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It takes two to tango: the role of
tumor-associated macrophages
in T cell-directed immune
checkpoint blockade therapy

Fadi Sheban*

Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
Immunotherapy has revolutionized cancer care in the past decade. Treatment

with immune checkpoint inhibitors has demonstrated promising clinical activity

against tumors. However, only a subset of patients responds to these treatments,

limiting their potential benefit. Efforts to understand, predict, and overcome the

lack of response in patients, have thus far focused mainly on the tumor

immunogenicity and the quantity and characteristics of tumor-infiltrating T

cells, since these cells are the main effectors of immunotherapies. However,

recent comprehensive analyses of the tumor microenvironment (TME) in the

context of immune checkpoint blockade (ICB) therapy have revealed critical

functions of other immune cells in the effective anti-tumor response,

highlighting the need to account for complex cell-cell interaction and

communication underlying clinical outputs. In this perspective, I discuss the

current understanding of the crucial roles of tumor-associated macrophages

(TAMs) in the success of T cell-directed immune checkpoint blockade therapies,

as well as the present, and the future of clinical trials on combinatorial therapies

targeting both cell types.
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Introduction

Cancer immunotherapy has emerged in the late 19th century when Dr. William B Coley

treated cancer patients with intratumoral injections of live pathogens (1). The mechanism

by which Coley’s pathogens led to the eradication of cancer was not clear at the time.

However, today we understand that they elicit a local immune response that fights

cancerous cells incidentally (2). In 1976, Coley’s work was followed by the first report of

successful cancer immunotherapy using Bacillus Calmette-Guerin (BCG) to treat bladder

cancer which is still in use until this day (3). A very important milestone in cancer

immunotherapy was the discovery of immune checkpoints (4). These checkpoints are

negative regulators of the immune system and particularly T cell activation and are
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evolutionarily conserved to fine-tune the duration and extent of

immune responses to ensure self-tolerance (5, 6). Two prominent

examples of immune checkpoints are the Programmed cell Death 1

(PD-1) and Cytotoxic T Lymphocyte Antigen 4 (CTLA-4). These

receptors are expressed by activated T cells (among other cell types)

and act as natural brakes allowing T cells to exert their function in a

timely manner that ensures effective protection from cancer cells

and pathogens while preventing autoimmunity (7, 8) In the last

decade, inhibitory molecules that target these checkpoints, namely

ICB therapies, have been developed and successfully used for the

treatment of various cancer types. The success of ICB molecules in

cancer treatment eventually earned James P. Allison and Tasuku

Honjo the 2018 Nobel Prize in Physiology or Medicine (9).

Despite the promising results of cancer ICB therapy, durable

clinical responses are limited to a subset of individuals with specific

cancer types (10–12). Therefore, tremendous efforts were made to

understand and predict the lack of response in patients. One of the

most prominent biomarkers used to predict ICB response in some

cancer types is tumor immunogenicity, which is primarily

determined by tumor mutational burden, genomic instability, and

efficiency of antigen presentation (13–16). The stronger the

immunogenicity of the tumor, the higher the chances for a

patient to benefit from ICB treatment. Additional biomarkers

include the tumor immunophenotype of patients, which is mainly

characterized by T cell infiltration into the TME. Hot tumors

(immune-inflamed) are defined by high infiltration of T cells,

whereas cold tumors (immune-desert) lack or have low T cell

percentages (17–19). Patients with hot tumors were shown to be

more likely to have a beneficial clinical response to ICB. Moreover,

high expression levels of molecules that are targeted by ICB

therapies such as PD-1 ligand (PD-L1) within the TME are

considered as a biomarker for positive treatment responses (20).

However, these parameters are limited to certain types of cancers

and are not perfectly accurate. For instance, some patients which

are considered negative for PD-L1 expression can still benefit from

anti-PD-1/L1 treatment (21–24). This emphasizes that we still do

not fully understand the mechanism of action (MOA) of such

therapies and the need for further research to improve ICB

therapy outcomes.

