data was retrieved

from every database simultaneously, accurate results were

produced. LncRNAs that may target miRNA were predicted using

the miRNet database and compared with the differentially expressed

lncRNAs in the IPF. lncLocator was used to predict the subcellular
Frontiers in Immunology 03
localization of the lncRNAs (28). Xiantao Academy tool (https://

www.xiantao.love/) is used for relevant statistical analysis and

data visualization.
2.7 Gene set enrichment analysis

For GSEA analysis (14), the GSEA software (https://

www.gseamsigdb.org/gsea/index.jsp) was downloaded and the

samples were classified into the high (≥50%) and low (<50%)

expression groups, based on the KDM6B expression levels.

Furthermore, the c2.cp.v7.4.symbols.gmt subset was also

downloaded from the Molecular Signatures Database to assess the

important pathways and the molecular mechanisms, depending on

the phenotype groups and gene expression profiles. A minimum of

5 gene sets and a maximum of 5, 000 gene sets were used, with 1,

000 resamplings. Furthermore, values with P-values < 0.05 and FDR

< 0.25 were deemed statistically significant.
2.8 Analysis of protein subcellular
localization and correlation with
immune checkpoints

The Cell-PLoc 3.0 software (29), which includes a collection of

web servers to predict the subcellular protein localization in various

animals, was used to predict the subcellular localization of the

KDM6B protein molecules. The relationship between KDM6B and

key immune checkpoints (30) like CTLA4, PD-1, PDL2 was

examined using the Pearson’s correlation coefficient from the

GraphPad Prism 8.0.2 software.
2.9 Drug-gene interaction

The DSigDB database was used to assess the different drug-gene

interactions and determine the important pharmacological

compounds. Furthermore, the PubChem (31) and PDB (32)
TABLE 1 Details of the GEO IPF data.

Dataset Platform Number of samples (IPF/control)

GSE110147 GPL6244 33 (22/11)

GSE33566
GSE156310

GPL6480
GPL18573

123(93/30)
21
GEO, Gene Expression Omnibus; IPF, Idiopathic pulmonary fibrosis.
FIGURE 1

Schematic representation of the workflow used in this study.
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databases were searched to identify the molecular structures of

different ligands and target proteins.
2.10 Mouse model

Male mice (C57BL/6, 8-week-old, 22–25 g) were randomly

classified into two different groups (i.e., bleomycin and control

groups). The murine pulmonary fibrosis model was constructed by

intratracheal injection of bleomycin (5 mg/kg). Mice were

euthanized 21 days after injection. The Animal Experimentation

Committee at Guangzhou Medical University approved all the

animal experiments (project number: Casgene-2022120100559).

The experiments were conducted following the guidelines for

handling and using laboratory animals.

Lung RNA was extracted using an RNA isolation kit (Tiangen)

and subsequently reverse transcribed (Tiangen). Actin functioned

as the internal control, and the relative gene expression was

calculated using the DDCt quantification method.
2.11 Western blot analysis

The lung tissues were lysed with a strong RIPA lysis solution

containing protease inhibitors, phosphatase inhibitors, and EDTA

(pH 8.0). The cell lysate was incubated on ice for 30 mins,

centrifuged, and clarified, and the cell-free supernatant was

collected. The BCA protein assay kit was used to determine the

protein concentrations. Use a 12.5% concentration of protein gel

with a protein loading volume of 15mg. The different proteins in the

samples were electrophoresed using the SDS/PAGE tand

transferred to PVDF membranes. The PVDF membranes were

blocked using a non-fat milk solution (5%) in TBST and

incubated in the presence of a primary antibody (Mouse

monoclonal/Rabbit monoclonal). Thereafter, the membranes were

incubated with the secondary antibodies (Goat Anti-Rabbit/Rabbit

Anti-Mouse) and rinsed with TBST, and the protein bands were

observed using an ECL reagent and a Tanon Imager.
2.12 Construction and validation of the
diagnostic model

A diagnostic model was constructed using six hub genes

(KDM6B, KDM5A, SETD7, SUZ12, HDAC2, and CHD4) and the

IPF characteristic gene TGF-b1 in the GSE110147 dataset (33). The

model was presented as a nomogram, and its clinical diagnostic

value was assessed using calibration curve (CC) analysis, decision

curve analysis (DCA), and clinical impact curve (CIC) analysis.