Recently, several comprehensive analyses of the TME have shed

the light on the involvement of different immune cells, besides the

extensively studied T cel ls , in the MOA of different

immunotherapies. Specifically, TAMs were described as critical in

shaping the TME and being directly involved in the treatment

outcomes of immunotherapies. In this perspective, I describe the

recent advancements in the understanding of the roles of TAMs in

shaping anti-tumor responses elicited by cancer ICB therapies.

Further, I highlight the potential of combination therapies

targeting TAMs together with T cell-directed ICB molecules and

the ongoing and future clinical trials.
Tumor-associated macrophages

TAMs are an essential component of the TME and are usually

key tumor-promoting players in most solid cancers. By
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orchestrating immunosuppression, angiogenesis, tissue

remodeling, and tumor cell proliferation they support tumor

growth and the formation of metastasis (25–28). As a

consequence, high TAMs infiltration in solid tumors is usually

associated with poor prognosis and resistance to chemotherapy and

immunotherapy such as ICB therapies (29–37) Historically,

macrophages have been divided into two functional phenotypes,

referred to as M1 and M2 (38). This dichotomic model is based on

the stimulation used to activate macrophages in vitro. M1 polarized

macrophages are associated with inflammatory and anti-tumor

activities, whereas M2 polarized macrophages are associated with

resolution of inflammation and pro-tumor activities. However, in

vivo in general, and specifically in the context of cancer, the

phenotypes of macrophages are much more complicated. Single-

cell analyses of human and murine TAMs have revealed several

TAMs phenotypes that can even co-exist, indicating a more

complex scenario beyond the simplistic M1/M2 classification

(39, 40).
The involvement of TAMs in responses
to ICB therapies

Manipulation or depletion of TAMs in the TME can potentiate

several immunotherapeutic strategies, including ICB, CAR-T cell

therapies, and tumor vaccination (25, 41–43). This demonstrates

the paramount role of TAMs in shaping treatment responses to

immunotherapies. In the past decade, utilizing multi-omics

techniques, several research groups have dissected the different

functions of TAMs in the context of immunotherapy. In the

settings of ICB therapy, TAMs have been shown to play critical

expected, and unexpected roles in the effectiveness of various

therapeutic molecules. Understanding these roles would help with

finding novel biomarkers for response, defining potential

therapeutic targets expressed by TAMs, and developing

combinatorial therapeutic approaches to enhance the efficacy of

the existing ICB therapies.
TAMs as primary expressors of immune
checkpoint ligands in the TME

The foremost goal of ICB therapy is to unleash the cytotoxic

activity of T cells which is limited by the immunosuppressive nature

of the TME. TAMs are key players in suppressing adaptive anti-

tumor immune responses (29, 44). Among the various mechanisms

which TAMs apply to attenuate T cell activities, is the high

expression of checkpoint ligands such as CD80, CD86, PD-L1,

PD-L2, and CD155, etc. (Figure 1A) (45–47). The interaction of

some of these ligands with their receptors on T cells was shown to

downmodulate the amplitude of T cell activation and proliferation.

For instance, PD-1-PD-L1 interaction drives inhibitory intracellular

signals in T cells that eventually lead to T cell exhaustion (9).

Assessment of PD-L1 expression in tumors is used as a diagnostic

marker for anti-PD1 therapy in non-small cell lung cancer
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(NSCLC) and several other malignancies (17, 48). Both tumor cells

and myeloid antigen-presenting cells (APCs) such as TAMs express

PD-L1 in the TME. Yet, it was shown in animal models that PD-L1

on tumor cells was largely dispensable for the response to anti-PD1

therapy, whereas PD-L1 in host myeloid cells, was essential for this

response (49). Further, it was shown that among myeloid cells,

TAMs are the main source of PD-L1 in the TME. Depletion of PD-

L1 in TAMs resulted in a reduction in tumor growth compared to

control group, yet these effects were much stronger when depleted

in dendritic cells (50). Interestingly, besides these extensively

studied effects of the immune checkpoint-ligand interactions, it

was shown that TAMs can also trap T cells by forming long-lasting

interactions and impede them from reaching tumor cells (51).

Importantly, the inability of T cells to infiltrate tumors is

considered an important mechanism of resistance to ICB (17).

Likewise, FasL+ TAMs promote liver metastases by inducing

apoptosis of Fas+CD8+ T cells through Fas-FasL interaction,

leading to an immune-desert TME (52).

More immune checkpoints ligands expressed by macrophages

are being discovered and assessed for their ability to suppress T cell

responses and thus their potential use as targets for ICB. V-domain

Ig suppressor of T cell activation (VISTA) is a novel distinct

immunoglobulin inhibitory ligand whose extracellular domain
Frontiers in Immunology 03
bears homology to the B7 family ligand PD-L1 (53, 54). By

interacting with the adhesion and co-inhibitory receptor P-

selectin glycoprotein ligand-1 (PSGL-1) on T cells, VISTA

suppresses T cells selectively at acidic pH such as that found in

TME (54, 55). Hence, VISTA-PSGL-1 axis is considered a new

promising target for ICB and is now being assessed in clinical trials.

Further research and screening for ligands expressed on TAMs that

interfere with anti-tumor T cell responses will open the door for

more discoveries and potential targets for ICB therapies.
TAMs as effector cells of T cell-directed
ICB therapy

ICB molecules that target PD-1-PD-L1 interaction have shown

remarkable success in treating melanoma and NSCLC. Many

monoclonal antibodies (mABs) targeting the PD-1-PD-L1 axis are

FDA-approved and widely used to treat cancer patients. Yet, the

MOA of these mABs is still not fully understood, limiting the

advancement of novel therapeutic approaches and the

improvement of the current clinical response rates. Early

explanations of how these mABs work were based on the

understanding that the two key player cells in the targeted axis
A B

DC

FIGURE 1

The involvement of tumor-associated macrophages in responses to immune checkpoint blockade therapies. (A) ICB molecules block TAMs cell
surface immunosuppressive checkpoint ligands such as PD-L1 from interacting with their counterpart receptors on T cells. (B) TAMs directly respond
to ICB molecules either by a direct interaction with the targeted receptor or through interaction with FC receptors expressed by TAMs. (C) TAMs can
be reprogrammed by targeting their myeloid checkpoints receptors and pathways or by engaging their activating receptors. (D) Combination
therapy combining ICB molecules and TAMs modulator therapeutic molecules boosts ICB clinical positive responses and overcomes resistance.
Created with BioRender.com.
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are a T cell and another interacting cell expressing PD-1 and PD-L1

respectively. In this interaction, tumor or myeloid cells expressing

PD-L1 suppress T cell responses by interacting with PD-1 on

these cells.

Previously, it was reported that macrophages express PD-1 in the

context of pathogen infection (56). In a more recent study, Gordon

et al. aimed to assess whether macrophages might also express PD-1

in the context of cancer. Surprisingly, they showed that both human

and mouse TAMs do express PD-1 in the TME. Interestingly, PD-1

expression levels negatively correlated with the phagocytic potency of

TAMs against tumor cells, and in vivo blockade of PD-1 on TAMs

improved their phagocytic activity, reduced tumor growth, and

increased the survival of the mice (57). This study suggested that

anti-PD-1 ICB therapy may also function through direct effects on

TAMs and opened the door for further investigations. More recent

studies confirmed this observation and showed in more detail how

the deletion of PD-1 in TAMs induces anti-tumor immunity and

suppresses tumor growth (58, 59). Interestingly, a recent study

indicated that the functional effects of anti-PD-L1 therapy also are

not only mediated by T cells. Instead, it seems that anti-PD-L1

treatment can reprogram TAMs into pro-inflammatory, antigen-

presenting cells that help sustain and enhance effector CD8+ T cell

activity (60, 61). However, it is not yet clear whether this is a direct or

a secondary effect of anti-PD-L1 therapy.