To ensure the reliability of this diagnostic model, the GSE33566

(34) dataset was employed as a validation set. Subsequently, receiver

operating characteristic (ROC) curve analysis (35) was performed

to evaluate the diagnostic value of the nomogram.
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2.13 Single-cell data mining and analysis

The single-cell RNA sequencing (scRNA-seq) data from human

IPF samples were obtained from the GSE156310 dataset (36) in the

GEO. The GSE156310 dataset comprises scRNA-seq data derived

from 21 explant lung tissue specimens, which were obtained from

patients with advanced IPF, systemic sclerosis-associated interstitial

lung disease, and organ donor controls. Computational analysis of

the GSE156310 dataset was conducted using the R package “Seurat”

(version 4.0.3) (37). Principal component analysis (PCA) was

executed with the Seurat RunPCA() function, while scRNA-seq

data normalization was performed using the Seurat NormalizeData

() function. The Seurat FindIntegrationAnchors() and

IntegrateData() functions, based on robust principal component

analysis (RPCA), were employed to integrate multiple samples.

Dimension reduction was carried out using t-distributed stochastic

neighbor embedding (tSNE), and Louvain clusters were calculated

using the first 30 principal components with the RunUMAP

function. Cell annotations were made using a combination of the

BP and HPCA databases. Gene expression and distribution were

visualized using the Seurat DotPlot() , VlnPlot() , and

FeaturePlot() functions.
2.14 Statistical analysis

An unpaired Student’s t-test was conducted to analyze the data

derived from both groups. Additionally, Pearson’s correlation

coefficient was conducted to assess any possible association

between the variables. All statistical analysis was carried out using

the GraphPad Prism and R software (ver. 4.2.0), where values with P

<0.05 were deemed significant.
3 Results

3.1 Identifying the DECMEGs in IPF

The normalized gene expression profile dataset for IPF

(GSE110147) has been depicted in Figure 2A. The 3, 499 DEGs

that were detected in the GSE110147 dataset were further presented

using a volcano plot (Figure 2B). Figure 2C displays the 33

consistent DECMEGs that were identified by the integrated

bioinformatics analysis. Figure 2D displays the heatmap of

the DECMEGs.
3.2 Functional enrichment analysis
of DECMEGs

GO analysis was conducted to determine the biological

functions of DECMEGs. The findings revealed that these genes

were primarily involved in histon lysine demethylation (BP), Sin3-
frontiersin.org
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type comlex (CC), and protein demethylase activity (MF)

(Figures 3A, B). KEGG pathway analysis revealed that the lysine

degradation was primary involved (Figures 3C, D), and it was also

enriched and significantly linked to COVID-19 (Figure 3E).
3.3 PPI network and hub gene analysis

The STRING database was used to construct a PPI network for

identifying the links between the DECMEGs (Figure 4A). A

majority of the connected nodes were identified as hub genes.

According to Figure 4B, the target links in the PPI network were

ranked in ascending order, from the smallest to the largest. The

most significant module with 14 edges and 8 nodes was chosen in

this study (Figure 4C). The role of hub genes was further examined

using the ClueGO plugin, as the genes closer in the network were

seen to be more fundamentally regulated. Figure 4D shows that they

are predominantly enriched in processes such as protein

methylation, histone deacetylation, histone modification, and

histone demethylation. The six genes with the highest Maximum

Clique Centrality (MCC) score, such as KDM6B, KDM5A, SETD7,

SUZ12, HDAC2, and CHD4, were regarded as the IPF hub genes

(Figure 4E, Table 2).
3.4 Immune infiltration analysis

The proportions of the immune cells in the IPF tissue and

control samples were analyzed using the CIBERSORT method
Frontiers in Immunology 05
to evaluate the IPF immune cell composition (Figure 5A).

Multiple types of immune cells, including naive and memory

B cells, resting memory CD4+ T cells, CD8+ T cells, follicular

helper T cells, and M0 macrophages showed a strong

association (Figure 5B). The results showed that IPF tissue

had a lower proportion of CD8+ T cells, follicular helper

T cells, resting NK cells, and M1 macrophages compared

to the control group and a higher proportion of activated

memory CD4+ T cells, resting memory CD4+ T cells, and M0

macrophages (Figure 5C).

The Pearson correlation coefficient was then used to assess

the relationship between the abundant immune cells and the

expression of hub genes. The findings demonstrated a negative

relationship between CD8+ T cells and CHD4, KDM5A,

HDAC2, SETD7, and SUZ12, but a positive relationship was

observed between CD8+ T cells and KDM6B. Similarly, a

positive relationship was observed between the resting and

activated memory CD4+ T cells and CHD4, HDAC2, KDM5A,

SETD7, and SUZ12, but it was negatively correlated with

KDM6B (Figure 6).
3.5 The mRNA–miRNA–lncRNA ceRNA
network of IPF

Although non-coding RNAs (ncRNA) do not encode proteins,

they participate in numerous biological processes. The interplay

within the mRNA-miRNA-lncRNA ceRNA network offers valuable

insights into the regulatory mechanisms underlying pulmonary
D

A B

C

FIGURE 2

Identifying the DECMEGs in IPF. (A) Normalization of the samples selected from the GSE110147 dataset. (B) The DEGs identified from the GSE110147
dataset. (C) The DECMEGs of IPF. (D) The heatmap of the DECMEGs.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1183871
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chen et al. 10.3389/fimmu.2023.1183871
fibrosis (38). All object databases simultaneously acknowledged the

miRNA-targeting hub gene as a valid gene, and Figure 7A presents

their Venn diagrams. Additionally, the intersections between this

miRNA and 359 DElncRNAs were predicted using the miRNet

online database. The ceRNA mechanism suggested that the

expression patterns of mRNAs and lncRNAs in the ceRNA

network should be consistent. The analysis retrieved seven distinct

DElncRNAs, which act as ceRNAs, regulating the expression of their

target mRNAs in the cytoplasm and competing with miRNAs. The

lncLocator predicted that only four DElncRNAs (MIR99AHG,

MALAT1, PWAR6, and LINC00909) were located in the

cytoplasm (Figure 7B). A network of ceRNAs was identified,

including CHD4/miR-29b-2-5p/LINC00909, HDAC2/let-7b-5p/

PWAR6, and KDM5A/miR-23a-5p/PWAR6 (Figure 7C).
Frontiers in Immunology 06
3.6 GSEA of KDM6B

The KDM6B gene exhibited the largest MCC among the hub

genes as demonstrated in Table 2. In addition, Figures 6 and 7

demonstrated the significance of KDM6B in defining the immune

infiltration and ceRNA networks in IPF, making it an ideal

candidate for additional research. GSEA results further validated

the crucial role of KDM6B in the immunological infiltration and

ceRNA networks of IPF. The analysis revealed that KDM6B was

significantly enriched in several signaling pathways, including

activation of AMPK downstream of NMDARs, IL-15 signaling,

cytokines and inflammatory response, IL-6 deprivation DN, STAT3

targets in hematopoiesis, and regulation of cell death gene

transcription by TP53 (Figure 8).
D
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C

FIGURE 3

List of DECMEGs for functional enrichment analysis. (A) GO. (B) GO analysis network diagram. (C) KEGG. (D) KEGG analysis network diagram. (E) DO
enrichment, green horizontal bar represents the items with valid P-values (<0.05).
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3.7 Subcellular localization of the protein
and its relationship with the immune
checkpoint analyses of KDM6B

The subcellular localization of proteins plays a significant role in

determining their biological functions (39). According to Cell-PLoc 3.0

analysis, KDM6B protein is predicted to be localized in the nucleus

(Figure 9A), which is consistent with a previous study (40). Figures 9B–

D showed that KDM6B was strongly correlated with key immune

checkpoints, such as CTLA4, PDL2, and PD-1, further emphasizing the

vital role played by KDM6B in regulating the immune response in IPF.
3.8 Drug-gene interactions
analysis of KDM6B

An innovative therapy strategy involves the utilization of

potential therapeutic drugs that target KDM6B. Table 3 displays
Frontiers in Immunology 07
the drug-gene interaction network for KDM6B. The Enrichr tool

revealed 39 promising therapeutic drug candidates using the

transcriptional signature from the DSigDB database, and the 32

leading candidates were chosen according to their P-values. The top

10 enriched pharmaceuticals in the DSigDB database have been

presented in Table 3.
3.9 KDM6B may be involved in the
development of IPF

Subsequently, experiments were conducted to explore the

potential of KDM6B as a biomarker or therapeutic target for

predicting IPF. Murine models of bleomycin-induced pulmonary

fibrosis mouse model were employed (Figures 10A, B). KDM6B

expression, along with macrophages, CD3+ and CD4+ T cells, was

significantly elevated in the lungs of bleomycin-induced pulmonary
D
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C