These discoveries twisted the traditional view of the PD-1-PD-

L1 axis as a T cell-specific immune checkpoint and brought light to

a new role of TAMs as key effector cells in ICB therapy targeting the

PD-1-PD-L1 axis.

As for anti-PD-1/PD-L1 therapy, the MOA of anti-CTLA-4

therapy is still under debate. The initial goal behind mABs targeting

this molecule was to block inhibitory signals in activated effector T

cells upregulating CTLA-4 and thereby unleashing their anti-tumor

responses. However, more recently, several studies raised the

possibility that these mABs might function by depleting or

affecting the suppressive activity of regulatory T cells (Tregs)

which constitutively express high levels of CTLA-4 (62).

Moreover, it was shown that Fcg receptor (FcgR)-dependent
depletion of Tregs is crucial for the anti-tumor response elicited

by anti-CTLA-4 (63). More recently, this (FcgR)-dependent
depletion was shown to be accompanied with the remodeling of

the myeloid compartment in the TME. Importantly, this immune

remodeling was not driven solely by Treg depletion or CTLA-4

blockade, but mainly through FcgR engagement and downstream

activation of monocytes and TAMs through type I interferon

signaling (64). These findings indicated that FcgR engagement

and TAMs remodeling are involved in successful anti-CTLA-4

treatment, emphasizing again the crucial emerging role of TAMs

as direct effector cells in ICB therapies (Figure 1B).
Reprogramming of TAMs overcomes
resistance to ICB therapies

TAMs have been shown to regulate the therapeutic resistance

mechanisms of different cancer therapies (33, 65–67). Therefore,

whether TAMs regulate therapeutic resistance to ICB was an
Frontiers in Immunology 04
inevitable question. In one of the first studies assessing this, Zhu

et al. showed that targeting TAMs by CSF-1R inhibition, enhanced

the efficacy of either anti-PD1 or anti-CTLA4 therapies in an

immunotherapy-resistant pancreatic cancer model (68). As of

today, owing to several additional studies we understand that

TAMs play a crucial role in resistance to ICB therapies (37).

Thus, combining ICB with therapeutic agents impacting TAMs

infiltration and/or activity has attracted particular attention and is

being evaluated in clinical trials.

Even though TAMs are usually promoting tumor growth, and

their infiltration is correlated with negative outcomes, eliminating

them in the TME by blocking their recruitment or depleting them

might be not the optimal solution to augment ICB efficacy (25).

Instead, reprogramming them into anti-tumor TAMs would exploit

their beneficial abilities to fight tumors such as activating T cells

(rather than suppressing them), mediating direct cytotoxic tumor

killing, and phagocytosis of dying tumor cells (Figure 1C). There are

two strategies to functionally reprogram TAMs from pro-tumor

into anti-tumor phenotype. The first one is by activating them

towards an M1-like phenotype using receptors sensing pathogenic

molecules and stimulation with inflammatory cytokines. The

second strategy is by modulating their myeloid checkpoints and

negative regulators. One prominent activator reported to repolarize

TAMs and other myeloid cells is the CD40 receptor which is a

member of the TNF receptor family expressed by APCs. When

activated by its ligand CD40L, it triggers the production of anti-

tumor cytokines and factors such as TNF and reactive oxygen

species. Targeting CD40 by agonistic mABs powerfully enhanced

responses of both anti-PD1 and anti-CTLA4 therapies in an

immunotherapy-resistant pancreatic cancer model (69). Other

macrophage activators include engagers of Toll-like receptors

(TLRs), interferon receptors (IFNR), stimulator of interferon

genes (STING), and FC receptors (25).