FIGURE 4

Analysis of the PPI networks and hub genes. (A) PPI networks of DECMEGs, where bigger edge and node sizes imply higher degrees. (B) Connectivity ranks of
the genes. (C) The primary module in the PPI network. (D) Biological processes of hub genes analyzed by ClueGO tool. (E) The six hub genes of IPF.
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FIGURE 5

Analysis of the immune infiltration levels in the IPF. (A) The ratio of 22 immune cells in each IPF sample. (B) The relationship between each immune cell. (C)
The proportion of immune cells in the control and IPF samples. *P < 0.05, **P < 0.01, ***P < 0.001.
TABLE 2 The top 6 hub genes.

Genes Description Degree MCC MNC Stress Log2FC Expression change

KDM6B lysine demethylase 6B 11 636 11 208 1.0378764 Upregulated

KDM5A lysine demethylase 5A 14 615 13 354 -1.9576636 Downregulated

SETD7 SET domain containing lysine methyltransferase 7 13 515 12 428 -1.1817614 Downregulated

SUZ12 SUZ12 polycomb repressive complex 2 subunit 11 278 11 198 -1.01827 Downregulated

HDAC2 histone deacetylase 2 17 191 16 710 -1.3501845 Downregulated

CHD4 chromodomain helicase DNA binding protein 4 12 44 10 312 -1.1376968 Downregulated
F
rontiers in Im
munology
 08
MCC, maximal clique centrality; MNC, maximum neighborhood component.
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fibrosis mice compared to healthy controls (Figures 10C, D, S1A, B).

The results demonstrated a significant positive correlation between

KDM6B and key pulmonary fibrosis proteins, such as fibronectin

and a-SMA (Figures 10C–E). Additionally, our RT-PCR results

revealed a statistically significant positive correlation between

KDM6B and CD3 and CD8 (Figure 10F), while KDM6B

expression exhibited a negative correlation with CD4, albeit not

statistically significant (Figure S1C). These findings support our

bioinformatics results. Furthermore, by analyzing publicly

accessible single-cell RNA sequencing data of human IPF

(GSE156310), we determined that KDM6B was predominantly

expressed in natural killer (NK) cells, epithelial cells, endothelial

cells, fibroblasts, and mast cells within the lung (Figures 10G, H).

Collectively, these results suggest that KDM6B may play a critical

role in IPF pathogenesis.
Frontiers in Immunology 09
3.10 Construction of a diagnostic model
using KDM6B

Finally, the diagnostic model of IPF was constructed centered

on the KDM6B and other hub genes we identified. The model was

developed using multivariate logistic regression analysis and

presented as a nomogram (Figure 11A). The nomogram showed a

strong concordance between predicted and actual IPF and healthy

control samples (Figure 11B). Furthermore, decision curve analysis

demonstrated that patients could benefit from diagnostic models

with a central gene threshold probability ranging from 0 to 1

(Figures 11C, D). The ROC curve analysis indicated that the

diagnostic model had an area under the curve (AUC) of 0.983

(Figure 11E). To further validate the diagnostic model’s reliability,

we utilized an external dataset (GSE33566) as a validation cohort,
D
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C

FIGURE 6

The relationship between the immune cells and hub genes. (A) CHD4; (B) KDM6B; (C) KDM5A; (D) HDAC2; (E) SETD7; and (F) SUZ12.
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consisting of 93 IPF lung samples and 30 healthy control lung

samples. The AUC was 0.698 (Figure 11F). These results suggest

that our diagnostic model, which utilizes KDM6B, possesses a

robust ability to differentiate IPF patients from healthy individuals.
4 Discussion

IPF is a lung-specific, chronic, fibrosing, and progressive disease

with an unfavorable prognosis and an unidentified etiology (41).

The exact pathogenesis of IPF is yet to be fully understood, but it is

believed to result from a complex interplay of multiple cell types

and signaling pathways (42). An important aspect of the

pathogenesis of lung diseases includes the regulation of gene

expression by chromatin-modifying enzymes (43). These enzymes

play a crucial role in determining the appropriate stage-specific

gene expression during immune cell development. However, the

precise molecular mechanisms underlying the involvement of

chromatin-modifying enzymes in IPF remain unclear and require

further investigation. This study aims to identify and validate

chromatin-modifying enzyme-related genes as potential key

biomarkers for IPF, utilizing a bioinformatics and systems biology

approach, with a focus on histone modifications.