The physiological role of myeloid checkpoints and negative

regulators of macrophage polarization is the protection of tissues

from excessive inflammation and damage. Hijacking of such

regulators by tumor cells results in immunosuppressive and

tumor-promoting TAMs. One example of a frequently hijacked

regulator is the CD47 “don’t eat me” signal (70). This protein is

expressed on normal cells and interacts with SIRPa which is found

on professional phagocytes to inhibit them from phagocytizing host

cells. Tumor cells overexpress CD47 in many cancers and by this,

they avoid their removal by TAMs and other phagocytes. Treatment

with anti-CD47 or anti-SIRPa antibodies increased phagocytosis of

cancer cells by TAMs and resulted in increased priming of CD8+ T

to exhibit cytotoxic functions (71, 72). Other phagocytosis

inhibitory receptor-ligand pairs include LILRB1–HLA1,

SIGLEC10–CD24, and PD1–PDL1 (73, 74).

Scavenger receptors are highly expressed on TAMs and are

associated with an immunosuppressive phenotype. Targeting

scavenger receptors is a promising approach to reprogramming

TAMs. For instance, the engagement of mannose receptor 1

(CD206) by a selective peptide (RP-192) that changes the

receptor conformation, reprogrammed TAMs into an M1-like

phenotype. Importantly, the combination of RP-192 and anti-PD-

L1 therapies allowed to overcome ICB resistance in a pancreatic
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cancer model not known to respond to single agent of anti-PD-1/

PD-L1 therapy (75). Macrophage receptor with collagenous

structure (MARCO), macrophage scavenger receptor 1 (MSR1),

and CLEVER-1 are other examples of scavenger receptors that

mediate TAM reprogramming upon their targeting and are

promising candidates for combination therapies with ICB (76–

78). Recently, single-cell analysis of suppressive myeloid cells in

tumors identified triggering receptor expressed on myeloid cells 2

(TREM2) to be a novel immunosuppressive gene expressed by

myeloid subsets and especially TAMs in the TME (79, 80).

Importantly, the modulation of the TREM2 pathway using

blocking antibody remodeled the tumor myeloid landscape and

enhanced anti-PD-1 therapy in a responsive tumor model (80, 81).

TAMs can be reprogrammed not only by agonizing or

antagonizing their surface receptors but also by targeting

intracellular proteins and pathways that are involved in the

regulation of suppressive programs. Macrophage PI3Kg was

shown to control a critical switch between immune stimulation

and suppression during inflammation and cancer, making it an

ideal candidate for clinical purposes (82). Pharmacological

inhibition of PI3Kg resulted in efficient reprogramming of

TAMs which synergized with anti-PD-1 treatments to reduce

tumor growth. Another example is the epigenetic reprogramming

of TAMs by inhibiting class IIa histone deacetylase (HDAC) (83).

The inhibitor of HDAC, TMP195, was shown to alter the TME

and reduce tumor growth and pulmonary metastases by

modulating the phenotype of TAMs. Furthermore, combining

TMP195 with anti-PD1 blockade significantly enhanced tumor

size reduction in an otherwise resistant tumor model. Lastly, a

recent report showed that the N6-methyladenosine reader

YTHDF2 regulates the anti-tumor functions of TAMs (84).

Ablation of YTHDF2 in TAMs suppressed tumor growth by
Frontiers in Immunology 05
reprogramming TAMs toward an antitumoral phenotype and

increasing their antigen cross-presentation abilities, which in

turn enhanced CD8+ T cell-mediated anti-tumor immune

responses. In line with this observation, the ablation of

YTHDF2 enhanced the efficacy of anti-PD-L1 therapy.