In this study, transcriptome analysis was carried out on IPF

patients to identify the DEGs. The findings of the transcriptome
Frontiers in Immunology 10
analysis revealed 3, 499 DEGs between the control and IPF groups,

out of which 33 DECMEGs were identified. Further analysis of the

biological significance of DECMEGs showed that they are mainly

involved in histone-lysine demethylation, Sin3-type assemblies and

protein demethylation enzyme activity, and that protein

demethylation enzyme activity is critical for IPF pathogenesis

(44). Our DO analysis reveals a strong link between IPF and

COVID-19, supporting prior findings (45, 46). The incidence of

fibrotic lung disease post-SARS-CoV-2 infection is expected to be

substantial, leading to a considerable global increase (47). Patients

with IPF, who exhibit prevalent risk factors and reduced pulmonary

reserve, may face a more unfavorable prognosis compared to the

general population.

PPI networks and modular analysis were used to identify the six

hub genes, including KDM6B, KDM5A, SETD7, SUZ12, HDAC2,

and CHD4, which play a role in histone modification. Analyzing the

immune infiltration in IPF tissue revealed a correlation between

memory-activated CD4+ T cells, CD8+ T cells, and macrophages.

Furthermore, the hub genes and the major invading cells in IPF

were significantly correlated, particularly KDM6B is positively

correlate with CD8+ T cells but negatively correlated with CD4+

T cell.

Although the pathogenesis of IPF is still not fully understood, T

cells have been identified as contributors to fibrosis progression,

and the underlying mechanisms are complex. Papiris et al.
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FIGURE 7

Constructing the lncRNA–miRNA–mRNA ceRNA IPF network. (A) Venn diagram presents the miRNAs that target each hub gene. (B) The subcellular
localization of lncRNAs of ceRNA. (C) The alluvial diagram presents the ceRNA network.
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demonstrated a significant increase in CD8+ T cells in the lung

tissues and bronchial lavage fluid of IPF patients. Furthermore,

CD8+ T cells are associated with dyspnea grade and functional

disease severity parameters. Regarding CD4+ T cells, the expression

of chemokine receptors CXCR1 and CCR2 suggests that Th2 cells

may predominate in IPF (48). Previous studies have shown that

CD4+ cells in IPF are highly activated and exhibit exuberant

responses when stimulated with autologous IPF lung extracts,

suggesting a process of autoimmunity in IPF through recognition

of self-antigens (49). These findings highlight the complex pathways

by which T cells may regulate fibrosis. Our results suggest that

KDM6B may play a critical role in regulating T cell response during

IPF progression. Furthermore, given the low expression of KDM6B

in T cells, as unveiled by our single-cell RNA analysis, it can be

postulated that KDM6B potentially regulates T cell responses

during IPF progression via an indirect mechanism.

In this study, a novel ceRNA network was constructed based on

seven interactions, including the axis of KDM6B/miR-361-3p/
Frontiers in Immunology 11
MIR99AHG and SETD7/miR-23b-5p/MALAT1, to explore the

regulatory mechanisms in IPF. The MIR99AHG/miR-136-5p/

USP4/ACE2 signaling axis controls lung fibrosis and epithelial-to-

mesenchymal transition, which prevents the progression of lung

cancer to lung adenocarcinoma (50). MALAT1 is a key long-

stranded non-coding RNA that plays a vital role in lung diseases

(51). In conclusion, the DEmRNA–miRNA–DeIncRNA–ceRNA

network is involved in modifying the IPF related chromatin-

modifying enzymes.

The GSEA analysis found that KDM6B primarily participates in

the activation of AMPK downstream of NMDARs, IL-15 signaling,

WP cytokines, and inflammatory response, whereas TP53 regulates

the transcription of cell death genes. Rangarajan et al. observed that

both IPF patients and experimental murine models of pulmonary

fibrosis exhibit the presence of metabolically-active and apoptosis-

resistant myofibroblasts in the fibrotic regions, which is associated

with a lower AMPK activation (52). Additionally, with IPF

progression, patients tend to exhibit an accumulation of M2
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FIGURE 8

The GSEA of KDM6B. (A) Reactome activation of AMPK downstream of NMDARs. (B) Reactome IL-15 signaling pathway (C) WP cytokines and
inflammatory response. (D) Croonquist IL-6 deprivation DN. (E) Baker hematopoiesis of STAT3 targets. (F) TP53 regulates the transcription of cell
death genes.
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macrophages, which secrete a variety of cytokines that promote the

conversion of fibroblasts into myofibroblasts. The activation of the

JAK2/STAT3 signaling pathway is shown to be important for the

polarization of M2 macrophages (53). Research has identified TP53

target 1 (TP53TG1), a p53-inducible long non-coding RNA, as a

dysregulated critical gene in the IPF regulatory network and a major

downregulated gene in IPF-driven fibroblasts (54). In summary,

several pathways enriched to KDM6B by GSEA analysis are closely

associated with IPF.

Histone modifications play a significant role in regulating cell

fate determination, terminal differentiation, and cellular

inactivation (55, 56). KDM6B, a histone demethylase, is identified

as the major regulator of different physiological processes, such as

cell growth, differentiation, senescence, and inflammation (57–61).

The human KDM6B (lysine-specific demethylase 6B) gene, which

codes for a polypeptide with 1682 amino acids and an average

molecular weight of 176 KDa, was localized on chromosome

17p13.1 (62, 63). Our analysis using the Cell-PLoc 3.0 tool

predicted that KDM6B is located in the nucleus. Previous

research has demonstrated that the subcellular distribution of

KDM6B is stringently controlled by a dynamic equilibrium

between nuclear import and export processes. Notably, the

nuclear accumulation of KDM6B is a critical factor for the

effective demethylation of H3K27me3 (64).
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Our bioinformatics analysis further uncovered a strong

correlation between KDM6B and well-established immune

checkpoints, including CTLA4, PD-L2, and PD-L1, in IPF. This

suggests that KDM6Bmay serve an immunomodulatory function in

the treatment of IPF. While the relationship between immune

checkpoints and IPF has not been explicitly reported in these

studies, prior research has demonstrated that combining PD-1/

PD-L1 and anti-CTLA4 inhibitors may enhance treatment efficacy,

not only in non-small cell lung cancer but also in small cell lung

cancer, thereby presenting a promising first- or second-line

treatment option (65, 66). However, therapeutic choices for

pulmonary fibrosis remain limited, with options such as

immunosuppressive agents posing significant risks for elderly

patients (67). Consequently, it is crucial to elucidate the

relationship between immune checkpoints and IPF to better

inform treatment strategies.

This study demonstrated increased KDM6B expression in the

lungs of patients with IPF and in the bleomycin-induced pulmonary

fibrosis mouse model, compared to healthy human lung tissue and

control mice, respectively. Additionally, the pulmonary fibrosis-

related proteins fibronectin and a-SMA exhibited strong

correlations with KDM6B expression. We also developed a

diagnostic model for IPF using KDM6B and other identified key

genes. ROC curve analysis and statistical methods substantiated the
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FIGURE 9

Comprehensive analysis of KDM6B. (A) Subcellular localization of the KDM6B protein. Relationship between KDM6B and immune checkpoints such
as (B) CTLA4; (C) PD-L2; (D) PD-L1.
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model’s reliability, demonstrating its robust diagnostic value.

Moreover, we discovered several novel therapeutic compounds

targeting KDM6B, which may provide a promising new direction

for IPF treatment.

This study presents persuasive findings while acknowledging

certain limitations. We have partially validated KDM6B’s

potential role in IPF through animal experiments and by

constructing diagnostic and prognostic models using publicly

available databases, highlighting KDM6B’s significance in IPF.