Standard of care cancer treatment such as chemotherapy was

also shown to affect TAMs phenotype (66, 85, 86). Paclitaxel is a

common chemotherapeutic drug used to treat various types of solid

tumors. Recent studies have revealed that Paclitaxel not only

inhibits cancer growth through its traditional cell-cycle arrest

mechanism, but it can also reprogram TAMs in a TLR4-

dependent manner, resulting in an enhanced immune response

against the tumor (87, 88). Thus, such immunostimulatory

chemotherapies appear to be a promising combination partners

of ICB therapies, although further research is needed to optimize

such treatment regimens (89).

Together, the different examples presented here demonstrate

the paramount importance of TAMs modulation in gaining a

successful clinical response to different T-cell-mediated

immunotherapies. Future studies that will discover additional

suppressive genes and pathways, will broaden the arsenal of

possible clinical TAMs targets, and increase the chances for

successful ICB combinatorial treatment in patients.
TAMs modulators in combination with
ICB therapies - present and future
clinical trials

The sum of the mentioned discoveries encouraged clinical

trials combining TAM modulators with different ICB therapeutic
TABLE 1 Selected clinical trials of combination therapies targeting tumor-associated macrophages together with immune checkpoint blockade agents.

TAM targeting agent Combination ICB agent Cancer type Clinical Trial

TLRs activation agonist

TLR3 agonist anti-PD-L1 Biopsy-accessible tumors NCT02643303

anti-CTLA-4

anti-PD-1 Melanoma NCT04570332

TLR7 agonist anti-PD-1 Her2+ solid tumors NCT04278144

TLR7/8 agonist anti-PD-1 Metastatic solid tumors NCT04799054

TLR9 agonist anti-PD-1 Melanoma NCT04401995

CD40 agonists

anti-PD-1 Several tumor types NCT02376699

anti-PD-1 Melanoma and renal carcinoma NCT04495257

anti-CTLA-4

anti-PD-1 Solid tumors NCT05165433

anti-PD-1 Pancreatic cancer NCT03214250

anti-PD-1 Metastatic melanoma NCT02706353

(Continued)
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agents (Figure 1D). Most of the selected ongoing clinical trials

(Table 1) evaluate the combination of a novel TAM modulator

agent with an existing ICB therapy. The more data and clinical

parameters that will be collected from these clinical trials the

deeper our understanding will be of such combination therapy

approaches in humans. For instance, single-cell profiling of tumor

biopsies before treatment (if possible) would enable us to correlate

TAMs infiltration and expression of specific markers by TAMs

with clinical outcomes. This would allow the acquisition of more

detailed insights on the patients that are more likely to respond to

combination therapy and help to design future data-driven clinical

trials. Moreover, as discussed earlier, the binding of therapeutic

antibodies to macrophage Fc receptors is critical for their clinical

output (90). Thus, profiling of Fc receptors on myeloid cells in the

TME would boost our knowledge of the correlation between the Fc

receptors landscape and clinical responses. Additionally,

understanding these basic concepts will critically improve the

way we design antibody-based drugs in the future.

The clinical interest in combination therapy is already high due to

the resistance of certain cancer types and individuals to ICB

monotherapy. If some of the current combination therapy clinical

trials will prove their enhanced efficacy over monotherapies, this will

further fuel the enthusiasm for combination therapies, and we will see

much more clinical trials in the next years. With the ongoing advances

in antibody design, future clinical trials will probably include more

sophisticated antibodies. For instance, bi-specific antibodies that target

a myeloid checkpoint while activating T-cells or engaging Fcg
receptors could be of high clinical potential. Finally, further basic

research that involves large and well-designed perturbation screens

will allow us to bring more TAM-specific targets to clinical trials.
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TABLE 1 Continued

TAM targeting agent Combination ICB agent Cancer type Clinical Trial

SIRPa/CD47 blockers

anti-CD47 anti-TIGIT Urothelial Carcinoma NCT03869190

anti-PD-L1

anti-SIRPa anti-PD-1 Solid tumors NCT03990233

CLEVER-1 blocker

anti-PD-1 NSCLC NCT05171062

Trem2 inhibitor

anti-PD-1 Solid tumors NCT04691375
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