Additionally, we identified KDM6B’s primary presence in NKs,

epithelial cells, endothelial cells, fibroblasts, and mast cells, as
Frontiers in Immunology 13
supported by public scRNA-seq datasets. Nonetheless, to better

understand KDM6B’s function and its associated molecules in IPF

pathophysiology, generating a KDM6B knockout mouse model,

part of our future research plans, would be beneficial. While

CIBERSORT is a widely used and highly regarded “digital

cytometry” method for accurately estimating immune cell

infiltration, with strong correlations to flow cytometric analysis

results, validating the prediction using flow cytometry is

recommended. Furthermore, although we predict that

MIR99AHG, MALAT1, PWAR6, and LINC00909 are located in

the cytoplasm based on computational modeling, only
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FIGURE 10

Validation of identified hub genes using a bleomycin-induced mouse model of pulmonary fibrosis. (A) Schematic diagram of the experimental
protocol used in the bleomycin (BLM)-induced lung fibrosis model in mice. (B) Representative MASSON-stained lung sections. (C) Expression of
fibrosis-associated proteins and KDM6B was determined by Western Blot. (D) Semi-quantitative b-Actin of the Western Blot method. (E) Correlation
between KDM6B and a-SMA and fibronectin. (F) Correlation between KDM6B and CD3e and CD8b. (G) Visualizing single-cell clustering results using
t-SNE plots. (H) Analyzing KDM6B gene expression across diverse lung cell subsets. *P < 0.05 Results are expressed as mean ± SEM.
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MIR99AHG’s cytoplasmic localization was validated in a previous

study (68). Therefore, conducting in vitro and in vivo experiments

to further confirm our predictive outcomes is warranted.

Moreover, the decision curve analysis indicates that the

diagnostic weight of KDM6B is better than that of TGF-b1, but
the curve of TGF-b1 is slightly steep, which may be caused by a

small sample size. In future work, we will increase the sample size

to further improve this study.
Frontiers in Immunology 14
5 Conclusions

In summary, our study identified six hub genes, specifically

KDM6B, KDM5A, SETD7, SUZ12, HDAC2, and CHD4, as critical

regulators in IPF. Our animal experiments revealed that KDM6B

expression levels were significantly upregulated in murine

pulmonary fibrosis lungs and positively correlated with a-SMA

and fibronectin expression, emphasizing its essential role in IPF
TABLE 3 Drug-gene interaction network of KDM6B.

Name P-value Chemical formula Structure

primaquine HL60 UP 0.00149996975933348 C15H21N3O

gossypol HL60 UP 0.00359994565021312 C30H30O8

azacitidine MCF7 UP 0.0051499318302617 C8H12N4O5

niclosamide MCF7 UP 0.00614992398429618 C13H8Cl2N2O4

pyrvinium HL60 UP 0.00684991887976516 C26H28N3
+

terfenadine MCF7 UP 0.00919990356484476 C32H41NO2

helveticoside HL60 UP 0.015049873627526 C29H42O9

8-azaguanine PC3 UP 0.0161498689111765 C4H4N6O

proscillaridin HL60 UP 0.0161498689111765 C30H42O8

strophanthidin HL60 UP 0.0171998646182966 C23H32O6
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pathogenesis and progression. GSEA further underscored

KDM6B’s central function in modulating pathways associated

with IPF, offering novel insights into the pathogenesis and

potential treatment strategies for this disease. Our findings

present compelling evidence that KDM6B and its associated

molecules may serve as crucial modulators in IPF pathogenesis,

and provide valuable insights into the underlying mechanisms of

this disease.
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FIGURE 11

Construction of a diagnostic model using hub Genes and TGF-b1. (A) The diagram illustrates a diagnostic model built upon six hub genes in
conjunction with TGF-b1. (B) Calibration curve (CC) representing the accuracy of the diagnostic model. (C) Decision curve analysis (DCA) illustrating
the net benefit of the diagnostic model. (D) Clinical impact curve derived from the DCA, assessing the nomogram’s performance. (E) ROC curve for
the training cohort (GSE110147). (F) ROC curve for the validation cohort (GSE33566).
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SUPPLEMENTARY FIGURE 1

Validation of immune infiltration in a bleomycin((BLM)-induced pulmonary
fibrosis mouse model. (A) Quantification of total macrophages, CD3+ T cells,

and CD4+ T cells in lung tissue samples from PBS- or BLM-treated mice. The
aggregated data from two independent experiments are presented. n = 6-8.

Differences between the two groups were evaluated. (B) Relative proportions
of macrophages, CD3+ T cells, and CD4+ T cells in lung tissue samples from

PBS- or BLM-treated mice. The combined data from two independent

experiments are displayed. n = 6-8. (C) Correlation analysis between
KDM6B and CD4 expression in BLM-treated mice. *P < 0.05, **P < 0.01,

***P < 0.001. Data are represented as mean ± SEM.
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